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Abstract It is shown that a locally Lipschitz function is approximately convex
if, and only if, its Clarke subdifferential is a submonotone operator. Conse-
quently, in finite dimensions, the class of locally Lipschitz approximately convex
functions coincides with the class of lower-C1 functions. Directional approxi-
mate convexity is introduced and shown to be a natural extension of the class
of lower-C1 functions in infinite dimensions. The following characterization
is established: a multivalued operator is maximal cyclically submonotone if,
and only if, it coincides with the Clarke subdifferential of a locally Lipschitz
directionally approximately convex function, which is unique up to a constant.
Furthermore, it is shown that in Asplund spaces, every regular function is gener-
ically approximately convex.
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1 Introduction

A locally Lipschitz function f : U → R, where U is an open subset of Rn,
is called lower-C1, if for every x0 ∈ U , there exist a neighborhood V of x0, a
compact set S and a jointly continuous function g : V × S → R, such that for
all x ∈ V we have f(x) = max

s∈S
g(x, s) and the derivative Dxg (exists and) is

jointly continuous.
The above class of functions has been introduced by Spingarn in [23]. There,

it has been shown that a locally Lipschitz function f : U → R is lower-C1 if,
and only if, its Clarke subdifferential ∂f is submonotone1 at every x ∈ U , a
multivalued operator T : Rn ⇒ Rn being here called submonotone at x0 ∈ X,
if for every ε > 0 there exists δ > 0 such that

〈x∗
1 − x∗

2, x1 − x2〉 ≥ −ε‖x1 − x2‖, (1)

for all xi ∈ B(x0, δ) and all x∗
i ∈ T (xi), i = 1, 2. We shall adopt the same

definition for a multivalued operator T : X ⇒ X∗ from a Banach space X to
its dual X∗.

Recently Ngai, Luc & Thera [16] introduced and studied the class of approx-
imately convex functions f defined on a Banach space X . Let us recall their
definition.

1strictly submonotone according to [23].
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Definition 1 A function f : X → R∪ {+∞} is called approximately convex at
x0 ∈ X, if for every ε > 0 there exists δ > 0 (depending on x0 and ε) such that
for all x, y ∈ B(x0, δ) and t ∈ (0, 1)

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) + εt(1 − t)‖x − y‖. (2)

Furthermore, we say that f is approximately convex (respectively, generically ap-
proximately convex), if it is approximately convex at every x0 ∈ X (respectively,
at every x0 in a Gδ dense set).

Locally Lipschitz approximately convex functions are regular, while the con-
verse is in general false (Remark 6). However, in Asplund spaces, regular locally
Lipschitz functions are generically approximately convex (Proposition 5). We
shall also show that a locally Lipschitz function f is approximately convex if,
and only if, its Clarke subdifferential ∂f is submonotone. Consequently, in finite
dimensions, a locally Lipschitz function is lower-C1 if and only if it is approx-
imately convex. The latter states the equivalence of a pure analytic definition
(lower-C1 function) with a geometric one (first order relaxation of convexity).

Let us mention that a result of such type is known to hold for the smaller class
of lower-C2 functions ([22]), that is, in finite dimensions, lower-C2 functions are
exactly the locally Lipschitz weakly convex functions (second order relaxation
of convexity). Moreover, every such function is characterized by its (locally)
decomposability as a sum of a convex continuous and a concave quadratic func-
tion, see [24] e.g. See also [10], [18], [4], [20] and references therein for related
topics. Recently, Zs. Páles showed that ε-approximately convex functions on
the real line are decomposable into a sum of a convex and a Lipschitz function
([17, Theorem 5]), however the existence of such a characterization in higher
dimensions remains open. In fact, the results of [17] deal with the more general
notion of (ε, δ)-approximate convexity, which extends also the notion of approx-
imate convexity considered in the pioneering works on this subject, [11] and [9].
We also quote the recent relevant works [6] and [13].

Directional approximate convexity – introduced in Section 3 – is shown to
be a natural extension for the notion of lower-C1 functions in infinite dimen-
sions: a locally Lipschitz function f is directionally approximately convex if, and
only if, ∂f is directionally submonotone (see Definition 7; this class of opera-
tors has been previously defined in [8, Definition 1.2] under the name ‘strictly
submonotone mappings’; subsequently this notion was called in [5] ‘directional
strict submonotonicity’ or ‘ds-submonotonicity’). In finite dimensions, direc-
tional approximate convexity and approximate convexity coincide. Speaking of
operators, the same is true for submonotonicity and directional submonotonic-
ity. Combining with results from [5] we shall thus conclude that the class of
maximal cyclically submonotone operators – notion introduced in [12] in finite
dimensions, and extended into infinite dimensions in [5, Definition 6] – coin-
cides with the class of Clarke subdifferentials of locally Lipschitz directionally
approximately convex functions. This result is analogous to a classical result of
Rockafellar asserting the coincidence of the class of maximal cyclically monotone
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operators with the subdifferentials of lower semicontinuous convex functions.
Recent literature contains various other interesting extensions of this latter re-
sult through different approaches, see [19], [2] e.g. See also [1] and references
therein.

2 Characterization of approximate convexity

In the sequel, let B(x, δ) stand for the open ball centered at x ∈ X with
radius δ > 0 and let SX denote the unit sphere of X . If f : X → R ∪ {+∞} is
a lower semicontinuous function with domain

dom f := {x ∈ X : f(x) �= +∞},

the Clarke-Rockafellar subdifferential of f at x0 ∈ dom f is defined by

∂↑f(x0) = {x∗ ∈ X : 〈x∗, u〉 ≤ f↑(x0, u), ∀u ∈ X},

where

f↑(x0, u) = sup
ε>0

lim sup
x→f x0

t↘0+

inf
v∈B(u,ε)

f(x + tv) − f(x)
t

.

(In the above formula t ↘ 0+ indicates the fact that t > 0 and t → 0, and
x →f x0 means that both x → x0 and f(x) → f(x0).)

Whenever f is locally Lipschitz we have f↑(x0, u) = f0(x0, u) for all u ∈ X,
so that ∂↑f(x0) = ∂f(x0), where

fo(x; u) = lim sup
(y,t)→(x,0+)

f(y + tu) − f(y)
t

is the Clarke derivative of f at the direction u and

∂f(x) = {x∗ ∈ X∗ : 〈x∗, u〉 ≤ fo(x, u), ∀u ∈ X}

is the Clarke subdifferential of f at x.

Theorem 2 Let f be locally Lipschitz on X and x0 ∈ X. The following are
equivalent:

(i) f is approximately convex at x0.
(ii) For every ε > 0 there exists δ > 0 such that for all x ∈ B(x0, δ) and

x∗ ∈ ∂f(x)
f(x + u) − f(x) ≥ 〈x∗, u〉 − ε‖u‖, (3)

whenever ‖u‖ < δ is such that x + u ∈ B(x0, δ).
(iii) ∂f is submonotone at x0.
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Note that (ii) says that Clarke subdifferentials around x0 are (uniformly) local
ε-supports in the sense of Ekeland and Lebourg ([7]).
Proof. Implication (i)=⇒(ii) follows from [15, Proposition 4.3] and the defini-
tion of approximate convexity (Definition 1). (This implication is also valid for
lower semicontinuous functions.)

To prove (ii)=⇒(iii), let ε > 0 and take δ > 0 such that relation (3) holds
for ε/2 > 0 and for all x ∈ B(x0, δ). Then for x, y in B(x0,

δ
2 ), x∗ ∈ ∂f(x) and

y∗ ∈ ∂f(y) we have

f(y) − f(x) ≥ 〈x∗, y − x〉 − ε

2
‖y − x‖

and
f(x) − f(y) ≥ 〈y∗, x − y〉 − ε

2
‖y − x‖.

Adding the above inequalities we obtain (1), that is ∂f is submonotone at x0.
Finally for the implication (iii)=⇒(i), let ε > 0 and take δ > 0 such that

relation (1) holds. Let us consider any x, y in B(x0, δ) and t ∈ (0, 1) and let
us set xt = tx + (1 − t)y. Then applying Lebourg’s Mean Value theorem ([14,
Theorem 1.7]) on the segment [x, xt] we obtain a point z1 ∈ [x, xt[ such that for
some z∗1 ∈ ∂f(z1)

〈z∗1 , xt − x〉 = f(xt) − f(x). (4)

Similarly, there exists a point z2 ∈ [y, xt[ such that for some z∗2 ∈ ∂f(z2)

〈z∗2 , xt − y〉 = f(xt) − f(y). (5)

Since xt −x = (1− t)(y−x) and xt − y = t(x− y), multiplying relations (4) and
(5) by t and (1 − t) respectively, and adding the resulting equalities we obtain

tf(x) + (1 − t)f(y) − f(xt) = t(1 − t)〈z∗1 − z∗2 , x − y〉.
Since

x − y

‖x − y‖ =
z1 − z2

‖z1 − z2‖ ,

using (1) we obtain (2), that is f is approximately convex at x0. �

It follows from the above statement that a locally Lipschitz function f is
approximately convex if, and only if, ∂f is submonotone. This yields directly
the following corollary.

Corollary 3 In finite dimensions a locally Lipschitz function is approximately
convex if, and only if, it is lower-C1.

We shall further establish a generic result concerning regular functions in
Asplund spaces. We first need the following result stating that generic approx-
imate convexity (Definition 1) is separably determined. The proof is based on
a separable reduction argument.
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Proposition 4 A function f : X → R ∪ {+∞} is generically approximately
convex, if for every closed separable subspace Y of X the restriction f |Y is
generically approximately convex in Y .

Proof For any closed subspace Z of X and any p ≥ 1, let Up(Z) be the set of
all z ∈ Z, for which there exists δ > 0 such that

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) +
1
p
t(1 − t)‖x − y‖,

for all x, y ∈ B(z, δ) ∩ Z and for all t ∈ [0, 1]. Obviously Up(Z) is (relatively)
open in Z.

Let us suppose that the restriction of the function f to any separable sub-
space is generically approximately convex. In order to conclude that f is gener-
ically approximately convex, it clearly suffices to show that Up(X) is dense in
X for all p ≥ 1.

Let us suppose, towards a contradiction, that this is not the case for some
p0 ≥ 1. Then there exists a nonempty open subset U of X such that U ∩
Up0(X) = ∅.

Pick any z1 ∈ U . Then for every n ≥ 1, there exist xn
1 , yn

1 ∈ B(z1, 1/n) and
tn1 ∈ (0, 1) such that

f(tn1 xn
1 + (1 − tn1 ) yn

1 ) > tn1 f(xn
1 ) + (1 − tn1 ) f(yn

1 )+

+ 1
p0

tn1 (1 − tn1 )‖xn
1 − yn

1 ‖.

Let Z1 be the closed (separable) subspace generated by the sequences {xn
1}n,

{yn
1 }n and the point z1, and set U1 = U ∩ Z1. Let {z2,k}k≥1 be a dense subset

of U1. Then, for every k ≥ 1 and n ≥ 1, there exist xn
2,k, yn

2,k ∈ B(z2,k, 1/n)
and tn2 ∈ (0, 1) such that

f(tn2 xn
2,k + (1 − tn2 ) yn

2,k) > tn2 f(xn
2,k) + (1 − tn2 ) f(yn

2,k)+

1
p0

tn2 (1 − tn2 )‖xn
2,k − yn

2,k‖.

Let Z2 be the closed subspace generated by the space Z1 and the sequences
{xn

2,k}k,n, {yn
2,k}k,n and {z2,k}k≥1. Set U2 = U ∩ Z2. Proceeding like this, we

obtain an increasing sequence of separable subspaces {Zs}s≥1 of X .

Set Z∞ =
⋃

s≥1

Zs and U∞ = U ∩ Z∞. We claim that U∞\Up0(Z∞) is dense

in U∞.

Indeed, for every u ∈ U∞ and ε > 0, there exists s ≥ 1 and us ∈ U ∩
Zs := Us ⊂ U∞ such that ‖us − u‖ < ε/2. The above construction now shows
that there exists vs ∈ Us\Up0(Z∞) such that ‖vs − us‖ < ε/2. It follows that
vs ∈ B(u, ε) ∩ [U∞�Up0(Z∞)], hence U∞�Up0(Z∞) is dense in U∞.
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Since both sets U∞ and Up0(Z∞) are relatively open in Z∞, we conclude
that U∞ ∩ Up0(Z∞) = ∅. This clearly contradicts the fact that the restriction
f |

Z∞ of f into the separable space Z∞ is generically approximately convex. �

Proposition 5 Every regular function ([3, Definition 2.3.4]) in Asplund spaces
is generically approximately convex.

Proof. Suppose first that X is separable. Then from [21, Theorem 2.8]
the (minimal w*-cusco) operator ∂f is generically single-valued and (‖.‖, ‖.‖)-
continuous. It follows that ∂f is submonotone at every point x0 in which ∂f(x0)
is singleton and ∂f is (‖.‖, ‖.‖)-continuous. Thus, by Theorem 2(iii)=⇒(i) we
conclude that f is generically approximately convex. The general case follows
from Proposition 4 (separable reduction argument). �

Remark 6 (i) Regular functions are not approximately convex in general: Sp-
ingarn ([23, page 84]) gives an example of a regular function in R2 whose Clarke
subdifferential is not submonotone at some point, and therefore the function is
not approximately convex.

(ii) It follows from Theorem 2 [(i)⇐⇒(iii)] and [8, Theorem 4.1] that every
approximately convex function is regular. This was also proved in [16, Theorem
3.6]. In fact, the same is true for the class of directionally approximately convex
functions, see Definition 8 below.

3 Directional approximate convexity and cyclic
submonotonicity

Let us recall from [8, Definition 1.2] (see also [5]) the following definition.

Definition 7 A multivalued operator T : X ⇒ X∗ is called directionally sub-
monotone, if for any x0 ∈ X, ε > 0 and e ∈ SX there exists δ > 0 such
that

〈x∗
1 − x∗

2, x1 − x2〉 ≥ −ε‖x1 − x2‖, (6)

whenever x1, x2 ∈ B(x0, δ), x∗
i ∈ T (xi) (i = 1, 2) and

x1 − x2

‖x1 − x2‖ ∈ B(e, δ). (7)

Comparing with the definition of submonotonicity in relation (1), the above
definition imposes the additional (directional) constraint (7). In the same spirit
we introduce the following notion of directional approximate convexity.
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Definition 8 A function f : X → R ∪ {+∞} is called directionally approxi-
mately convex, if for any x0 ∈ X, e ∈ SX and ε > 0 there exists δ = δ(x0, e, ε) >
0 such that for x, y ∈ B(x0, δ) and t ∈ (0, 1) we have

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y) + εt(1 − t)‖x − y‖, (8)

provided that
x − y

‖x − y‖ ∈ B(e, δ).

In finite dimensions, thanks to the compactness of the unit sphere SX it
follows by a standard argument that approximate convexity and directional ap-
proximate convexity (respectively, submonotonicity and directional submono-
tonicity) coincide.

We shall further need the following lemma. The proof borrows heavily from
techniques employed in [15], [16].

Lemma 9 Let f be a lower semicontinuous directionally approximately convex
function. Then for every x0 ∈ X, e ∈ SX and ε > 0, there exists δ > 0 such
that for all x ∈ B(x0, δ) and all t ∈ (0, 1) satisfying x + te ∈ B(x0, δ) we have

f(x + te) − f(x)
t

≥ f↑(x; e) − ε.

Proof. Let x0 ∈ X, e ∈ SX and ε > 0 and take δ = δ(x0, e, ε) > 0 as in
Definition 8 so that relation (8) is satisfied. Let x ∈ B(x0, δ/3) and choose
t �= 0 such that for u = te we have x + u ∈ B(x0, δ/3) and ‖u‖ < δ/3. Then
for all y ∈ B(x0, δ/3), v ∈ X with 0 < ‖v‖ < 2δ/3 and (v/‖v‖) ∈ B(e, δ) and
s ∈ (0, 1) we obtain applying (8) that

f(y + sv) = f((1 − s)y + s(y + v)) ≤ sf(y + v) + (1 − s)f(y) + εs(1 − s)‖v‖,

whence
f(y + sv) − f(y)

s
≤ f(y + v) − f(y) + ε(1 − s)‖v‖.

In particular for v = u + x − y we have v ∈ B(u, δ) and consequently

inf
v∈B(u,δ)

f(y + sv) − f(y)
s

≤ f(x + u) − f(y) + ε(1 − s)‖u + x − y‖.

It follows that

lim sup
y→f x
s↘0+

inf
v∈B(u,δ)

f(y + sv) − f(y)
s

≤ f(x + u) − f(x) + ε‖u‖.

Since the above is valid for all δ > 0 it follows that

f↑(x; u) ≤ f(x + u) − f(x) + ε‖u‖.
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Since ‖u‖ = t, the assertion follows. �

We shall now recall from [5, Definition 6] the notion of cyclic submonotonic-
ity. This definition requires previously the notion of δ-subdivision of a closed
polygonal path. (We call closed polygonal path a finite family of points {wh}m

h=1

where m > 1 and w1 = wm and we denote by [wh]mh=1, the union of the consec-
utive segments [wh, wh+1] for h = 1, . . .m − 1.)

Definition 10 Given δ > 0, we say that {xi}n
i=1 is a δ-subdivision of the closed

polygonal path [wh]mh=1, if
(i) {xi}n

i=1 ⊆ Bδ([wh]mh=1)
(ii) xn = x1 and ‖xi+1 − xi‖ < δ, for i = 1, 2, ...n − 1.
(iii) there exists a finite sequence {kh}m

h=1 with 1 = k1 < k2 < ... < km := n
such that for 1 ≤ h ≤ m − 1 we have:

kh ≤ i < kh+1 =⇒ ‖ xi+1 − xi

‖xi+1 − xi‖ − wh+1 − wh

‖wh+1 − wh‖‖ < δ.

We are now ready to give the following definition.

Definition 11 An operator T : X ⇒ X∗ is called cyclically submonotone, if
for any closed polygonal path [wh]mh=1 and ε > 0, there exists δ > 0, such that
for all δ-subdivisions {xi}n

i=1 of [wh]mh=1 and all x∗
i ∈ T (xi) one has

n−1∑

i=1

〈x∗
i , xi+1 − xi〉 ≤ ε

n−1∑

i=1

‖xi+1 − xi‖. (9)

If U is an open subset of X , an operator T is said to be cyclically sub-
monotone on U if (9) holds for closed polygonal paths and δ-subdivisions in U .
Furthermore, a cyclically submonotone operator T on U is called maximal cycli-
cally submonotone on U, if there is no cyclically submonotone operator S �= T
such that T (x) ⊆ S(x) for all x ∈ U .

The forthcoming result has been established in [5]; it extends the finite
dimensional case announced in [12].

Theorem 12 If U is an open connected subset of a Banach space X, then:
(i) Every cyclically submonotone operator on U is directionally submonotone

on U .
(ii) If f is a locally Lipschitz function and ∂f is directionally submonotone,

then ∂f is also maximal cyclically submonotone.
(iii) Every maximal cyclically submonotone operator T on U coincides with

the Clarke subdifferential ∂f of a unique (up to a constant) locally Lipschitz
function f .
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If X = Rn, the class of locally Lipschitz functions arising in (ii) and (iii) of
Theorem 12 is exactly the class of lower-C1 functions (or equivalently, the class
of approximately convex functions). The following result shows that directional
approximate convexity is an appropriate extension of the latter class in infinite
dimensions.

Theorem 13 For a locally Lipschitz function f on a Banach space X the fol-
lowing are equivalent:

(i) f is directionally approximately convex.
(ii) For every x0 ∈ X, e ∈ SX and ε > 0, there exists δ > 0 such that for all

x ∈ B(x0, δ) and x∗ ∈ ∂f(x)

f(x + u) − f(x) ≥ 〈x∗, u〉 − ε‖u‖

whenever ‖u‖ < δ, x + u ∈ B(x0, δ) and u
‖u‖ ∈ B(e, δ).

(iii) ∂f is directionally submonotone.
(iv) ∂f is maximal cyclically submonotone.

Proof. (i)=⇒(ii). It follows easily from Lemma 9 and the fact that if f is locally
Lipschitz, the function u �−→ fo(x; u) = f↑(x; u) is upper semicontinuous.
(ii)=⇒(iii). For any x0 ∈ X, e ∈ SX and ε > 0, let δ > 0 be such that for all
z ∈ B(x0, δ) and all z∗ ∈ ∂f(z) we have

f(z + tu) − f(z) ≥ 〈z∗, u〉 − ε

2
‖u‖

whenever ‖u‖ < δ is such that z + u ∈ B(x0, δ) and u
‖u‖ ∈ B(e, δ) ∪ B(−e, δ).

Let now any x, y in B(x0,
δ
2 ) satisfying y−x

‖y−x‖ ∈ B(e, δ). Applying the previ-
ous formula (for z = x and u = y − x) we obtain for all x∗ ∈ ∂f(x)

〈x∗, y − x〉 ≤ f(y) − f(x) +
ε

2
‖x − y‖.

Similarly, (for z = y and −u = x − y) we get

〈−y∗, y − x〉 ≤ f(x) − f(y) +
ε

2
‖x − y‖.

Adding the above inequalities we obtain (6). Thus ∂f is directionally submono-
tone.
(iii)=⇒(i) Let x0 ∈ X , e ∈ SX , ε > 0 and take δ > 0 such that relation (6)
holds. Let us consider any x, y in B(x0, δ) such that y−x

‖y−x‖ ∈ B(e, δ) and any
t ∈ (0, 1) and let us set xt = tx + (1 − t)y. Then applying Lebourg’s Mean
Value theorem on the segments [x, xt] and [y, xt] we obtain points z1 ∈ [x, xt[
and z2 ∈ [y, xt[ such that for some z∗1 ∈ ∂f(z1) and z∗2 ∈ ∂f(z2) we have

〈z∗1 , xt − x〉 = f(xt) − f(x)
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and
〈z∗2 , xt − y〉 = f(xt) − f(y).

Since xt −x = (1− t)(y−x) and xt − y = t(x− y), multiplying the first relation
above by t and the second by (1 − t) and adding the resulting equalities we
obtain

tf(x) + (1 − t)f(y) − f(xt) = t(1 − t)〈z∗1 − z∗2 , x − y〉.
Since

x − y

‖x − y‖ =
z1 − z2

‖z1 − z2‖ ∈ B(e, δ)

using (6) we obtain (8), that is f is directionally approximately convex.

Finally, the equivalence (iii)⇐⇒(iv) follows from Theorem 12. �

Examples
1. ([5, Proposition 19]) The function f(x) = −dA(x) is directionally approxi-
mately convex, whenever X has a uniformly Gâteaux differentiable norm and
dA(.) is the distance function (generated by this norm) of the nonempty closed
subset A of X .
2. ([5, Proposition 20]) The composition g ◦ F of an approximately convex
function g : Y → R with a strictly Gâteaux differentiable function F : X → Y
is approximately convex.
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