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Abstract. Prox-regularity of a set (Poliquin-Rockafellar-Thibault [25]), or
its global version, proximal smoothness (Clarke-Stern-Wolenski [5]) plays an
important role in variational analysis, not only because it is associated with
some fundamental properties as the local continuous differentiability of the
function dist (C; ·), or the local uniqueness of the projection mapping, but also
because in the case where C is the epigraph of a locally Lipschitz function, it is
equivalent to the weak convexity (lower-C2 property) of the function. In this
paper we provide an adapted geometrical concept, called subsmoothness, which
permits an epigraphic characterization of the approximate convex functions
(or lower-C1 property). Subsmooth sets turn out to be naturally situated
between the classes of prox-regular and of nearly radial sets. This latter class
has been recently introduced by Lewis in [18]. We hereby relate it to the
Mifflin semismooth functions.

1. Introduction

Let X be a real Banach space and U be a non-empty open subset of X. A
function f : U → R is called weakly convex on U if for every x0 ∈ U there exists
σ, δ > 0 such that, for every x, y ∈ B(x0, δ) and t ∈ [0, 1]

(1.1) f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + σt(1− t)‖x− y‖2.
This class of functions, initially introduced by Vial [33], has been extensively used by
many authors under various equivalent definitions (see [15] and references therein)
and enjoys various interesting properties. For example, every continuous function
satisfying (1.1) can be decomposed to a difference of a convex continuous function
and a convex quadratic function ([33, Proposition 4.3]). Another important equiv-
alent property, from the application point of view, is the following one, established
by Rockafellar [28] in finite dimensions: a (locally Lipschitz) function f is weakly
convex if, and only if, it is lower -C2. We recall that a function f is called lower-Ck

on U (k ∈ N) if for every x0 ∈ U there exist a neighbourhood V of x0, a compact
topological space S, and a jointly continuous function g : V × S → R satisfying

f(x) = max
s∈S

g(x, s) for all x ∈ V,
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and such that all derivatives of g of order k with respect to x (exist and) are jointly
continuous ([28] e.g.). This class of functions provides a robust and stable extension
of both the notion of convex function and the notion of smooth function. Their
role in optimization is important, see [15] for a survey. For lower-Ck functions in
Hilbert space, we refer to [24].

In the same period, several extensions of convexity (respectively, of monotonic-
ity) have been proposed for sets, see [33], [30] and references therein (respectively,
for multivalued operators, see [28], [31]). In this line of research, Clarke, Stern and
Wolenski studied in [5] the notion of proximal smoothness. They proved that a
closed set C of a Hilbert space is proximally smooth (or uniformly prox-regular,
according to [25]) if, and only if, its square distance function dist(., C)2 is con-
tinuously differentiable in an open tube of uniform thickness around C (we also
refer to Federer in [14] for the finite dimensional case, where such sets are called
positively reached). They have also shown that this property characterizes the
epigraphs of lower-C2 functions (in finite dimensions), establishing an interesting
link between sets and functions (see also [33, Propositions 4.17, 4.18]). Poliquin,
Rockafellar and Thibault in [25] developing the corresponding local theory under
the name of prox-regularity, established another interesting characterization based
on the hypomonotonicity of the truncated Clarke normal cone Nr(C; .) of C, where
r > 0. The same property, that is, hypomonotonicity, had been previously used
to characterize the subdifferentials of weakly convex functions ([28]). Thus, in
finite dimensions, one has the following complete geometrical characterization of
locally Lipschitz weakly convex functions: (This characterization will be extended
in Hilbert spaces in Section 4):

(1.2) f is weakly convex ⇔ ∂f is hypomonotone ⇔ epi f is prox-regular.

The weaker notion of approximate convexity has been recently considered by Ngai,
Luc and Théra [23]. We also refer to Rolewicz [29] and references therein for
some similar convex-like functions. According to the definition in [23], a function
f : U → R is called approximately convex on U if for every x0 ∈ U and every ε > 0,
there exists δ > 0 such that for every x, y ∈ B(x0, δ) and for every t ∈ [0, 1]

(1.3) f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t)‖x− y‖.
This class of functions satisfies interesting integration properties, is stable under
finite sums and finite suprema and enjoys exact subdifferential sum rules (see [23]).
In [9], Daniilidis and Georgiev emphasized that, in finite dimensions, this class
of functions coincide with the well known class of lower -C1 functions (see [31]
or [28] for an extensive study of this latter class). Moreover, (locally Lipschitz)
approximately convex functions have been characterized by the submonotonicity of
their subdifferentials.

By introducing the geometrical concept of subsmoothness of the set related to
the submonotonicity of the truncated Clarke normal cone, our aim is to establish
the analogous to (1.2) statements for approximately convex functions, namely:

f is approximately convex ⇔ ∂f is submonotone ⇔ epi f is subsmooth.

Section 4 is essentially devoted to this task (see Theorem 4.14 and Corollary
4.17). The notion of subsmooth set is introduced in section 3 for arbitrary closed
set (Definition 3.1), where we shed light on the links with other geometrical notions,
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in particular with the tangential Shapiro property and the notion of “near radial-
ity”, introduced recently by Lewis [18] (see Theorem 3.16). We relate this latter
notion to Mifflin semismooth functions, providing an interesting link to functions
satisfying a property of type (1.3) (see Theorem 3.16(c), Theorem 4.9 and Theorem
4.15). Previously, in section 2, we give some preliminaries and we state some useful
properties of different kinds of normal cones of variational analysis.

2. Preliminaries

Throughout the manuscript X denotes a Banach space, X∗ its topological dual
and B(x0, δ) (respectively, B[x0, δ]) the open (respectively, closed) ball of center
x0 ∈ X and radius δ > 0. If C is a nonempty subset of X, the (Clarke) normal
cone of C at u ∈ C is defined by

(2.1) N(C; u) = {x∗ ∈ X∗ : 〈x∗, v〉 ≤ 0, ∀v ∈ T (C; u)},
where the Clarke tangent cone T (C;u) is defined as follows:

(2.2) v ∈ T (C; u) ⇐⇒
{ ∀ε > 0, ∃ δ > 0 such that
∀u′ ∈ B(u, δ) ∩ C, ∀t ∈]0, δ[, (u′ + tB(v, ε)) ∩ C 6= ∅.

We put N(C; u) = ∅, whenever u /∈ C. For any r > 0 we denote by Nr(C;u) the
truncated Clarke normal cone, that is,

Nr(C; u) = N(C; u) ∩B[0, r].

The set C is called tangentially regular at u ∈ C if T (C;u) = K(C;u), where
K(C; u) stands for the Bouligand tangent cone to C at u, that is,

(2.3) v ∈ K(C; u) ⇐⇒ ∀δ > 0, ∃t ∈ (0, δ) such that (u + tB(v, δ)) ∩ C 6= ∅.
The concept of Fréchet normal vectors will be also needed. A vector u∗0 is Fréchet
normal to C at u0 ∈ C if for every ε > 0 there exists δ > 0 such that for all u ∈ C
with ‖u−u0‖ < δ one has 〈u∗0, u−u0〉 ≤ ε‖u−u0‖. The cone of all Fréchet normal
vectors to C at u0 will be denoted by NF (C; u0). We will also put NF (C; u) = ∅
when u /∈ C. We recall that C is normally Fréchet regular at u0 ∈ C whenever the
Clarke and the Fréchet normal cone to C at u0 coincide. If the set C is normally
Fréchet regular at u0, then it is also tangentially regular ([3, Theorem 6.2]).

We typically denote by f : X → R∪{+∞} a proper function (that is, f is finite
at least at one point) with domain domf := {x ∈ X : f(x) ∈ R} and epigraph
epif := {(x, t) ∈ X × R : f(x) ≤ t}. The Clarke subdifferential ∂f(x0) of a locally
Lipschitz function f at x0 is defined as follows

(2.4) ∂f(x0) = {x∗ ∈ X : (x∗, v) ≤ f0(x0; v),∀v ∈ X},
where

f0(x0; v) := lim sup
(y,t)→(x0,0+)

f(y + tv)− f(y)
t

.

A locally Lipschitz function is called directionally regular (in short, d-regular) at
x0, if for all v ∈ X

f0(x0; v) = d−f(x0; v), where d−f(x0; v) = lim inf
t↘0+

f (x0 + tv)− f (x0)
t

.
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A vector x∗ ∈ X∗ is said to be in the Fréchet subdifferential ∂F f(x0) of f at x0

provided that for every ε > 0 there exists δ > 0 such that for all x ∈ B(x0, δ) one
has

(2.5) 〈x∗, x− x0〉 ≤ f(x)− f(x0) + ε‖x− x0‖.
If ψC denotes the indicator function of the set C, that is, ψC(x) = 0 if x ∈ C and
ψC(x) = +∞ otherwise, then it is easily seen that

NF (C; u) = ∂F ψC(u).

The main properties of Fréchet normal cones and Fréchet subdifferentials require
that the Banach space is Asplund. We recall that a Banach space X is called
Asplund ([11] e.g.), if every separable subspace of X has a separable topological
dual. In particular, every reflexive Banach space is Asplund. In Asplund spaces,
the limiting (Mordukhovich) subdifferential ∂Lf is defined as follows:

(2.6) ∂Lf(x0) = w∗-seq-lim sup
x→f x0

∂F f(x),

where w∗-seq-lim sup
x→f x0

denotes the weak star sequential outer (superior) limit. This

means that x∗ ∈ ∂Lf(x0) whenever there are sequences xn →f x and x∗n ∈ ∂F f(xn)
with (x∗n) converging to x∗ with respect to the weak star topology of X?. (By
xn →f x we mean that xn → x and f(xn) → f(x)).

Similarly, one defines the limiting normal cone NL(C;u0) as follows:

NL(C; u0) = w∗-seq-lim sup
u→Cu0

NF (C; u).

(By u →C u0 we mean that the above limit is taken in C.) As in the previous cases,
NL(C;u) = ∅ when u /∈ C. For the indicator function ψC of C, it is easily seen that

NL(C;u0) = ∂LψC(u0).

The distance of a point x ∈ X from C is defined by

dist(C; x) = inf{‖x− y‖ : y ∈ C}.
The link between the Fréchet normal cone and the distance function is given by the
following equality of [16] (see also [3] and references therein)

(2.7) N1
F (C;u0) = ∂F dist(C; .)(u0), for u0 ∈ C,

where, as for the Clarke normal cone,

Nr
F (C; u0) = NF (C;u0) ∩B[0, r], for any r > 0.

Concerning the Clarke normal cone, one has the equality (see [4])

(2.8) N(C;u0) = w∗-cl(R+∂dist(C; .)(u0)),

where w∗-cl denotes the topological closure with respect to the weak star topology
of X∗.

In Asplund spaces the following equalities also hold ([21])

N(C; u0) = w∗-cl co NL(C; u0)

and

(2.9) ∂dist(C; .)(u0) = w∗-cl co ∂Ldist(C; .)(u0),

where w∗-cl co denotes the weak star closed convex hull.
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3. Subsmooth sets and related geometrical concepts

3.1. Definitions and elementary properties. Let C be a nonempty closed sub-
set of a Hilbert space and u0 ∈ C. We recall from [25] that the set C is called
prox-regular at u0, if for every r > 0, there exists σ, δ > 0 such that for all
u1, u2 ∈ B(u0, δ) ∩ C and all u∗i ∈ Nr(C; ui), i ∈ {1, 2} one has:

(3.1) 〈u∗1 − u∗2, u1 − u2〉 ≥ −σ‖u1 − u2‖2.
This turns out to be equivalent to saying that the distance function dist(C, .) is
continuously differentiable on U \ C, for some open neighbourhood U of u0. Fur-
ther, C is called prox-regular, if it is prox-regular at every u0 ∈ C and uniformly
prox-regular, if there exists σ > 0 such that (3.1) holds for all u1, u2 ∈ C. According
to [25, Theorem 4.1], C is uniformly prox-regular if, and only if, the square dis-
tance function dist(C, .)2 is continuously differentiable on an open tube of uniform
thickness around C. So, uniform prox-regular sets correspond to what is called
proximally smooth sets in [5].

We now introduce a new class of sets via the concept of subsmoothness. It can be
seen as a variational behavior of “order one” of the set C, while (3.1) is expressing
a variational behavior of “order two”. In all the sequel, C will be a closed subset
of the Banach space X.

Definition 3.1. The set C is called subsmooth at u0, if for every r > 0 and every
ε > 0 there exists δ > 0 such that for all u1, u2 ∈ B(u0, δ)∩C and all u∗i ∈ Nr(C; ui),
i = 1, 2 one has

(3.2) 〈u∗1 − u∗2, u1 − u2〉 ≥ −ε‖u1 − u2‖.
The set C is called subsmooth, if it is subsmooth at every u0 ∈ C.

We further say that C is uniformly subsmooth, if for every r > 0 and ε > 0 there
exists δ > 0, such that (3.2) holds for all u1, u2 ∈ C satisfying ‖u1 − u2‖ < δ and
all u∗i ∈ Nr(C;ui), i ∈ {1, 2}.

By imposing u2 = u0 in (3.2) one results with a radial counterpart of the above
concept that we call semi-subsmoothness. Let us state the exact definition.

Definition 3.2. The set C is called semi-subsmooth at u0, if for every r > 0 and
ε > 0 there exists δ > 0 such that for all u ∈ B(u0, δ) ∩ C, u∗0 ∈ Nr(C; u0) and
u∗ ∈ Nr(C; u) we have

(3.3) 〈u∗ − u∗0, u− u0〉 ≥ −ε‖u− u0‖.
The set C is called semi-subsmooth, if it is semi-subsmooth at every u0 ∈ C.

Note that the natural definition for a notion of uniform semi-subsmoothness will
yield the previously defined notion of uniform subsmoothness.

Remark 3.3. (i) Conditions (3.1), (3.2) and (3.3) are equivalent to the statements
arising by taking r = 1 (respectively, ε = 1).
(ii) Every set C is prox-regular (respectively, subsmooth, semi-submonotone) at
any point of intC.

The following result makes the connection between subsmoothness and other
classical geometrical concepts.
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Proposition 3.4. (i) Uniformly prox-regular sets are also uniformly subsmooth.

(ii) Every prox-regular set C (at u0) is subsmooth (at u0) and every subsmooth set
(at u0) is semi-subsmooth (at u0).

(iii) If C is semi-subsmooth at u0, then it is normally Fréchet regular, and conse-
quently tangentially regular, at u0.

Proof. Statements (i) and (ii) are straightforward from the definitions. To establish
(iii), let us assume that C is semi-subsmooth at u0 ∈ C. Fix any u∗0 ∈ N(C; u0)
and let r > ‖u∗0‖. Fix also any ε > 0. Choose δ > 0 such that (3.3) holds. Taking
u∗ = 0 ∈ Nr(C; u), we obtain for all u ∈ B(u0, δ) ∩ C

〈u∗0, u− u0〉 ≤ ε‖u− u0‖.
This translates the fact that u∗0 is a Fréchet normal to C at u0 and hence N(C; u0)
is included in the Fréchet normal cone NF (C; u0). In fact the equality holds because
the reverse inclusion is always true. The tangential regularity result follows from
[3, Theorem 6.2]. ¤

3.2. The limiting subdifferential of the distance function. In Asplund spaces
the limiting subdifferential ∂Lf of a locally Lipschitz function f is provided by the
Fréchet subdifferential ∂F f via the formula (2.6). The aim of this paragraph is
to establish a refinement of the aforementioned formula, for the particular case
that f(x) = dist(C; x), where C is a non-empty closed set. Namely, the limit in
(2.6) is considered only in C (instead of X). This important fact will be used
in Section 3.3 to provide alternative characterizations of subsmooth sets and to
facilitate comparison with other concepts.

Let us state this result.

Proposition 3.5. Let C be a closed subset of an Asplund space X and let u0 ∈ C.
Then

∂Ldist(C; .)(u0) = w∗-seq-lim sup
u→Cu0

∂F dist(C; .)(u).

Before giving the proof, we need to recall the following important fuzzy calculus
result, due to Fabian (see [13]).

Proposition 3.6. Let X be an Asplund space, g : X → R be a locally Lipschitz
function, and f : X → R ∪ {+∞} be a lower semicontinuous function that is finite
at x0. Then for any η > 0 there are x, y ∈ B(x0, η) with |f(x) − f(x0)| < η such
that

∂F (f + g)(x0) ⊂ ∂F f(x) + ∂F g(y) + B[0, η].

The proof of Proposition 3.5 is based on the next lemma, which also has an
independent interest. Its proof is inspired from [32] (see also [19], for some other
properties and [22], for Banach spaces with smooth renorms).

Lemma 3.7. Let C be a closed subset of an Asplund space X, let x ∈ X and let x∗ ∈
∂F dist(C; .)(x). Then for every ε > 0, there exist u ∈ C and u∗ ∈ ∂F dist(C; .)(u)
such that

‖u− x‖ ≤ ε + dist(C; x) and ‖u∗ − x∗‖ ≤ ε.
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Proof. Fix ε > 0 and choose η > 0 with η < min(1, ε/6). By definition of the
Fréchet subdifferential (2.5), we may choose some positive number α < η/2 such
that for all x′ ∈ B[x, α]

(3.4) 〈x∗, x′ − x〉 ≤ dist(C; x′)− dist(C;x) + η‖x′ − x‖.
Fix some y ∈ C satisfying

(3.5) ‖x− y‖ ≤ α2 + dist(C;x).

Then for all y′ ∈ B[y, α] we have by (3.4)

〈x∗, y′ − y〉 ≤ dist(C;x + y′ − y)− dist(C; x) + η‖y′ − y‖

≤ dist(C; y′) + ‖x− y‖ − dist(C; x) + η‖y′ − y‖
and hence according to (3.5)

〈x∗, y′ − y〉 ≤ dist(C; y′) + η‖y′ − y‖+ α2.

Consequently, this yields for all y′ ∈ C ∩B[y, α]

〈x∗, y′ − y〉 ≤ η‖y′ − y‖+ α2.

Set ϕ(x) = 〈−x∗, x〉+ η‖x− y‖, so that ϕ(y) ≤ ϕ(y′) + α2, for all y′ ∈ C ∩B[y, α].
Applying the Ekeland variational principle (see [12]) with λ = α/2 we obtain some
z ∈ C ∩B[y, α] with ‖z − y‖ ≤ λ and such that for all z′ ∈ C ∩B[y, α]

ϕ(z) ≤ ϕ(z′) +
α2

λ
‖z′ − z‖,

that is,

〈−x∗, z〉+ η‖z − y‖ ≤ 〈−x∗, z′〉+ η‖z′ − y‖+
α2

λ
‖z′ − z‖,

and hence

(3.6) 〈x∗, z′ − z〉 ≤ η(‖z′ − y‖ − ‖z − y‖) + 2α‖z′ − z‖ ≤ 2η‖z′ − z‖.
Set Φ(x) = ψC(x) + 2η‖x − z‖ and observe that B(z, α/2) ⊂ B[y, α]. Thus (3.6)
yields that

〈x∗, z′ − z〉 ≤ Φ(z′)− Φ(z), for all z′ ∈ B(z, α/2).
This implies that

x∗ ∈ ∂F Φ(z) = ∂F (ψC(.) + 2η‖.− z‖)(z).

According to Proposition 3.6, the latter entails the existence of some u ∈ C with
‖u− z‖ < η and such that

x∗ ∈ ∂F ψC(u) + 3ηB[0, 1] = NF (C; u) + 3ηB[0, 1].

Then we may choose some e∗ ∈ B[0, 1] satisfying

v∗ := x∗ + 3ηe∗ ∈ NF (C; u).

Since x∗ ∈ ∂F dist(C; .)(x), we have ‖x∗‖ ≤ 1, thus ‖v∗‖ ≤ 1 + 3η. Applying (2.7)
we get

u∗ := (1 + 3η)−1v∗ ∈ ∂F dist(C; .)(u).
Further, since ‖x∗ − e∗‖ ≤ 2 we have

‖u∗ − x∗‖ =
3η

1 + 3η
‖x∗ − e∗‖ ≤ 6η

1 + 3η
< ε.
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On the other hand, by (3.5)

‖u− x‖ ≤ ‖u− z‖+ ‖z − y‖+ ‖y − x‖ ≤ η + α + α2 + dist(C;x),

which implies
‖u− x‖ < ε + dist(C; x).

The proof is complete. ¤

Proof. (of Proposition 3.5) According to the definition of the limiting subdifferen-
tial (see (2.6)), the second member is included in the first one. For the converse
inclusion, let u∗0 ∈ ∂Ldist(C; .)(u0). Then there exist {xn}n≥1 in X, {x∗n}n≥1 in X∗,
with x∗n ∈ ∂F dist(C; .)(xn), such that

‖.‖- lim
n→+∞

xn = u0 and w∗- lim
n→+∞

x∗n = u∗0.

Applying Lemma 3.7 for every n ≥ 1 and for εn = 1/n, we obtain a sequence
{un}n≥1 in C, and a sequence {u∗n}n≥1 in X∗ with u∗n ∈ ∂F dist(C; .)(un), such
that for all n ≥ 1

‖un − xn‖ ≤ εn + dist(C; xn) and ‖u∗n − x∗n‖ ≤ εn.

It follows that ‖.‖- lim
n→+∞

un = u0 and w∗- lim
n→+∞

u∗n = u∗0. The proof is complete. ¤

3.3. Subsmoothness vs Fréchet normals. The aim of this section is to provide
alternative characterizations of subsmoothness in terms of Fréchet normals and
of subdifferentials of the distance functions. These characterizations, stated for
reflexive Banach spaces, are partially based on the results of the previous section.
To start with, let C be a closed subset of X and u0 ∈ C. The following lemma will
be used in the sequel.

Lemma 3.8. (i) If ∂dist(C; .) satisfies (3.2) at u0, then

∂dist(C; .)(u0) = ∂F dist(C; .)(u0).

(ii) If in addition X is a reflexive Banach space, then

N(C; u0) = NF (C; u0).

Proof. (i). Consider any u∗0 ∈ ∂dist(C; .)(u0). Then for every ε > 0 there exists
δ > 0 such that for every v ∈ C∩B(u0, δ) we have 〈−u∗0, v−u0〉 ≥ −ε‖v−u0‖, since
0 ∈ ∂dist(C; .)(v). This inequality entails that u∗0 ∈ NF (C; u0). Further, ‖u∗0‖ ≤ 1
because u∗0 ∈ ∂dist(C; .)(u0). According to (2.7), u∗0 ∈ ∂F dist(C; .)(u0) and hence
∂dist(C; .)(u0) ⊂ ∂F dist(C; .)(u0). Since the inverse inclusion is always true, we
obtain ∂dist(C; .)(u0) = ∂F dist(C; .)(u0).
(ii). Combining formulas (2.8) and (2.7) with the equality established in (i) we
obtain

(3.7) N(C;u0) = w∗-cl(NF (C;u0)).

By Proposition 3.1 in Bounkhel-Thibault [3], the convex set NF (C; u0) = ∂F ψC(u0)
is closed in X∗ with respect to the norm topology. As X is reflexive, NF (C; u0) is
also weak star closed. Thus (3.7) becomes N(C;u0) = NF (C; u0). ¤
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The following proposition deals with the statements arising from (3.2), if one re-
places the truncated Clarke normal cone Nr(C; .) by some notion of subdifferential
of the distance function.

Proposition 3.9. Let C be a closed subset of an Asplund space X and u0 ∈ C.
Then the following assertions are equivalent:

(a) (3.2) holds with ∂F dist(C; .) in place of Nr(C; .);
(b) (3.2) holds with ∂Ldist(C; .) in place of Nr(C; .);
(c) (3.2) holds with ∂dist(C; .) in place of Nr(C; .).

Proof. The implication (c) =⇒ (a) is an immediate consequence of the inclusion
∂F dist(C; .) ⊂ ∂dist(C; .). Let us prove the implication (a) =⇒ (b). Fix ε > 0
and choose δ > 0 such that for all x, y ∈ C ∩ B(u0; δ), x∗ ∈ ∂F dist(C; .)(x) and
y∗ ∈ ∂F dist(C; .)(y)

〈x∗ − y∗, x− y〉 ≥ −ε‖x− y‖.
Take any u, v ∈ C ∩ B(u0; δ), u∗ ∈ ∂Ldist(C; .)(u) and v∗ ∈ ∂Ldist(C; .)(v). By
Proposition 3.5, there are un →C u, vn →C v, (u∗n) and (v∗n) converging weak star
to u∗ and v∗, with u∗n ∈ ∂F dist(C; .)(un) and v∗n ∈ ∂F dist(C; .)(vn). For n large
enough we have un, vn ∈ C ∩B(u0; δ) and hence according to the above inequality

(3.8) 〈u∗n − v∗n, un − vn〉 ≥ −ε‖un − vn‖.
Passing to the limit, we obtain

(3.9) 〈u∗ − v∗, u− v〉 ≥ −ε‖u− v‖,
which translates the assertion (b).

It remains to show that (b) =⇒ (c). Let us observe that for each ε > 0 and for
fixed u, v ∈ C ∩B(u0; δ), the set of all (u∗, v∗) ∈ X∗ ×X∗ satisfying the inequality
(3.9) is convex and weak star closed in X∗ ×X∗. Thus the result follows from the
equality (2.9). ¤

Remark 3.10. Let us note that the proof of (a) =⇒ (b) in the above proposition
will not work if one considers (3.3) instead of (3.2), since (3.8) will fail in general.

We now characterize subsmoothness in terms of the Fréchet normal cone when
X is a reflexive Banach space. In the following proposition we assume that U is an
open subset of X and C ∩ U 6= ∅.
Theorem 3.11. Let C be a closed subset of a reflexive Banach space X. Then the
following assertions are equivalent:

(a) C is subsmooth on C ∩ U ;
(b) (3.2) holds at every point of C ∩ U with Nr

L(C; .) in place of Nr(C; .);
(c) (3.2) holds at every point of C ∩ U with Nr

F (C; .) in place of Nr(C; .);
(d) (3.2) holds at every point of C ∩ U with ∂dist(C; .) in place of Nr(C; .).

Proof. With no loss of generality we may assume in the above statements that r = 1.
Furthermore, implications (a) =⇒ (b) and (b) =⇒ (c) are direct consequences of
the inclusions

N1
F (C; u) ⊂ N1

L(C; u) ⊂ N1(C;u), for all u ∈ C.
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Implication (c) =⇒ (d) follows from (2.7) and Proposition 3.9(a) =⇒ (c). So, it
remains to prove (d) =⇒ (a). It follows from Lemma 3.8 that for all u ∈ C ∩ U

(3.10) ∂dist(C; .)(u) = ∂F dist(C; .)(u) and N(C;u) = NF (C;u).

Combining (2.7) with (3.10) we get N1(C; u) = ∂dist(C; .)(u), for all u ∈ C ∩ U.
This completes the proof. ¤

Remark 3.12. It is easily seen that one can add, in the list of equivalences of
Theorem 3.11 the same property (d) with any other subdifferential that is situated
between the Fréchet and the Clarke subdifferentials.

3.4. Comparison with relevant concepts. We are ready to proceed to the links
of the notions of subsmoothness and semi-subsmoothness to other known tangential
concepts in the literature, as Shapiro’s property or Lewis’ near radiality. The
definition of the latter, that we recall in the next definition, is based on the notion
of Bouligand cone, see (2.3).

Definition 3.13 ([30], [18]). Let C be a non-empty closed subset of X. Then
(i) C is said to satisfy the k-order Shapiro property (k ∈ N) at u0 ∈ C, if for every
ε > 0 there exists δ > 0 such that for all u1, u2 ∈ C ∩B(u0, δ) one has

(3.11) dist(K(C;u1); u2 − u1) ≤ ε‖u1 − u2‖k.

(ii) C is called nearly radial at u0 ∈ C, if for every ε > 0 there exists δ > 0 such
that for all u ∈ C ∩B(u0, δ) one has

(3.12) dist(K(C; u); u0 − u) ≤ ε‖u− u0‖;
(that is, (3.11) holds for k = 1 with x′ = x0.)

The following two lemmas will be used in the sequel. The first one, concerning
the Clarke tangent cone, involves a standard argument which has already been used
in the literature (see [25, Proposition 3.6] or [6, Theorem 5.1] e.g.). We provide
here a complete proof for the reader’s convenience.

Lemma 3.14. Let C be a nonempty closed set and u ∈ C. Then for every x ∈ X

(3.13) dist(T (C; u); x) = sup
u∗∈N1(C;u)

〈u∗, x〉.

Proof. Put T = T (C; u) and N = N(C; u). If ψT denotes the indicator function of
the set T , then its Fenchel conjugate is given by ψ∗T = ψN . Set further s(y) = ‖y‖
and let B denote the closed unit ball of X∗. Note that

dist(T (C; u); x) = inf
y∈X

[s(y − x) + ψT (y)] .

Then by the Fenchel duality theorem we get

dist(T (C; u); x) = sup
y∗∈X∗

[〈y∗, x〉 − s∗(y∗)− ψ∗T (y∗)].

Since s∗(y∗) = ψB(y∗) and ψ∗T (y∗) = ψN (y∗), we conclude that

dist(T (C;u); x) = sup
u∗∈N1(C;u)

〈u∗, x〉.

This finishes the proof. ¤
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The following result deals with the Bouligand tangent cone in finite dimensions.

Lemma 3.15. Assume that X is a finite dimensional space. Then

lim
u→Cu0

dist(K(C; u0);
u− u0

‖u− u0‖ ) = 0

(where u 6= u0).

Proof. Suppose that the above equality does not hold. Then there exist ε > 0 and
a sequence un →C u0 (with un 6= u0) such that for all n ≥ 1

(3.14) dist(K(C; u0);
un − u0

‖un − u0‖ ) ≥ ε.

Since X is a finite dimensional space, we may suppose (extracting a subsequence if
necessary) that

{
un−u0
‖un−u0‖

}
n≥1

converges to some vector d ∈ X. By the definition

of the Bouligand tangent cone (see (2.3)), it is easily seen that d ∈ K(C; u0). But
passing to the limit in (3.14) we obtain

dist(K(C;u0); d) ≥ ε,

which contradicts d ∈ K(C; u0). The proof is complete. ¤

In the following result, we make comparison of the concepts in Definition 3.13
with the concepts of subsmoothness and semi-subsmoothness of sets. In the state-
ments below, we suppose that C is a closed set and U is an open subset of X such
that C ∩ U 6= ∅.
Theorem 3.16. (a) C is subsmooth on C ∩ U if, and only if, it is tangentially
regular on C ∩ U and satisfies the first order Shapiro property on C ∩ U.

(b) If X is reflexive, then C is subsmooth on C ∩ U if, and only if, it satisfies
the first order Shapiro property on C ∩ U.

(c) If C is semi-subsmooth on C ∩U, then it is tangentially regular on C ∩U and
nearly radial on C ∩U. The converse also holds whenever X is a finite dimensional
space.

Proof. (a) To prove the “necessity” part, let us suppose that C is subsmooth on
C ∩U. Then by Proposition 3.4(ii) and (iii), C is also tangentially regular at every
point in C ∩ U. Let us fix any u0 ∈ C ∩ U and let us show that C satisfies the first
order Shapiro property at u0. According to Definition 3.1, for every ε > 0 there
exists δ > 0 such that

〈u∗1 − u∗2, u1 − u2〉 ≥ −ε‖u1 − u2‖,
for all ui ∈ C ∩ B(u0, δ) and all u∗i ∈ N1(C; ui) for i ∈ {1, 2}. Taking u∗2 = 0, the
above yields

(3.15) sup
u∗1∈N1(C;u1)

〈u∗1, u2 − u1〉 ≤ ε‖u1 − u2‖.

Moreover, from the tangential regularity we have T (C; u1) = K(C; u1). Combining
this with relations (3.15) and (3.13) we obtain

dist(K(C;u1); u2 − u1) ≤ ε‖u1 − u2‖,
that is, C satisfies the first order Shapiro property at u0.
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Conversely, to prove the “sufficiency” part, let us assume that C is tangentially
regular and satisfies the first order Shapiro property at each point of C ∩ U. Take
any u0 ∈ C ∩ U . We must show that C is subsmooth at u0. To this end, let ε > 0.
Then by Definition 3.13(i) (for k = 1), there exists δ > 0 such that B(u0, δ) ⊂ U
and for all ui ∈ C ∩B(u0, δ), i ∈ {1, 2}
(3.16) max {dist(K(C; u1); u2 − u1), dist(K(C; u2); u1 − u2)} ≤ ε

2
‖u1 − u2‖.

Since K(C; ui) = T (C; ui) for i ∈ {1, 2}, in view of Lemma 3.14 we get

max

{
sup

u∗1∈N1(C;u1)

〈u∗1, u2 − u1〉, sup
u∗2∈N1(C;u2)

〈u∗2, u1 − u2〉
}
≤ ε

2
‖u1 − u2‖.

The above easily yields that for all u∗i ∈ N1(C;ui), i ∈ {1, 2}, we have

〈u∗1 − u∗2, u1 − u2〉 ≥ −ε‖u1 − u2‖,
which shows that C is subsmooth at x0.

(b) Assume that X is reflexive. Taking (a) into account, we only have to prove
the “sufficiency” part. To this end, let us suppose that C satisfies the first order
Shapiro property on C ∩ U and let us show that C is subsmooth there. In view of
Theorem 3.11(c) =⇒ (a), it suffices to show that the truncated Fréchet normal cone
N1

F (C; .) satisfies (3.2) at every point of C ∩ U . So, let us fix any u0 ∈ C ∩ U and
ε > 0. As in the proof of the “sufficiency” part of (a), there exists δ > 0 such that
(3.16) holds. Let us consider any ui ∈ C ∩B(u0, δ) and u∗i ∈ N1

F (C;ui), i ∈ {1, 2}.
Then, according to (3.16), we may choose vi ∈ K(C;ui) and ei ∈ X with i ∈ {1, 2}
such that

u2 − u1 = v1 + e1 and u1 − u2 = v2 + e2,

with ‖ei‖ ≤ ε
2‖u1 − u2‖ for i ∈ {1, 2}. Using the definition of the Fréchet normal

cone and the definition of the Bouligand tangent cone, it is not difficult to see that
〈u∗i , vi〉 ≤ 0, for i ∈ {1, 2}. Further, since ‖u∗i ‖ ≤ 1, for i ∈ {1, 2}, it follows that

〈u∗1, u1 − u2〉 ≥ −ε

2
‖u1 − u2‖ and 〈u∗2, u2 − u1〉 ≥ −ε

2
‖u1 − u2‖.

Putting these inequalities together, we obtain (3.2). This completes the proof.

(c) Let us assume that C is semi-subsmooth on C ∩ U . By Proposition 3.4(iii),
C is tangentially regular at any point in C ∩ U . To prove that C is nearly radial
at a point u0 ∈ C ∩ U one proceeds in the same way as in the above proof of the
“necessity” part of (a), by setting u2 = u0 (and u1 = u) to conclude that (3.12)
holds.

Let us now suppose that X is a finite dimensional space and that C is tangentially
regular and nearly radial at each point in C ∩ U. Let us fix any u0 ∈ C ∩ U , and
let us show that (3.3) holds. To this end, take any ε > 0. By Definition 3.13(ii),
Lemma 3.14 (relation (3.13)) and the tangential regularity on C ∩ U we conclude
that for some δ > 0 such that B(u0, δ) ⊂ U and for all u ∈ C ∩B(u0, δ)

(3.17) sup
u∗∈N1(C;u)

〈u∗, u0 − u〉 ≤ ε

2
‖u− u0‖.

By Lemma 3.15, we may also suppose that for every u ∈ C ∩B(u0, δ) with u 6= u0

(3.18) dist(K(C; u0);
u− u0

‖u− u0‖ ) <
ε

2
, i.e., dist(K(C;u0); u−u0) ≤ ε

2
‖u−u0‖.



SUBSMOOTH SETS: FUNCTIONAL CHARACTERIZATIONS AND RELATED CONCEPTS 13

Since K(C; u0) = T (C;u0), using Lemma 3.14 again we obtain

(3.19) sup
u∗0∈N1(C;u0)

〈u∗0, u− u0〉 ≤ ε

2
‖u− u0‖.

From (3.17) and (3.19) we easily conclude that C is semi-subsmooth at u0. ¤

The following corollary concerns the tangential regularity of sets satisfying the
first order Shapiro property.

Corollary 3.17. In a reflexive Banach space, every set C satisfying the first order
Shapiro property on C ∩ U is normally Fréchet regular and tangentially regular on
C ∩ U.

Proof. The corollary follows directly from (b) in Theorem 3.16 and from Proposition
3.4. ¤

Remark 3.18. Tangential regularity cannot be deduced from near radiality. Indeed,
let C = epi f ⊂ R2 where f : R→ R is given by f(x) = − | x |, for all x ∈ R.
Then C is nearly radial at every point of C, but it is not tangentially regular at
u0 = (0, 0).

Let us finish this section by summarizing the relations among the considered
notions. Some of them were already known in the literature. Any implication
which is not explicitly stated in the diagram is not in general true.

proximally smooth =⇒ prox-regular ⇐⇒ o(2)-Shapiro

(uniformly prox-regular)

⇓ ⇓ ⇓
uniformly subsmooth =⇒ subsmooth

X reflexive⇐⇒ o(1)-Shapiro

⇓ ⇓
semi-subsmooth

X=Rn

⇐⇒
{

nearly radial &

tangentially regular

4. Main results: links between set and functional notions

In this section we shall establish links among epi-Lipschitz sets and functional
notions. In particular, we shall show that epi-Lipschitz sets are subsmooth if, and
only if, they can be represented by approximately convex functions (see Corollary
4.17). In finite dimensions these functions correspond to the lower-C1 property (see
[9]).

Let us recall the functional notions that we are going to evoke in the sequel. We
denote by T : X ⇒ X∗ a multivalued operator with domain dom T := {x ∈ X :
T (x) 6= ∅}.
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4.1. Hypomonotonicity and weak convexity. We recall from [28] that T is
hypomonotone at x0, if there exists σ, δ > 0 such that for all x1, x2 ∈ B(x0, δ) ∩
domT and all x∗i ∈ T (xi), i ∈ {1, 2} one has

(4.1) 〈x∗1 − x∗2, x1 − x2〉 ≥ −σ‖x1 − x2‖2;
The operator T is called hypomonotone on X (respectively, on A ⊂ X) if it is
hypomonotone at every point of X (respectively, of A).

It follows from this definition that for a nonempty closed set C of a Hilbert space
X one has:

• C is prox-regular if, and only if Nr(C, .) is hypomonotone for any r > 0.
Hypomonotonicity is tidily related to weakly convex functions ([33]), or in finite

dimensions to lower-C2 functions ([27], [5] e.g.). The exact relation in Hilbert spaces
is given in the next theorem. The equivalence of (ii) and (iii) in Hilbert spaces can
be found in [2, Proposition 3.6], as well as the equivalence with the decomposability
to the difference of a convex function and a multiple of the square of the norm. In
the present context, we establish a direct proof of the equivalence between (i) and
(ii). Before giving the proof, let us consider a pointwise refinement of the definition
(1.1): A function f : X → R ∪ {+∞} is called weakly convex at x0 ∈ domf if there
exists σ, δ > 0 such that for all x, y ∈ B(x0, δ) and t ∈ [0, 1]

(4.2) f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + σt(1− t)‖x− y‖2.
Clearly, f is weakly convex if, and only if, it is weakly convex at every x0 ∈ domf .
Note also that the weak convexity of f at a point x0, implies its weak convexity in
a neighbourhood of x0 (however, with different values for the parameters σ and δ
in general). Let us finally mention that similarly to the convex functions, weakly
convex functions are locally Lipschitz in the interior of their domain int(domf).

In the following result, f will be merely assumed lower semicontinuous. We recall
([27]) that in this case the Clarke subdifferential ∂f is given by the formula (2.4)
with f0(x0; .) being replaced by the Rockafellar generalized directional derivative
f↑(x0; .), where

(4.3) f↑(x0; u) := sup
δ>0

lim sup
x→f x0

t↘0+

inf
w∈B(u,δ)

f(x + tw)− f(x)
t

.

Note that in the above formula, supδ>0 can be replaced by limδ↘0+ .

Theorem 4.1. Let X be a Hilbert space and f : X → R ∪ {+∞} be a proper lower
semicontinuous function and x0 ∈ domf .
The following statements are equivalent:

(i) f is weakly convex at x0;
(ii) ∂f is hypomonotone at x0;
(iii) there exists σ > 0 and δ > 0 such that for all x, y ∈ B(x0, δ), and all

x∗ ∈ ∂f(x)

(4.4) f(y) ≥ f(x) + 〈x∗, y − x〉 − σ‖y − x‖2.
If X = Rn and x0 ∈ int(domf) then the above statements are also equivalent to

(iv) f is lower-C2 at x0.
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Proof. (i) =⇒ (iii). Let σ > 0 and δ0 > 0 such that for all x, y ∈ B(x0, δ0) and
t ∈ [0, 1] one has

(4.5) f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + σt(1− t)‖x− y‖2.
Fix any x, y ∈ B(x0, δ0/8). Fix also any 0 < δ < δ0. Then for all z ∈ B(x, δ/4) ∩
domf, v ∈ X with 0 < ‖v‖ < δ0/2 and t ∈]0, 1[ we obtain from (4.5)

f(z + tv) = f((1− t)z + t(z + v)) ≤ tf(z + v) + (1− t)f(z) + σt(1− t)‖v‖2,
from which we infer that

f(z + tv)− f(z)
t

≤ f(z + v)− f(z) + σ(1− t)‖v‖2.

In particular for v′ = y− z we have v′ ∈ B(y−x, δ/4) and ‖v′‖ < δ0/2, hence using
the above we obtain

inf
w∈B(y−x,δ)

f(z + tw)− f(z)
t

≤ f(y)− f(z) + σ(1− t)‖y − z‖2.

It follows that

lim sup
z→f x
t↘0+

inf
w∈B(y−x,δ)

f(z + tw)− f(z)
t

≤ f(y)− f(x) + σ‖y − x‖2,

and hence, passing to the limit for δ ↘ 0+ one gets according to (4.3)

f↑(x0; y − x) ≤ f(y)− f(x) + σ‖y − x‖2.
This yields that (iii) holds (with δ′ = δ0/8).

(iii) =⇒ (ii). Let σ > 0 and δ > 0 such that (4.4) holds with σ/2. Then for any
x, y ∈ B(x0, δ), x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y), writing (4.4) one time with x∗ ∈ ∂f(x)
and another time with y∗ ∈ ∂f(y) and adding by parts, one immediately obtains
(4.1).

(ii) =⇒ (i). In finite dimensions this corresponds to implication is (b) =⇒ (c) of
[28, Theorem 6]. However, the same proof can be adopted in Hilbert spaces. We
recall it for completeness: Let us fix σ > 0 and δ > 0 such that (4.1) holds for the
operator ∂f on B(x0, δ). For every x ∈ X, let us define g(x) = f(x)+(σ/2)‖x‖2 and
let us note that ∂g = ∂f + σI (where I is the identity operator). It follows from
(4.1) that ∂g is monotone on B(x0, δ). Thus, the lower semicontinuous function
g + ψB[x0,δ1] is convex (see [8], [1]) for every 0 < δ1 < δ, and f can be expressed as
the difference of the convex function g+ψB(x0,δ) and the convex quadratic function
h(x) = (σ/2)‖x‖2 on B(x0, δ1). In view of [33, Proposition 4.3] (which remains
true in infinite dimensions) f satisfies (4.2).

The equivalence (ii) ⇐⇒ (iv) in finite dimensions has been established in [28].
¤

We must mention that the equivalence between the assertions (i), (ii), and (iii)
in finite dimensions can be found in [5]. Lower-C2 functions in Hilbert spaces (as
well as their connection with lower-T2 functions) are studied in detail in [24].
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4.2. Submonotonicity and approximate convexity. A weaker notion to hy-
pomonotonicity is the concept of submonotonicity (see [31], [10]).

Definition 4.2. An operator T : X → X∗ is called
(i) submonotone at x0 ∈ X, if for every ε > 0 there exists δ > 0 such that for all
x1, x2 ∈ B(x0, δ) ∩ domT and all x∗i ∈ T (xi), i ∈ {1, 2} one has

(4.6) 〈x∗1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖;
(ii) submonotone on X (respectively, on A ⊂ X), if it is submonotone at any point
of X (respectively, of A).

In view of the previous definition, Definition 3.1 can be restated as follows:
• C is subsmooth if, and only if, Nr(C; .) is submonotone for any r > 0.

Let us recall from the introduction the following definition.

Definition 4.3 ([23]). A function f : X → R ∪ {+∞} is called
(i) approximately convex at x0, if for every ε > 0 there exists δ > 0 such that,

for all x, y ∈ B(x0, δ) and t ∈ [0, 1] one has

(4.7) f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t)‖x− y‖;
(ii) approximately convex, if it is approximately convex at every point of domf .

As in the case of convex or weakly convex functions, every approximate convex
function is locally Lipschitz on int(domf) (see [23, Proposition 3.2]). We also refer
the reader to Rolewicz [29] for similar convex-like functions.

In the sequel we shall give a characterization analogous to Theorem 4.1 in infinite
dimensions. Before, let us state the following lemma, which is inspired from the
proof of [31, Theorem 3.9]. We denote by C1

∗(R,R+) the set of all non-negative
continuously differentiable functions a : R −→ R+ satisfying a(0) = a′(0) = 0.

Lemma 4.4. Let T : X ⇒ X∗ be a multivalued operator, f : X → R ∪ {+∞} be a
proper function and x0 ∈ cl(domf). The following assertions are equivalent.

(i) For some neighborhood U of x0 and for every ε > 0 there exists δ > 0 such
that for all x, y ∈ U ∩ domf with ||x− y|| < δ and all x∗ ∈ T (x)

(4.8) f(y) ≥ f(x) + 〈x∗, y − x〉 − ε‖y − x‖ .

(ii) There exists δ > 0 and an even function a ∈ C1
∗(R,R+) such that for all

x, y ∈ B(x0, δ) ∩ domf and all x∗ ∈ T (x)

(4.9) f(y) ≥ f(x) + 〈x∗, y − x〉 − a(‖y − x‖).
Proof. (i) =⇒ (ii) For every x, y ∈ domf and x∗ ∈ X∗ we set

(4.10) σ(x, y, x∗) =
{

[f(y)− f(x)− 〈x∗, y − x〉] ‖y − x‖−1 if x 6= y
0 if x = y

and for every t > 0 we define

ϕ1(t) = inf {σ(x, y, x∗) : x, y ∈ U ∩ domf, ||x− y|| ≤ t, x∗ ∈ T (x)} ,

with the obvious convention ϕ1(t) = +∞ whenever T (x) = ∅. We also set ϕ1(0) = 0.

Let us assume that assertion (i) holds. Then for every ε > 0 there exists δ > 0
such that for all t ∈ [0, δ) we have

(4.11) ϕ1(t) ≥ −ε.



SUBSMOOTH SETS: FUNCTIONAL CHARACTERIZATIONS AND RELATED CONCEPTS 17

It follows that the function ϕ : [0, +∞) → R defined by

(4.12) ϕ(t) = max{−ϕ1(t), 0}
is continuous at t = 0. Applying [31, Lemma 3.7] to the function ϕ we conclude
that for some δ1 > 0 and some continuously differentiable function a1 : [0, δ1] −→ R
with a1(0) = a′1(0) = 0 we have

(4.13) a1(t) ≥ tϕ(t), ∀t ∈ [0, δ1].

Clearly, a1(t) ≥ 0, for all t ∈ [0, δ1]. We extend the function a1 to [0, +∞) by
defining ã1(t) = a1(t), if t ∈ [0, δ1] and ã1(t) = a1(δ1) + a′1(δ1)(t− δ1), if t > δ1 and
we define a : R −→ R in the following way

a(t) =
{

ã1(t), if t ≥ 0
ã1(−t), if t < 0.

Then a is an even, non-negative, continuously differentiable function with a(0) =
a′(0) = 0 and satisfying relation (4.13). Take δ ≤ δ1/2 such that B(x0, δ) ⊂ U and
let us verify that relation (4.9) holds for any x, y ∈ B(x0, δ)∩domf and x∗ ∈ T (x).
This is trivially the case if x = y. Otherwise, we set t = ‖y − x‖ > 0. Since t ≤ δ1,
combining formulas (4.11), (4.12) and (4.13) we infer

σ(x, y, x∗) ≥ ϕ1(t) ≥ −ϕ(t) ≥ −a(t)
t

:= −a(‖y − x‖)
‖y − x‖ ,

which yields (4.9).
(ii) =⇒ (i) Let δ̃ > 0 and a ∈ C1

∗(R,R+) be such that relation (4.9) holds for any
x, y ∈ B(x0, δ̃) ∩ domf and x∗ ∈ T (x). Since the function a is derivable at t = 0
with a(0) = 0 and a′(0) = 0, for every ε > 0 there exists δ1 > 0 such that a(t) < εt

for all t ∈]0, δ1]. Set δ = min{δ̃, δ1/2}, and U = B(x0, δ). Then for every x, y ∈ U
one has a(‖y − x‖) ≤ ε‖y − x‖. Consequently, relation (4.8) follows directly from
(4.9). ¤
Theorem 4.5. Let f : X → R ∪ {+∞} be a proper function. Suppose that f is
locally Lipschitz on U , where U is an open subset of domf and let x0 ∈ U . Then
the following statements are equivalent:

(i) f is approximately convex at x0;
(ii) ∂f is submonotone at x0;
(iii) for every ε > 0 there exists δ > 0 such that for all x, y ∈ B(x0, δ), and all

x∗ ∈ ∂f(x)

(4.14) f(y) ≥ f(x) + 〈x∗, y − x〉 − ε‖y − x‖;
If X = Rn, then assuming any of (i), (ii), (iii) above for all x in a compact

neighborhood V ⊂ U of x0 is also equivalent to
(iv) there exists δ > 0 and an even function a ∈ C1

∗(R,R+) such that for all
x, y ∈ B(x0, δ), and all x∗ ∈ ∂f(x)

(4.15) f(y) ≥ f(x) + 〈x∗, y − x〉 − a(‖y − x‖).
(v) f is lower-C1 in a neighborhood of x0.

Proof. The equivalences (i) ⇔ (ii) ⇔ (iii) have been established in [9, Theorem 1],
while the equivalence of (iii) with (iv) is a direct consequence of Lemma 4.4 and
the compactness of V . Finally, in finite dimensions, the equivalence between (v)
and (ii) has been established in [31]. Let us give a simpler proof of (iv) ⇒ (v).
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So, let us assume that X = Rn and for any fixed x0 ∈ U let us choose δ > 0 such
that B[x0; δ] ⊂ U . Since ∂f is locally bounded and has a closed graph gph(∂f),
and since the closed ball B[x0, δ] is compact, we conclude that the set S(x0, δ) =
{(x, x∗) ∈ gph(∂f) : x ∈ B[x0, δ]} is also compact. It follows directly from (4.15)
that for all y ∈ B[x0, δ]

(4.16) f(y) = max
s∈S(x0,δ)

F (y, s)

where F (y, (x, x∗)) = f(x) + 〈x∗, y − x〉 − a(‖y − x‖). Since a ∈ C1
∗(R,R+), the

function F (·, ·) is also continuously differentiable with respect to the first variable.
It follows from (4.16) that f is lower-C1 around x0. ¤

Remark 4.6. By fixing ε0 > 0 in Definition 4.2(i) (respectively, in Definition 4.3(i))
and assuming the existence of some δ > 0 such that (4.6) (respectively, (4.7)) holds,
one can define the notions of ε0-submonotonicity (respectively, ε0-approximate
convexity). Thus, an operator T is submonotone (respectively, a function f is
approximately convex) at x0 if it is ε-submonotone (respectively, ε-approximately
convex) at x0 for every ε > 0. It is easily seen that an ε0-version of the equivalences
(i) ⇔ (ii) ⇔ (iii) of Theorem 4.5 can be established.

4.3. Semi-submonotonicity and semismoothness. The definition of submono-
tone operator (Definition 4.2(ii)) has been introduced by Spingarn [31] in finite
dimensions. Let us mention that Spingarn employed the term “strict submono-
tonicity” for this notion, and reserved the term “submonotonicity” for the more
restrictive one where (4.6) holds only if x2 = x0. To distinguish between these two
notions we propose for the latter the term “semi-submonotonicity”.

Definition 4.7. An operator T : X → X∗ is called
(i) semi-submonotone at x0 ∈ X, if for every ε > 0, there exists δ > 0, such that,

for all x ∈ B(x0, δ) ∩ domT , all x∗ ∈ T (x), and all x∗0 ∈ T (x0) one has

(4.17) 〈x∗ − x∗0, x− x0〉 ≥ −ε‖x− x0‖;
(ii) semi-submonotone, if it is semi-submonotone at all x ∈ X.

Similarly to the sections 4.1 and 4.2 above, given a closed set C and u0 ∈ C one
has (see Definition 3.2)

• C is semi-subsmooth if, and only if, Nr(C; .) is semi-submonotone for any
r > 0.

We shall now introduce a new class of functions, that we call “semismooth”, by
weakening the definition of approximate convexity.

Definition 4.8. A function f : X → R ∪ {+∞} is called
(i) semismooth at x0, if for every ε > 0 there exists δ > 0 such that, for all

x ∈ B(x0, δ) and t ∈]0, 1[ one has

(4.18) f(tx + (1− t)x0) ≤ tf(x) + (1− t)f(x0) + εt(1− t)‖x− x0‖;
(ii) semismooth, if it is semismooth at every point of domf .

We must mention that a different notion of semismoothness had been previously
introduced by Mifflin in [20] in finite dimensions (see also [7], for an extension
in infinite dimensions). To avoid confusion, let us refer to this latter notion as M-
semismoothness. According to that definition, a function f is called M -semismooth
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if for every sequence {xn}n ⊂ X, every x ∈ X, e ∈ SX and every {x∗n}n ⊂ X∗ such
that x∗n ∈ ∂f(xn) and (xn) e→ x we get 〈x∗n, e〉 → f ′(x; e), where

(xn) e→ x ⇐⇒ lim
n→+∞

xn = x & lim
n→+∞

‖ xn − x

‖xn − x‖ − e‖ = 0

and where f ′(x; e) denotes the usual directional derivative given by

f ′(x; e) = lim
t→0+

f(x + te)− f(x)
t

.

We note that none of the aforementioned notions of semismoothness implies the
directional regularity of the function: Indeed, the function f : R→ R with f(x) =
− | x | is both semismooth and M -semismooth, but it is clearly not d-regular at
x0 = 0.

In the following proposition we establish links among the above notions as well
as with the notion of semi-subsmoothness.

Theorem 4.9. Let f : X → R ∪ {+∞} be a proper function. Suppose that f
is locally Lipschitz on U , where U is an open subset of domf and consider the
following statements:

(i) f is semismooth and d-regular on U ;
(ii) ∂f is semi-submonotone on U ;
(iii) for all x0 ∈ U and ε > 0 there exists δ > 0 such that for all x, y ∈ B(x0, δ)

such that either x = x0 or y = x0, and for all x∗ ∈ ∂f(x)

(4.19) f(y) ≥ f(x) + 〈x∗, y − x〉 − ε‖y − x‖ ;

(iv) f is M -semismooth and d-regular on U.

Then (i) =⇒ (iii) =⇒ (ii) =⇒ (iv).
If X = Rn then all the above statements are equivalent.

Proof. (i) =⇒ (iii). Fix x0 ∈ U and ε > 0 and take δ > 0 such that (4.18)
holds. Consider any x ∈ B(x0, δ) and any t ∈]0, 1[. Since f(x0 + t(x − x0)) =
f(tx + (1− t)x0), relation (4.18) yields

f(x0 + t(x− x0))− f(x0) ≤ t {f(x) + f(x0) + ε(1− t)‖x− x0‖} .

Dividing by t and taking the limit as t → 0+ we obtain

(4.20) d−f(x0; x− x0) ≤ f(x)− f(x0) + ε‖x− x0‖,
Similarly for s = (1− t) and f(x + s(x0 − x)) = f((1− s)x + sx0), applying (4.18)
and proceeding as before we obtain formula (4.20) with x and x0 mutually changed.
Since f is d-regular, d−f(x; .) = f0(x; .) and d−f(x0; .) = f0(x0; .). Thus, in view
of (2.4), relation (4.19) follows.

(iii) =⇒ (ii). Fix x0 ∈ U and ε > 0. Then take δ > 0 such that (iii) holds
with ε/2. Consider any x ∈ B(x0, δ). Applying now (4.19) one time for y = x0 and
another time for x = x0 (and y = x) and adding the resulting equations we obtain
(4.17), that is, ∂f is semi-submonotone at x0.

(ii) =⇒ (iv). Let us assume that ∂f is semi-submonotone on U. Then Spingarn
established (see [31, Proposition 2.5]) that f is d-regular at every point of U , for
the case X = Rn. However the same proof works for an arbitrary real Banach space
X.
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To prove M -subsmoothness, fix x0 in U and take any sequence {xn}n ⊂ X, any
e ∈ SX and any {x∗n}n ⊂ X∗ such that x∗n ∈ ∂f(xn), lim

n→+∞
xn = x0 and

lim
n→+∞

‖ xn − x0

‖xn − x0‖ − e‖ = 0.

We may suppose that xn 6= x0, for all n ∈ N. We note that (4.17) yields

lim inf
n→+∞

inf
z∗n∈∂f(xn)

〈z∗n,
xn − x0

‖xn − x0‖〉 ≥ lim sup
n→+∞

sup
x∗0∈∂f(x0)

〈x∗0,
xn − x0

‖xn − x0‖〉.

Using the continuity of the function u → f0(x0;u) (see [4, Proposition 2.1.1]), we
infer in particular that

(4.21) lim inf
n→+∞

〈x∗n, e〉 ≥ f0(x0; e) = sup
x∗0∈∂f(x0)

〈x∗0, e〉.

Since the operator ∂f is (‖.‖, w∗)-upper continuous at x0 (see [4, Proposition 2.1.5]),
we get

(4.22) lim sup
n→+∞

〈x∗n, e〉 ≤ f0(x0; e).

From (4.21), (4.22) and the directional regularity of f at x0 we conclude that
〈x∗n, e〉 → f ′(x0; e), that is, f is M -semismooth at x0.

Let us now suppose that X = Rn. In this case, the implication (iv) =⇒ (ii) is
[31, Proposition 2.4]. It remains to establish (ii) =⇒ (i). For this, let us suppose
that ∂f is semi-submonotone on U. Then f is d-regular on U (see the proof of
(ii) =⇒ (iv) above). We only have to show that for every x0 ∈ U, relation (4.18)
holds true. To this end, fix ε > 0 and take δ > 0 such that relation (4.17) holds
for ε/2. Since ∂f is upper semicontinuous at x0, with no loss of generality we may
suppose that

(4.23)
⋃

z∈B(x0,δ)

∂f(z) ⊂ ∂f(x0) + B(0,
ε

2
).

Let us now fix any x ∈ B(x0, δ) and any t ∈]0, 1[ and let us set xt = tx + (1− t)x0.
Then applying Lebourg’s Mean Value theorem ([17, Theorem 1.7]) on the segment
[x, xt] we get z1 ∈ [x, xt[ and z∗1 ∈ ∂f(z1) such that

(4.24) 〈z∗1 , xt − x〉 = f(xt)− f(x).

Similarly, there exists z2 ∈ [x0, xt[ and z∗2 ∈ ∂f(z2)

(4.25) 〈z∗2 , xt − x0〉 = f(xt)− f(x0).

Since xt − x = (1− t)(x0 − x) and xt − x0 = t(x− x0), multiplying (4.24) by t and
(4.25) by (1− t), and adding the resulting equalities we get

(4.26) tf(x) + (1− t)f(x0)− f(xt) = t(1− t)〈z∗1 − z∗2 , x− x0〉.
From (4.23) we may choose x∗0 ∈ ∂f(x0) such that

(4.27) ‖z∗2 − x∗0‖ < ε/2.

Applying (4.17) we get

(4.28) 〈z∗1 − x∗0,
z1 − x0

‖z1 − x0‖〉 ≥ −ε

2
.



SUBSMOOTH SETS: FUNCTIONAL CHARACTERIZATIONS AND RELATED CONCEPTS 21

Using (4.27) and the fact that

z1 − x0

‖z1 − x0‖ =
x− x0

‖x− x0‖ ,

we deduce from (4.28) that

〈z∗1 − z∗2 ,
x− x0

‖x− x0‖〉 ≥ −ε.

Combining the above formula with (4.26) we obtain (4.18), that is, f is semismooth
at x0. ¤

4.4. Subsmooth epi-Lipschitz sets. This last section is devoted to the study of
subsmooth (or semi-subsmooth) epi-Lipschitz sets as epigraphical characterizations
of the aforementioned classes of functions. The derived results are summarized in
a diagram at the end of this section.

We recall ([26], [27]) the following definition.

Definition 4.10. A closed set C is called epi-Lipschitz at u0 ∈ C with respect to
the direction d ∈ X if there exists ε > 0, δ > 0 such that for all d′ ∈ B(d, ε), all
u ∈ C ∩B(u0, ε) and all t ∈]0, δ[ we have u + td′ ∈ C.

Remark 4.11. (i) Every set C is epi-Lipschitz at every u0 ∈ intC (with respect to
any d ∈ X).
(ii) If u0 ∈ bd C (the boundary of C), then C is epi-Lipschitz at u0 with respect
to d 6= 0 if, and only if, the set C can be represented in a neighbourhood of u0 as
the epigraph of a Lipschitz continuous function f (see [26], [27]), which is called a
locally Lipschitz representation of C at u0.
This means that there exists a topological complement Xd of Rd := {td : t ∈ R}
in X (that is, X = Xd ⊕ Rd), a neighbourhood U of u0 and a locally Lipschitz
function f : Xd → R such that

(4.29) C ∩ U = {x⊕ sd : x ∈ Xd, f(x) ≤ s} ∩ U.

(Here Xd is endowed with the norm induced by the norm of X.) We denote by π :
X → Xd and ρ : X → R the continuous linear mappings satisfying u = π(u)⊕ρ(u)d,
for all u ∈ X, and by A : Xd × R → X the continuous linear mapping given by
A(x, s) = x⊕ sd, so that Λ := A−1 : X → Xd × R is given by Λ(u) = (π(u), ρ(u)).
We endow Xd × R with the product norm (x, s) → (‖x‖2 + s2)1/2. Consequently,
(4.29) is equivalent to

C ∩ U = A(epif) ∩ U.

We also define F : Xd → X by F (x) = x ⊕ f(x)d, so that F (x) = A((x, f(x)).
Consequently, if k > 0 is the Lipschitz constant of f in a neighbourhood V of
x0 := π(u0) with F (V ) ⊂ U , then it follows easily that

(4.30) ‖F (x1)− F (x2)‖ ≤ α‖x1 − x2‖, for all x1, x2 ∈ V,

where

(4.31) α = ‖A‖(k2 + 1)1/2.

In the sequel, we shall need the following lemma.
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Lemma 4.12. Let A : Z1 → Z2 be an isomorphism between the Banach spaces Z1

and Z2, let C be a non-empty closed subset of Z1 and u0 ∈ C. Then
(a) A(T (C;u0)) = T (A(C); A(u0))
(b) N(C; u0) = A∗(N(A(C); A(u0))).

Proof. Assertion (a) follows easily from the definition of Clarke’s tangent cone
(see formula (2.2)) and the fact that A is an isomorphism. We infer from (a)
that (A(T (C; u0)))o = N(A(C); (A(u0)). Now the desired equality (b) is a direct
consequence of the fact that the adjoint operator A∗ is an isomorphism between
the dual spaces Z∗2 and Z∗1 . ¤

In finite dimensions, Clarke, Stern and Wolenski have shown that proximal
smoothness characterizes the epigraphs of lower C2 functions ([5, Section 5]). In an
analogous way, an epi-Lipschitz set is prox-regular at u if, and only if, the locally
Lipschitz function f given in (4.29) is lower-C2 (see [25]). The forthcoming results
will built further in this line of research. Let us first establish the following lemma.
In several statements below, π will refer to the notation of Remark 4.11(ii).

Lemma 4.13. Let C be an epi-Lipschitz set, let u0 ∈bdC and suppose that Nr(C; .)
is hypomonotone (respectively, submonotone, semi-submonotone) at u0 for some
r > 0.

Then, for every locally Lipschitz representation f of C around u0, the Clarke
subdifferential ∂f is hypomonotone (respectively, submonotone, semi-submonotone)
at π(u0).

Proof. In the sequel we shall refer to the notation of Remark 4.11(ii). In particular,
we suppose that (4.29) holds and that f has a Lipschitz constant k > 0 on an open
neighbourhood V of x0 = π(u0) and that F (V ) ⊂ U.

Let us prove the statement for submonotonicity. With no loss of generality we
may suppose that Nr(C; .) is submonotone at u0, where

r = ‖Λ∗‖(k2 + 1)1/2.

(Λ∗ denotes the adjoint of Λ = A−1.) In order to establish that ∂f is submonotone
at π(u0) = x0, let ε > 0 and set ε1 = α−1ε, where α is given by (4.31). Thus
there exists δ > 0 with B(u0, δ) ⊂ U such that for all u1, u2 ∈ B(u0, δ) and all
u∗i ∈ Nr(C; ui), i ∈ {1, 2}
(4.32) 〈u∗1 − u∗2, u1 − u2〉 ≥ −ε1‖u1 − u2‖.
Let δ1 ≤ α−1δ such that B(x0, δ1) ⊂ V . Then (4.30) implies that F (B(x0, δ1)) ⊂
B(u0, δ). Consider now any two points x1, x2 ∈ B(x0, δ1) and let x∗i ∈ ∂f(xi), for
i ∈ {1, 2}. Then (x∗i ,−1) ∈ N(epif ; (xi, f(xi))). Since Λ is an isomorphism between
the spaces X and Xd × R and since C ∩ U = A(epif) ∩ U , applying Lemma 4.12
for the points

(4.33) ui := F (xi) = A(xi, f(xi)), i ∈ {1, 2},
we get u∗i := Λ∗((x∗i ,−1)) ∈ N(C; ui), i ∈ {1, 2}. Since ‖x∗i ‖ ≤ k, for i ∈ {1, 2}
(see [4, Proposition 2.1.2 (a)] e.g.), we obtain

‖u∗i ‖ ≤ ‖Λ∗‖(‖x∗i ‖2 + 1)1/2 ≤ r, so that u∗i ∈ Nr(C; ui).
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From the above and (4.32) we infer that

〈Λ∗(x∗1,−1)− Λ∗(x∗2,−1), F (x1)− F (x2)〉 ≥ −εα−1‖F (x1)− F (x2)‖,
or equivalently, in view of (4.30) and (4.33)

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖.
Consequently, ∂f is submonotone at x0.

To establish the corresponding statement for semi-submonotonicity, it suffices
to replace x2 by x0 and x∗2 ∈ ∂f(x2) by x∗0 ∈ ∂f(x0) in the above proof. Finally,
assuming that Nr(C; .) is hypomonotone at u0 relative to the parameters σ > 0
and δ > 0 (see (4.1)), one considers again δ1 ≤ α−1δ such that B(x0, δ1) ⊂ V
and σ1 = α−2σ. Making obvious modifications in the above proof one establishes
analogously the hypomonotonicity of ∂f at x0. ¤

We are now ready to establish the results that motivated the study of the paper.
The first one relates the class of subsmooth sets (introduced in Definition 3.1) to
the approximately convex functions.

Theorem 4.14. Let X be a Banach space, C an epi-Lipschitz subset of X, and
u0 ∈ bdC. Then the following statements are equivalent:

(i) C is subsmooth at u0;
(ii) every locally Lipschitz representation f of C at u0 is approximately convex

at π(u0);
(iii) some locally Lipschitz representation f of C at u0 is approximately convex

at π(u0).

Proof. Implication (ii) =⇒ (iii) is obvious and implication (i) =⇒ (ii) follows from
Lemma 4.13 and Theorem 4.5 (ii) =⇒ (i). Thus, it remains to show (iii) =⇒ (i).
To this end, referring to the notation of Remark 4.11(ii), let us suppose that f is
approximately convex at x0 = π(u0), and locally Lipschitz of constant k > 0 on V
with F (V ) ⊂ U (see (4.30)). In view of Remark 3.3 (i) it clearly suffices to show
that N1(C; .) is submonotone at u0. Fix any ε > 0 and put

ε1 =
ε

2‖A‖.‖Λ‖ .

According to implication (i) =⇒ (iii) of Theorem 4.5, there exists δ1 > 0 (with
B(x0, δ1) ⊂ V ) such that by (4.14) one has

(4.34) f(x2) ≥ f(x1) + 〈x∗1, x2 − x1〉 − ε1‖x1 − x2‖,
for all x1, x2 ∈ B(x0, δ1) and all x∗1 ∈ ∂f(x1). Take δ ≤ δ1/‖Λ‖ so that B(u0, δ) ⊂
U. Consider any ui ∈ C ∩B(u0, δ) and u∗i ∈ N1(C; ui), i ∈ {1, 2}. We claim that

(4.35) 〈u∗1, u2 − u1〉 ≤ ε

2
‖u1 − u2‖.

To this end, let xi = π(ui) and ti = ρ(ui), so that ui = A(xi, ti) and ti ≥ f(xi),
i ∈ {1, 2}. If t1 > f(x1), then u1 ∈ intC and consequently N(C; u1) = {0}, so
(4.35) holds trivially. Thus, we may suppose that t1 = f(x1) and u∗1 6= 0. In
view of Lemma 4.12, u∗1 ∈ (Λ)∗ (N(epif); (x1, f(x1))) . Since ‖u∗1‖ ≤ 1, there exist
0 < λ ≤ ‖A‖ and x∗1 ∈ ∂f(x1) such that

(4.36) u∗1 = λ(Λ)∗(x∗1,−1).
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Moreover, taking the choice of δ into account, it is easily seen that x1, x2 ∈ B(x0, δ1)
and that

(4.37) ‖x1 − x2‖ ≤ ‖Λ‖.‖u1 − u2‖.
Since t2 ≥ f(x2), we obtain from (4.34) and (4.37)

〈(x∗1,−1), (x2, t2)− (x1, f(x1))〉 ≤ ε1‖x1 − x2‖ ≤ ε1‖Λ‖.‖u1 − u2‖.
Thus

〈λ(x∗1,−1),Λ(u2)− Λ(u1)〉 ≤ ε1‖A‖.‖Λ‖.‖u1 − u2‖ =
ε

2
‖u1 − u2‖,

which, in view of (4.36) yields (4.35). Interchanging now the roles of u1 and u2 in
(4.35) we obtain

(4.38) 〈u∗2, u1 − u2〉 ≤ ε

2
‖u1 − u2‖.

Adding the inequalities (4.35) and (4.38) we obtain (3.2). ¤

The next theorem concerns the class of semi-subsmooth sets. Comparing with
the epi-graphical characterization of Theorem 4.14, there are two important differ-
ences:

- the statements are now local (and not pointwise)
- the equivalence is established only in finite dimensions.

Theorem 4.15. Let C be an epi-Lipschitz subset of Rn and u0 ∈ bdC. Then the
following statements are equivalent:

(i) C is semi-subsmooth around u0;
(ii) every locally Lipschitz representation f of C at u0 is semismooth and d-

regular around π(u0);
(iii) some locally Lipschitz representation f of C at u0 is semismooth and d-

regular around π(u0).

Proof. Implication (ii) =⇒ (iii) is obvious. Let us prove (i) =⇒ (ii). If f is a
locally Lipschitz representation of C in a neighbourhood of u0, applying Lemma
4.13 we obtain that ∂f is semi-submonotone in a neighbourhood of π(u0). From
(ii) =⇒ (i) of Theorem 4.9 we obtain (ii). Finally, implication (iii) =⇒ (i) follows
in the same way as in Theorem 4.14. One uses (4.19) in the place of (4.14) to obtain
(3.3). The proof is complete. ¤

The following theorem completes the trilogy of epi-graphical characterizations.
It concerns the class of prox-regular sets (see [33] or [5] for the finite dimensional
case).

Theorem 4.16. Let X be a Hilbert space, C an epi-Lipschitz subset of X, and
u0 ∈ bdC. Then the following statements are equivalent:

(i) C is prox-regular at u0;
(ii) every locally Lipschitz representation f of C at u0 is weakly convex at π(u0);
(iii) some locally Lipschitz representation f of C at u0 is weakly convex at π(u0).
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Proof. The proof follows the lines of the proof of Theorem 4.14 above.
As before, Lemma 4.13 and Theorem 4.1 (ii) =⇒ (i) entail implication (i) =⇒

(ii), while implication (ii) =⇒ (iii) is obvious. Let us establish (iii) =⇒ (i). Using
the same notation as before, it is enough to establish that N1(C; .) is hypomonotone
at u0. By Theorem 4.1(iii) there exist σ1 > 0 and δ1 > 0 (with B(x0, δ1) ⊂ V )
such that (4.4) holds for σ1. Take δ ≤ δ1/‖Λ‖ such that B(u0, δ) ⊂ U and put
σ = 2σ1‖A‖.‖Λ‖2. Then one shows in an analogous way as in Theorem 4.14 that
for all ui ∈ C ∩B(u0, δ) and u∗i ∈ N1(C; ui), i ∈ {1, 2},
(4.39) max {〈u∗1, u2 − u1〉, 〈u∗2, u1 − u2〉} ≤ σ

2
‖u1 − u2‖2.

This yields (3.1) and finishes the proof. ¤

Finally, putting together the results of this section we obtain the following corol-
lary.

Corollary 4.17. Let f be a locally Lipschitz function on a Banach space X. Then

epi f is subsmooth ⇔ f is approximately convex ⇔ ∂f is submonotone.

If X is a Hilbert space, then

epi f is prox-regular ⇔ f is weakly convex ⇔ ∂f is hypomonotone.

If X = Rn, then

epi f is semi-subsmooth ⇔ f is d-regular and semi-smooth
⇔ ∂f is semi-submonotone.

Let us finally notice that if a set C is prox-regular at u0, then for some δ > 0
and r > 0 and for every u, v ∈ C ∩B(u0, δ) and u∗ ∈ N1(C; u)

(4.40) 〈u∗, v − u〉 ≤ r

2
‖v − u‖2.

We call this property the local “paint-roller property”, following [5], [6] e.g., where
the corresponding global property is considered. In some sense it reflects the de-
gree of smoothness of the boundary of C, since it asserts that the set C can be
“supported” from the exterior by a parabola of a fixed ratio at all points near
u0. An analogous statement can be derived for epi-Lipschitz subsmooth sets as a
consequence of Theorem 4.14.

Corollary 4.18. An epi-Lipschitz set C is subsmooth at u0 if, and only if, there
exists d ∈ X, δ > 0 and a non-negative function ϕ ∈ C1

∗(R,R+) such that for every
u, v ∈ C ∩B(u0, δ) and u∗ ∈ N1(C; u)

(4.41) 〈u∗, v − u〉 ≤ ϕ(‖π(v)− π(u)‖),
where π denotes the projection associated with one of the locally Lipschitz represen-
tations of C at u0, according to the notation of Remark 4.11.

Proof. [ =⇒ ] Suppose that the epi-Lipschitz set C is subsmooth at u0. If u0 ∈ intC,
then N1(C;u0) = {0} and (4.41) holds trivially for ϕ ≡ 0. So we may suppose that
u0 ∈ bd C. Then by Remark 4.11 there exists some d ∈ X such that X = Xd⊕Rd,
some δ > 0, and some locally Lipschitz function f on Xd, such that

(4.42) C ∩B(u0, δ) = {x⊕ sd : x ∈ Xd, f(x) ≤ s} ∩B(u0, δ).
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According to the notation of Remark 4.11 we denote by π : X → Xd and ρ : X → R
the continuous linear mappings satisfying u = π(u)⊕ ρ(u)d, for all u ∈ X, and by
A : Xd ⊕ R→ X the isomorphism A(x, s) = x⊕ sd, so that A−1 : X → Xd ⊕ R is
given by A−1(u) = (π(u), ρ(u)).
Theorem 4.14 ensures that f is approximately convex at π(u0). So, applying The-
orem 4.5 (iv), we infer the existence of δ1 > 0 and a non-negative function a ∈
C1
∗(R,R+) such that for all x, y ∈ B(π(u0), δ1), x∗ ∈ ∂f(x) and β ≥ f(y)

β ≥ f(x) + 〈x∗, y − x〉 − a(‖y − x‖),
or equivalently

(4.43) 〈(x∗,−1), (y, β)− (x, f(x))〉 ≤ a(‖y − x‖).

Let now δ > 0 be such that π(B(u0, δ)) ⊂ B(π(u0), δ1), and let us show that
(4.41) holds for ϕ ≡ ‖A‖a. To this end, consider any u, v ∈ C ∩ B(u0, δ) and
u∗ ∈ N1(C;u). We set x = π(u), y = π(v). If ρ(u) > f(x), then u ∈ intC
and N1(C; u) = {0}, consequently (4.41) holds trivially since ϕ ≥ 0. The same
argument holds in the case u∗ = 0. Hence we may suppose that ρ(u) = f(x) and
u∗ 6= 0. Since A is an isomorphism and since f is locally Lipschitz, using Lemma
4.12(b) we infer that A∗(u∗) = t(x∗,−1), for some t > 0. This equality entails that
t‖A‖−1(‖x∗‖2 +1)

1
2 ≤ 1 and hence t ≤ ‖A‖. Then (4.43) yields for β = ρ(v) ≥ f(y)

t−1〈A∗(u∗), (y, ρ(v))− (x, f(x))〉 ≤ a(‖π(v)− π(u)‖).
Since 0 < t ≤ ‖A‖ we get

〈u∗, A(π(v), ρ(v))−A(π(u), ρ(u))〉 ≤ ϕ(‖π(v)− π(u)‖),
or equivalently (4.41).

[⇐=] We now assume that there exists d ∈ X, δ > 0 and ϕ ∈ C1
∗(R,R+) such

that (4.41) holds. Let us show that C is subsmooth at u0. To this end, let ε > 0.
Since ϕ′(0) = ϕ(0) = 0, there exists 0 < δ1 < δ such that for all 0 < t < δ1

(4.44)
ϕ(t)

t
≤ ε

2‖π‖ .

Then for all u1, u2 ∈ B(u0, δ1), u∗i ∈ N1(C; ui), i ∈ {1, 2} we have

(4.45) 〈u∗1 − u∗2, u1 − u2〉 ≥ −2ϕ(‖π(u1)− π(u2)‖).
It follows from (4.44) and (4.45) that

〈u∗1 − u∗2, u1 − u2〉 ≥ −ε‖u1 − u2‖,
that is C is subsmooth at u0. ¤

The following diagram summarizes the situation. In this diagram f : U → R
is locally Lipschitz on the open subset U of Rn, ∂f : U ⇒ Rn denotes its Clarke
subdifferential and C = epif stands for its epigraph.
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T = ∂f
(locally bounded)

f : U → R
(locally Lipschitz)

C = epif
(epi-Lipschitz)

——— ——— ———
monotone ⇐⇒ convex function ⇐⇒ convex set

⇓ ⇓ ⇓
hypomonotone

X Hilbert⇐⇒ weakly convex
X Hilbert⇐⇒ prox-regular

⇓ ⇓ ⇓
submonotone ⇐⇒ approximately convex ⇐⇒ subsmooth

⇓ ⇓ ⇓
semi-submonotone

X=Rn

⇐⇒ semismooth

& d-regular

X=Rn

⇐⇒ semi-subsmooth
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