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Abstract Rockafellar has shown that subdifferentials of convex functions are always cycli-
cally monotone operators. Moreover, maximal cyclically monotone operators are neces-
sarily operators of this type, since one can formally construct a convex function, which
turns out to be unique up to a constant, whose subdifferential gives back the operator.
This result is a cornerstone in convex analysis and tightly relates convexity and mono-
tonicity. In this paper we establish analogous robust results that relate weak convexity
notions to corresponding notions of weak monotonicity, provided one deals with locally
Lipschitz functions and locally bounded operators. In particular, subdifferentials of locally
Lipschitz functions that are d-hypomonotone (respectively, d-submonotone) also enjoy an
additional cyclic strengthening of this notion and, in fact, are maximal under this new
property. Moreover, every maximal cyclically hypomonotone (respectively, maximal cycli-
cally submonotone) operator is always the Clarke subdifferential of some d-weakly convex
(respectively, d-approximately convex) locally Lipschitz function, unique up to a constant,
which, in finite dimensions, is a lower-C? function (respectively, a lower-C! function).
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1 Introduction

Spingarn introduced the notion of submonotonicity (Definition 2(i)) and showed that this
notion characterizes the Clarke subdifferentials of lower C! functions ([17, Theorem 3.9]).
We recall that a locally Lipschitz function f : U — R is said to be lower-C* (where U
is a nonempty open subset of R and k = 1,2,...) if for every o € U, there exist a
neighborhood V of z(, a compact set S and a jointly continuous function F : V x5 — R,
such that for all z € V' we have

f(z) = max F(z,s) (1)
seS
and the derivatives of F' of order k with respect to x exist and are jointly continuous ([16,
Definition 10.29] e.g.). These functions enjoy interesting stability properties for optimiza-
tion, see [7], [12], [16] for example. In [6] submonotonicity has been extended in infinite
dimensions. (We call here this notion d-submonotonicity to stress out the directional
character of this extension, see Definition 2(ii).) It has subsequently been established
that d-submonotonicity characterizes subdifferentials of d-approximately convex functions
([4])-
If X is a Banach space, a function f : X — RU{+o0} is called d-approxzimately convez
([4, Definition 8]), if for every zyp € X, e € Sx and € > 0 there exists § = 0(zg,e,e) > 0
such that for all (z,y) € U(zo,e,d) and t € (0,1)

fltz+ (1 —t)y) <tf(x) + (1 —1)f(y) +et(l —t)[lz —yl, (2)
where
Ul(zg,e,0) := {($1,$2) € X x X :x1 # x9, ¢ € B(xg,0) & ||ﬁ —e| < (5} (3)

(Sx is the unit sphere of X and B(zy,d) is the open ball of center z; € X and radius
§>0.)

If, in the above definition, § does not depend on e, case in which condition (3) simply
reads x,y € B(xg,0d), then f is called approzimately convez. (This latter notion has been
introduced in [11] for another purpose.) In finite dimensions, thanks to the compactness of
the unit ball, d-approximate convexity and approximate convexity coincide. If, in addition,
the functions are locally Lipschitz, then the aforementioned Spingarn’s result yields that
both notions coincide also with the notion of a lower-C! function.

Concurrently to the notion of submonotonicity, Rockafellar introduces the (stronger)
notion of hypomonotonicity (Definition 3(i)), and shows that this notion characterizes in
finite dimensions the Clarke subdifferentials of lower-C? functions ([15]).

Lower-C? functions have several known equivalent descriptions:

- they are locally decomposable to a difference of a convex continuous and convex
quadratic function ([15], [7])

- they coincide with the class of locally Lipschitz weakly convex functions ([8], [18]).



We recall from [18, page 232] that a function f : X — R U {400} is weakly convez,
if for every zy € X, there exists 6 > 0 and p > 0 such that for all z,y € B(zo,d) and
t € (0,1)

fltz+ (L =t)y) <tf(z) + (1 =) f(y) +pt(L = )]z —y]*. (4)

In accordance with the notion of approximate convexity, let us call the function f d-weakly
convez if for every zyp € X and e € S, there exists d, p > 0 such that (4) holds provided
(z,y) € U(xg,e,d) and t € (0,1).

Cyclicity properties of subdifferentials

Rockafellar has shown that subdifferentials of convex functions are not only monotone,
but also cyclically monotone. This latter property is not just an artificial strengthening of
monotonicity, but a very important notion. The following powerful characterization ([14])
justifies this assertion:

(M) A (locally bounded) multivalued operator is maximal cyclically monotone if, and
only if, it is the subdifferential of a (locally Lipschitz) convex function, which is
unique up to a constant.

In this paper we show that robust results in the spirit of (M) can be achieved un-
der an appropriate definition of cyclicity over the notion of d-hypomonotonicity (respec-
tively, d-submonotonicity). The class of locally Lipschitz d-weakly convex (respectively,
d-approximately convex) functions will therefore play the role of the class of (locally Lip-
schitz) convex functions in the above characterization. If U is a nonempty open subset of
X and T: X = X* with U C dom(T), we establish that:

(H) T is maximal cyclically hypomonotone if, and only if, there exists a locally Lipschitz
d-weakly convex function f : U — R such that T' = 9f.

(S) T is maximal cyclically submonotone if, and only if, there exists a locally Lipschitz
d-approximately convex function f : U — R such that T = Jf.

In both cases, f is unique up to a constant in every connected component of U.

Let us mention that a notion of radial cyclic submonotonicity had been introduced by
Janin in [9]. In this work it has been established that every bounded operator defined on a
convex compact subset of R” is the Clarke subdifferential of lower-C' function, provided it
is maximal under the property of being submonotone and radially cyclically submonotone.
A careful elaboration of Janin’s proof shows that his result holds also for locally bounded
operators defined on open connected subsets of R”. On the other hand, the proof is
heavily based on compactness arguments valid only in finite dimensions. We stress out this
important difference: in infinite dimensions compactness arguments have to be replaced
by more sophisticated techniques. Moreover, a robust (and self-contained) definition of
cyclic submonotonicity is needed. This definition appears for the first time in [5], where
characterization (S) has implicitly been established (it follows by combining [5, Theorem
C] and [4, Theorem 13], but the reader should beware of differences in terminology). Both



definition of cyclic hypomonotonicity and characterization (H) appear in this work for the
first time.

In Section 2 we recall the definitions of hypomonotonicity and submonotonicity (being
used for operators in R") and of d-hypomonotonicity and d-submonotonicity that corre-
spond to their appropriate (i.e. directional) extensions in infinite dimensions. We also
introduce the notion of cyclic hypomonotonicity (which is new) and of cyclic submono-
tonicity (which is used in [5]). These definitions relay on the concept of d-subdivision
{x;}7, of a given closed polygonal path [wy]i* ; (Definition 4), notion introduced in [5,
Definition 5]. This consists on a variational ¢-partition of [wy]}",, with respect to its
directions ey, := (wpy1 — wy),/||wpr1 — wy|.

In Section 3 we establish characterizations (H) and (S). In contrast to (M), in this work
we assume that U C dom(T'), and therefore that 7" is locally bounded (see Proposition 8).
The question whether (H) and (S) remain valid in the general case remains open after the
current work.

2 Weak monotonicity and cyclicity

Let 7: X = X* be a multivalued operator with domain dom(7T") = {z € X : T'(z) # 0}.
The operator T' is called monotone, if for all z;,z2 € X, 27 € T(x1), 5 € T(x2) we have

(2] — 25,21 — x9) > 0. (5)

The operator T is called cyclically monotone, if for every {z;}7_, C X, {z]}l, C X*,
with z,, = 27 and z} € T(z;), i € N,,_; :={1,...,n — 1} we have

n—1

> (@t i1 —mi) <0 (6)

=1

We say in particular that a cyclically monotone operator 7' is maximal cyclically monotone,
if there is no other cyclically monotone operator S whose graph strictly contains the graph
of T. The following result is well known (see [14], [3])

Theorem 1 Let f: X — RU{+o0} be a proper (i.e. not identically equal to +o00) lower
semicontinuous function and Of : X = X* its Clarke-Rockafellar subdifferential. The
following are equivalent:

(i) f is convex

(ii) Of is monotone

(iii) Of is eyclically monotone
(

iv) Of is mazimal cyclically monotone

In the sequel, we shall survey definitions of d-hypomonotonicity and d-submonotonicity,
where “d-” stands for directional, precision superfluous in finite dimensions. We also state
the corresponding notions of cyclicity. These definitions are justified by results analogous
to Theorem 1 (given in this section) and to (M) (established in Section 3).



2.1 D-submonotone and d-hypomonotone operators

Let us start by the notions of submonotonicity and d-submonotonicity.

Definition 2 The operator T is called
(i) submonotone, if for every zg € X and € > 0, there exists § > 0 such that for all
(x1,22) € B(xo,9) and all 7 € T'(z;), i € {1,2} we have

(x] — 25,71 — 22) > —€l|lT1 — 22| (7)

(ii) d-submonotone, if for every xg € X, e € Sx and € > 0, there exists § > 0 such that
(7) holds provided (x1,z2) € U(zo,e,0) and x} € T(z;), i € {1,2}.
(U(zo,e,d) is defined in (3)).

Remark 1. Submonotonicity had been called “strict submonotonicity” in [17, page 79].
Spingarn employed the term “submonotonicity” for the more restrictive notion where
(7) holds only if o9 = zy. To distinguish between these two notions we propose for
the latter the term “semi-submonotonicity” (respectively “d-semi-submonotonicity”). An
easy example of semi-submonotone operator which is not submonotone can be found in
[6, Example 1.3]. Finally let us quote the following interesting characterization of semi-
submonotonicity ([17, Proposition 2.4]):

“The Clarke subdifferential Of of a locally Lipschitz function on R™ is semi-submonotone
if, and only if, the function f is reqular and (Mifflin) semi-smooth”.

Remark 2. In finite dimensions the notions of submonotonicity and d-submonotonicity
coincide. (This follows from a standard argument evoking the compactness of the unit
ball of R".) However the notion of “d-submonotonicity” is more appropriate in infinite
dimensions, “submonotonicity” thus corresponding to a restrictive uniform notion (see [6],

[5] for details).

We now recall the stronger notion of hypomonotonicity (for finite dimensions) and
d-hypomonotonicity (for infinite dimensions).

Definition 3 The operator T is called
(i) hypomonotone, if for every xo € X, there exists § > 0 and p > 0 such that for all
(x1,22) € B(z0,9) and all } € T(z;), i € {1,2} we have

(z} — 25,21 — 32) > —pllz1 — z2*. (8)

(ii) d-hypomonotone, if for every xo € X and e € Sx there exists 6 > 0 and p > 0 such
that (8) holds provided (x1,z2) € U(xo,e,6) and z} € T(x;), i € {1,2}.

Remark 3. The definition of hypomonotonicity appears for the first time in [15, Section
4] under the name “strict hypomonotonicity” (see also [13, page 5234] and references
therein). The definition of d-hypomonotonicity is new and appears here for the first time.
Similarly to Remark 2, in finite dimensions there is no distinction among these notions,
while the latter is to be considered in infinite dimensions.



2.2 Cyclicity and notion of path subdivision

Cyclic monotonicity (see (6)) has a relatively simple definition. On the contrary, defining
robust cyclicity notions for d-hypomonotonicity and d-submonotonicity is more compli-
cated and uses the notion of path §-subdivision.

Given a finite family of points {wp}}7~, where m > 1 and w; = w,, we call “closed
polygonal path” (or simply “path”) and we denote by [wp]}"_,, the union of the consecutive
segments [wy, wp41] for h =1,...m—1. Let us now recall from [4, Definition 5] the notion
of path d-subdivision.

m

Definition 4 Given 6 > 0 and a closed polygonal path [wy])*, (m > 1), we say that
{zi}i—, is a d-subdivision of [wy]i, ({zi}i— € D([wn]j-y,9)), if

(i) {zi}isy € Bs([walpzy) and z1y = 2y

(ii) |zig1 — || <6, fori e N,y

(iii) there exists a finite sequence {ky}}', with 1 = ki < ky < ... < ky, :== n such that
for 1 < h <m—1 we have:

kp <@ <kpyr = ||M —en| <9,
|ziv1 — 4|
where
Wh41 — Wh
ep = ——————. (9)
|why1 — o]

We are ready to state the definitions of cyclic submonotonicity ([5, Definition 6]) and
of cyclic hypomonotonicity (that appears here for the first time).

Definition 5 The operator T is called

(i) cyclically submonotone, if for every path [wy]i*, and € > 0, there exists 6 > 0, such
that for all {z;};— € D([wp]jy,9) and all ;] € T(x;)

n—1 n—1
Z(mfaﬁﬁiﬂ —z) <e¢ Z |Zit1 — zill; (10)
i=1 i=1

(ii) cyclically hypomonotone, if for every path [wp]*, there exist 6,p > 0 such that for
all {z;}7 € D([wy]j—y,0) and all ] € T(x;)

n—1 n—1
D at i —wi) <p Y llwigs — @il (11)
=1 =1

If U is a nonempty open subset of X, we say that T is cyclically submonotone (re-
spectively, cyclically hypomonotone) on U if in the above definitions both path and path
subdivisions are taken in U. Furthermore, we say that 7" is maximal cyclically submono-
tone (on U), if it is cyclically submonotone (on U) and if its graph (restricted to U)
cannot be strictly contained in the graph of any other cyclically submonotone operator.



The notions of maximal submonotonicity, maximal cyclic hypomonotonicity and maximal
hypomonotonicity can be defined analogously.

It is clear that cyclic monotonicity implies cyclic hypomonotonicity, which in turn
implies cyclic submonotonicity. The following proposition shows that cyclic hypomono-
tonicity (respectively, cyclic submonotonicity) implies d-hypomonotonicity (respectively,
d-submonotonicity).

Proposition 6 (i) Every cyclically hypomonotone operator is d-hypomonotone.

(ii) Every cyclically submonotone operator is d-submonotone.

Proof We shall only prove (i). Assertion (ii) follows analogously. So, let us suppose that
T is cyclically hypomonotone and let g € X and e € Sx. Then set m = 3, w; = zg = w3
and wy = 7 + e and take §,p > 0 as in Definition 5 for the path [wy]3_,. Then for every
(z1,72) € U(zo,e,6/2) and for z3 = =z, it is easily seen that {z;}3 , € D([wp]i",0).
Thus relation (11) holds true yielding (8). O

A careful reader might wonder what would have happened if one had tried to define a
notion of “cyclic monotonicity” in the spirit of Definition 5, i.e. by using path subdivisions.
The following result shows that this would have lead to an equivalent reformulation of the
classical definition of cyclic monotonicity in (6).

Proposition 7 Let T : X = X* be a multivalued operator. Then the following assertions
are equivalent:

(i) T is cyclically monotone

(ii) for every [wp]7*_, there exists 0 > 0 such that for all {x;}}, € D([wp]}*_,,9) and all
zf € T(z;)

n—1

> (@, wigr — @) 0. (12)

i=1
Proof Implication (i)==(ii) is obvious. Thus, let us suppose that T satisfies (ii) and let
us show that it is cyclically monotone.
We first prove that 7' is monotone. To this end, let uj,up € dom(T"), ui € T'(u;) and
uy € T(ug). Consider the path [wh]?lzl, where w; = w3 = uy and wy = ug and let § > 0
given by (ii). We may clearly suppose that § < |lu; — ugl|. Let n € N be such that

n>6 Y(|luy —usl]). Fori=1,...,n+1 we set
1—1
T; ::u1+( )(u2—u1)
n
and (- 1)
l —
Tptl = u2 + (w1 — u2).
Then {z;}7"" € D([wy],,d), hence (12) gives
2n
Z(x;‘,wiﬂ —1z;) <0. (13)
i=1



Note that
e — n Yuz —uy), ifi €N,
i+l YTl nT M up —ug), ifi €N, \ N,

whence it follows easily

n 2n
Y (ahmip —m) == Y (@, mi — ).
=2 1=n+2

Since 1 = u1 and zp41 = ug (13) resumes to
n”H((ul, uz — ur) 4 (u3, ur —ug)) <0
for all u € T(u1) and ub € T'(uz), which shows that T is monotone.

Let us now show that T is cyclically monotone. To this end, let {up}};* , be any finite
sequence in dom(7T) with u; = uy,, and let u} € T'(u;). Let § > 0 be the one given by (ii)
corresponding to the path [u;]j’; and consider a d-partition {z;}7; (i.e. ||z;jp1 — x| < 0)
with the property that for every h € N,,, there exists 1 < i1 < 49 < n such that {x]}?:“
is a partition of [up, upy1].

Since
i9—1
upgr —up = Y (T — ),
Jj=tu1
applying the monotonicity of T' successively to the points z,z;1 (for j =i1,...,12 — 1)
we easily get
in—1
(u;ku Uh+1 — uh> < Z <$;, Tj+1 — 1‘j>
Jj=i1
and consequently
m—1 n—1
Z (u;ku Uh+1 — uh> < Z(x:a Ti+1 — xl>
h=1 i=1
Since {z;}7_, € D([wpl}>,,9), the result follows from (11). O

We finally recall from [6, Theorem 2.4] the following result.

Proposition 8 Every d-submonotone (a fortiori, monotone or d-hypomonotone) operator
is locally bounded on intdom(T).

Let us summarize the notions that concern a multivalued operator T': X =% X* in the
following diagram

cyclic monotonicity == monotonicity
4 U
cyclic hypomonotonicity = d-hypomonotonicity
4 U

cyclic submonotonicity =  d-submonotonicity




2.3 Characterizations via weak monotonicity notions

The forthcoming results are analogous to Theorem 1 and concern the notions of weak
monotonicity (Section 2.1) and their cyclic versions (Section 2.2). Throughout this section
f : U — R denotes a locally Lipschitz function defined on a nonempty open subset U of
X, and 9f : X = X* denotes its Clarke subdifferential.

Lemma 9 (i) The function f : U — R is d-weakly convez if, and only if, for every xy € U
and e € Sx there exists 0,p > 0 such that for all (z,y) € U(xg,e,d) and all z* € Of (x)

fly) = fz) > (2" y — ) — plle —y*. (14)

(ii) The function f : U — R is d-approzimately convez if, and only if, for every zo € U,
e >0 and e € Sx there exists 6 > 0 such that for all (z,y) € U(xg,e,0) and all x* € Of (x)

fly) = f(2) = (=" y —z) —ellz —y. (15)

Proof (i). This result is known in finite dimensions (see [18, Proposition 4.8] or [2,
Theorem 5.1]). Let us include a simple proof for the general case.

Suppose that f is d-weakly convex, that is, for every zo € U and e € Sx there exists
d,p > 0 such that for every (z,y) € U(zp,e,0) and t € (0,1) formula (4) holds. Setting
s =1 —t we infer that

flo+s(y =) = f(z) < s[f(y) = f ()] +ps(l = s)llz —yl%,
which yields
flz+ sy —=)) — fz)

. < fly) = fy) +p(L = )llz —y*. (16)

Since f is d-weakly convex, it is also d-approximately convex, hence regular ([6, Theorem
4.1]). In particular, the limit in the left part of (16) as s \, 0" exists and yields the Clarke
directional derivative of f. Thus letting s \, 0" in (16) we obtain (14).

For the inverse implication, we suppose that for every zg € U and e € Sx there exists
d,p > 0 such that (14) holds for all (z,y) € U(zo,e,d) U U(xo, —e,d) and all z* € 0f(x).
To show that f is weakly convex, let any ¢ € (0,1), set z; := tz + (1 — t)y and note that
(xt,y) € U(xo,e,0) and (z¢,z) € U(zo, —e,0). Thus for any z; € df(z;) (14) yields:

Fy) > fm) + (af,y — we) — plley — yl|%; (17)
and

f@) > f ) + (af, 2 —z0) — pllae — yl*. (18)
Since y —x¢ = t(y —z) and z —z; = (1 —t)(z — y), multiplying (17) by (1 —¢) and (18) by
t and adding the corresponding inequalities we infer that (14) holds (for p’ = 2p), hence
f is d-weakly convex. This completes the proof of (i).

(ii). This assertion follows analogously. O

We also need to recall the notion of a w*-cusco mapping ([1] e.g.).



e A multivalued mapping T : X = X* is called w*-cusco on the open set U, if it is
w*-upper semicontinuous with nonempty w*-compact convex values on U. A w*-
cusco mapping on U that does not strictly contain any other w*-cusco mapping with
domain in U is called a minimal w*-cusco on U.

The following result has been established in [5, Proposition 9].

Proposition 10 Let T be cyclically submonotone on U. The following statements are
equivalent:

(i) T is w*-cusco on U.
(ii) T is minimal w*-cusco on U.

(iii) T is mazimal cyclically submonotone on U.
We are ready to state the main results of this section.

Theorem 11 The following are equivalent:
(i) f is d-weakly convez
(ii) Of is d-hypomonotone
(iii) Of ecyclically hypomonotone
(

iv) Of mazimal cyclically hypomonotone

Proof One obviously has (iv)==-(iii), while Proposition 6 shows that (iii)==(ii).

Let us prove (ii)=-(i). Suppose that df is d-hypomonotone and let x5 € X and
e € Sx. Then there exist d,p > 0 such that relation (8) holds. Then for every (z,y) €
U(zg,e,0) and t € (0,1) we set x; = tz+(1—t)y. Applying Lebourg’s Mean Value theorem
([10]) on the segments [z, x| and [y, z;] we obtain points z; € [z, ;[ and 29 € [y, 4] such
that for some z{ € 0f(z1) and z5 € Of(z2) we have

(21,21 — x) = f(21) — ()
and
(23,20 —y) = f(ze) — fly)-

Since z; —x = (1 —t)(y — z) and z; —y = t(x — y), multiplying the first relation above by
t and the second by (1 — ¢) and adding the resulting equalities we obtain

tf(z) + (L =) f(y) = fz) =t(1 = t)(z] — 23,2 —y).
Since (z,y) € U(xo, e, d) we have

r—vY Z1 — Z9
= € B(e,0).
lz =yl llzr — 2|

Thus using (8) we infer
tf(z) + (1 =) f(y) = f(z) — pt(1 = B)l[z1 — 22|z = yl|.

10



Since ||z — y|| > ||z1 — 22]|, the above inequality implies (4). This shows that f is d-weakly
convex.

Let us finally prove that (i)==-(iv). We suppose that f is a locally Lipschitz d-weakly
convex function.

Step 1. 0f is d-hypomonotone.
Let zp € X and e € Sx. Then there exist d, p > 0 such that (14) holds. It follows that for
all (z,y) € U(xo,e,0), z* € df (z) and y* € df(y) we have

e,y —2) < Fly) — f@) + Ellz —y)”

and
(', x —y) < @) = ) + Slle — oIl

Adding the above inequalities we obtain (8).

Step 2. 0f is cyclically hypomonotone.
For any path [wy];", (m > 1) we set C' = Upen,, , [wh, wp41] and

ep, = Wh41 — Wh
w1 — wpl|

for h € Ny,—1. Since df is d-hypomonotone, for every x € C there exists p(z) > 0 and
d(z) > 0 such that
(z} — @3, 9 — 1) > —p(z)||21 — 32| (19)
whenever 21,70 € |J Ul(w,ep,d(z)), v7 € T(z1) and o3 € T(w2). Let {B(z;, 6(x;)) e,
hENy, -1
be a finite subcovering of the open covering B(z,d(z))zec of the compact set C. Set
p = max{p(x;) : i € Ny} and 6 > 0 be a Lebesgue number of the open subcovering
{B(xlaé(xl))}lea that is

Vu € C,3i € Ng : B(u,0) C B(z4,d(x;)). (20)

Let any d-subdivision {z;};-, € D([wp]j,,0). Since f is locally Lipschitz, applying
Lebourg’s Mean Value theorem ([10]) on the segment [z;, ;1] (for i € N,,_1), we infer
the existence of z; € |z;, z;11[ and 2} € T(2;) such that

f(@iv1) = f(@i) = (27, zig1 — mi). (21)

Adding the above equalities, we get

n—1
Z(Z:, Ti41 — :El> =0.
i=1
Consequently,
n—1 n—1
D af e —m) =) (o) =2 @i — ). (22)
i=1 i=1

11



Evoking (19) and (20) we obtain for every 7 € N,,_; that

Ti41 — T4 2 — T
P -2, ) = (o] — 2, ———) < plla — =il
i z’||q;z~+1—xz.|| <l Z’“Zi— z”) p“ i z“

(z

Since ||z; — ;]| < ||zi+1 — 25| the above formula yields
(wf = 2, wipr — @) < pllwics — @)%

Adding the above equalities for i = 1,2,...,n — 1, and using (22) we obtain

n—1 n—1
S (@t wivn — i) < p Y v — il

Step 3. 0f is maximal cyclically hypomonotone.
Since df is the Clarke subdifferential of a locally Lipschitz function, it is a w*-cusco
mapping. Being also cyclically submonotone, it follows from Proposition 10 that Jf is
maximal cyclically submonotone. This implies in particular that df is maximal cyclically
hypomonotone. This finishes the proof. O

The analogous result for d-submonotone operators and d-approximately convex func-
tions is essentially known in the literature (under a different terminology).

Theorem 12 The following are equivalent:
(i) f is d-approximately convex
(ii) Of is d-submonotone
(iii) Of ecyclically submonotone
(

iv) Of mazimal cyclically submonotone.

Proof The equivalence (ii)<=>(iii)<=>(iv) has been established in [5, Theorem A], while
(i)«<=(ii) can be found in [4, Theorem 13]. O

12



We summarize in the following diagram, where f : U — R denotes a locally Lipschitz
function and df : U = X* its Clarke subdifferential.

f:U—=>R of : U = X* of :U = X*
maximal
convex = monotone = cyclically
monotone
U U U
d-hypomonotone maximal

d-weakly convex

_ Py on <= (= hypomonotone <= cyclically
(= lower-C7if X =R") if X =R") hypomonotone
U U \
d-approximately d-submonotone maximal
convex <=  (=submonotone <= cyclically
( = lower-C' if X = R") if X =R") submonotone

As mentioned in the introduction, in finite dimensions the characterization of lower-C?
functions (via hypomonotonicity) and of lower-C! functions (via submonotonicity) have
been established in [15] and [9] respectively. In [9] we also find the notion of radial cyclic
submonotonicity.

e An operator T is called radially cyclically submonotone, if for every [wp]}" , and
e > 0, there exists 6 > 0, such that for all J-partitions {z;}—, of [wy]}"_; and all
z} € T(x;) one has:

n—1 n—1
> (zf mipr —zi) <€y [lmipr — - (23)
i=1 i=1

Similarly, one can define the notion of radial cyclic hypomonotonicity.

e An operator T is called radially cyclically hypomonotone, if for every [wy]}" | there
exist p,d > 0, such that for all §-partitions {z;};-; of [wy];, and all 2} € T'(x;) one

has:
n—1 n—1
S afwi —3i) <p Y e — @il (24)
=1 =1

In both cases, by the term “d-partition” of the path [w];"; we mean a finite collection
of points {z;}?_; in UheNm_1 [wh, why1], where z1 = z, = w1, that satisfy ||z;41 — x| <9
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(for s € N,,_1) and
n—1 n—1
Y lwipr = zill = Y llwnsr — wall. (25)
i=1 h=1

Remark 4 In view of (25) it is easily seen that (23) can be replaced by the following

simpler condition
n—1

Z(Q::,mi+1 —x;) <e.

i=1
Janin called an operator T' “cyclically submonotone”, if it is both submonotone and radi-
ally cyclically submonotone, and established the corresponding finite dimensional charac-
terization for lower-C! functions. In the forthcoming Remark 5 we will see that in finite
dimensions Janin’s definition is equivalent to Definition 5(i) (and consequently, his result
is a particular case of Theorem 12).

Proposition 13 Let T be a multivalued operator in R™.
(i) T is cyclically submonotone if, and only if, T is d-submonotone and radially cycli-

cally submonotone.

(ii) T is cyclically hypomonotone if, and only if, T is d-hypomonotone and radially
cyclically hypomonotone.

Proof (i) The “only if” part being obvious, let us suppose that 7' is d-submonotone and
radially cyclically submonotone and let us show that it satisfies Definition 5(i). To this
end, let [wy,]}"_, be a closed polygonal path and let ¢ > 0. Set P = [wy]}" ; and F' = {e, :
h € N,,_1} (the set of directions of the path, given by (9)). Since F' is finite and P is
compact, using the definition of d-submonotonicity of 7" and a standard argument we infer
that there exists 0 > 0 with the following property: for every z € P and e € F, and for
all (z1,z2) € U(z,e,0) and z} € T'(z;) (i =1,2)

* k €
(@1 — 23,21 —@2) 2 =5 flz1 — 22 (26)

Let {z;}1 € D([wp]}"_,,9) and let us show that (10) is satisfied.
Indeed, since T is radially cyclically submonotone, there exists §; < § such that for every
d1-partition {yj}§:1 of {z;}?" , and for every y’ € T'(y;) one has

k-1

% £
Yy —yy) < 2

-1
J=1 j=1

lyj+1 — ysll,

which in view of (25) becomes

k-1

n—1
. £
> Wy — i) < 3 > lwis — il (27)
=1 im1
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Let now 1 = j; < jo < ... < jp—1 = k — 1 be such that for every i € N,,_; the subfamily
{yjis - yjii } is a dy-partition of the segment [z;, z;41] (in particular, y;, = z; and y;,, =
zit1). Since for every j € {jj,...ji+1} we have ||y; — ;|| < 0, it follows from (26) that

Yj — T « Yji—Ti €
(o, 0y < gy, Ty 4
My — il Py — a2

which yields

lys+1 — il 5
(T3, Tit1 — $z)m <(Yj,yj+1 —yj) + 3 i1 = will.
Summing the above inequality for 5 = j;, ..., ;41 we obtain
Jit1 .
(@ wirn — ) <> W5y — ) + §||96i+1 — .
J=Ji
Summing again for i = 1,...,n — 1 we get
n—1 k—1 c n—1
D (xf mip —m) <> Wy — v + 3 > llmigr — - (28)
i=1 j=1 i=1

Adding (27) and (28) we obtain (10). The proof is complete.

(ii). This assertion follows analogously and the proof is omitted. O

Remark 5 Cyclic submonotonicity differs from radial cyclic submonotonicity from the
fact that it uses the notion of path subdivision (instead of path partition), imposing thus
a robust assumption on the behavior of the operator around the chosen path. Let us
mention that in view of Remark 2, Proposition 13(i) shows in particular that both Janin’s
definition of cyclic submonotonicity and his characterization of lower-C! functions are
particular cases of Definition 5(i) and Theorem 12 respectively.

3 Integration of multivalued operators

A classical result of convex analysis (see (M)) ensures that every maximal cyclically mono-
tone operator 7' is the subdifferential of some lower semicontinuous convex function fr.
Given z( € dom(T'), a function fr with the aforementioned property is constructed in the
following way:

1=0

n—1
fr(z) :=sup {Z(x;‘,mﬂ_l —z;) + (z,z— xn)} (29)

where the supremum is taken for all n > 1, all z1,z9,...,2, in dom (7) and all zj €
T(zo),z € T(z1),...,x; € T(xy). In turns out that the function fr is proper, lower
semicontinuous and convex (as supremum of affine functions), that 7' = dfp, and that
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functions satisfying this property are equal to fr up to an additive constant. Moreover, if
T is locally bounded, then fr will be locally Lipschitz.

The above result of Rockafellar does not depend on the dimension of the space, since
it is based on global arguments and makes no use of topological notions (see [14] for de-
tails). We now give the analogous results for maximal cyclic hypomonotone (respectively,
maximal cyclically submonotone) operators. Let us point out the following important
difference: In contrast to the above classical result, the forthcoming integration results
provide subdifferential representations for the operator 7" on intdom(7") (and not on the
whole space), using thus implicitly the local boundedness of T' (see Proposition 8). We
conjecture that the results remain true in the general case.

Theorem 14 Let T : X = X* be a multivalued operator and U a nonempty open and
connected subset of dom(T).

(H) T is mazimal cyclically hypomonotone on U if, and only if, T = Of for some locally
Lipschitz d-weakly convex function f: U — R unique up to an additive constant.

(S) T is mazimal cyclically submonotone on U if, and only if, T = 0f for some locally
Lipschitz d-approzimately convez function f : U — R, unique up to an additive constant.

Proof Theorem 11 (respectively, Theorem 12) corresponds to the “if” part of (H) (re-
spectively, (S)), while the “only if” part of (S) follows from [5, Theorem C].

Let us give an easy argument for establishing the “only if” part of (H). To this end,
let T' be maximal cyclically hypomonotone on U. Then T is also cyclically submonotone.
Let S be any maximal cyclically submonotone extension of S on U. Using (S) we conclude
that S = Jf, for some locally Lipschitz d-approximately convex function f : U — R. It
follows from Proposition 10 that S is minimal w*-cusco. In particular, S is a minimal
element of the family of w*-cusco operators containing 7'. Since T is maximal cyclically
hypomonotone, it can be shown (in a way analogous to [5, Proposition 8]) that T is w*-
cusco. This shows that T = S = df and Theorem 11 guarantees that f is d-weakly convex.
Uniqueness of f follows from the uniqueness of f in (S) (see [5, Theorem B]). O
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