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Abstract

Convergence of projection-based methods for nonconvex set feasibility problems
has been established for sets with ever weaker regularity assumptions. What has not
kept pace with these developments is analogous results for convergence of optimiza-
tion problems with correspondingly weak assumptions on the value functions. In-
deed, one of the earliest classes of nonconvex sets for which convergence results were
obtainable, the class of so-called super-regular sets [10], has no functional counter-
part. In this work, we amend this gap in the theory by establishing the equivalence
between a property slightly stronger than super-regularity, which we call Clarke
super-regularity, and subsmootheness of sets as introduced by Aussel, Daniilidis and
Thibault [1]. The bridge to functions shows that approximately convex functions
studied by Ngai, Luc and Thera [12] are those which have Clarke super-regular
epigraphs. Further classes of regularity of functions based on the corresponding
regularity of their epigraph are also discussed.
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1 Introduction

The notion of a super-regular set was introduced by Lewis, Luke and Malick [10] who rec-
ognized the property as an important ingredient for proving convergence of the method
of alternating projections without convexity. This was generalized in subsequent publi-
cations [3,6,7,11], with the weakest known assumptions guaranteeing local linear conver-
gence of the alternating projections algorithm for two-set, consistent feasibility problems
to date found in [15, Theorem 3.3.5]. The regularity assumptions on the individual sets
in these subsequent works are vastly weaker than super-regularity, but what has not
kept pace with these generalizations is their functional analogs. Indeed, it appears that
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the notion of a super-regular function has not yet been articulated. In this note, we
bridge this gap between super-regularity of sets and functions as well as establishing
connections to other known function-regularities in the literature. A missing link is yet
another type of set regularity, what we call Clarke super-regularity, which is a slightly
stronger version of super-regularity and, as we show, this is equivalent to other existing
notions of regularity. For a general set that is not necessarily the epigraph of a function,
we establish an equivalence between subsmoothness as introduced by Aussel, Daniilidis
and Thibault [1] and Clarke super-regularity.

To begin, in Section 2 we recall different concepts of the normal cones to a set as
well as notions of set regularity, including Clarke regularity (Definition 2.3) and (lim-
iting) super-regularity (Definition 2.4). Next, in Section 3 we introduce the notion of
Clarke super-regularity (Definition 3.1) and relate it to the notion of subsmoothness
(Theorem 3.4). We also provide an example illustrating that Clarke super-regularity at
a point is a strictly weaker condition than Clarke regularity around the point (Exam-
ple 3.2). Finally, in Section 4, we provide analogous

statements for Lipschitz continuous functions, relating the class of approximately
convex functions to super-regularity of the epigraph. After completing this work we
received a preprint [16] which contains results of this flavor, including a characterization
of (limiting) super-regularity in terms of (metric) subsmoothness.

2 Normal cones and Clarke regularity

The notation used throughout this work is standard for the field of variational analysis,
as can be found in [14]. The closed ball of radius r > 0 centered at x ∈ Rn is denoted
Br(x) and the closed unit ball is denoted B := B1(0). The (metric) projector onto a set
Ω ⊂ Rn, denoted by PΩ : Rn ⇒ Ω, is the multi-valued mapping defined by

PΩ(x) := {ω ∈ Ω : ‖x− ω‖ = d(x,Ω)},

where d(x,Ω) denotes the distance of the point x ∈ Rn to the set Ω. When Ω is nonempty
and closed, its projector PΩ is everywhere nonempty. A selection from the projector is
called a projection.

Given a set Ω, we denote its closure by cl Ω, its convex hull by conv Ω, and its conic
hull by cone Ω. In this work we shall deal with two fundamental tools in nonsmooth
analysis; normal cones to sets and subdifferentials of functions (Section 4).

Definition 2.1 (normal cones). Let Ω ⊆ Rn and let ω ∈ Ω.

(i) The proximal normal cone of Ω at ω ∈ Ω is defined by

NP
Ω (ω) = cone

(
P−1

Ω ω − ω
)
.

Equivalently, (ω, ω∗) ∈ gphNP
Ω , or simply, ω∗ ∈ NP

Ω (ω), whenever there exists
σ ≥ 0 such that

〈ω∗, ω − ω〉 ≤ σ‖ω − ω‖2, ∀ω ∈ Ω.
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The A-restricted proximal normal cone of ω at ω is

NP
Ω|A(ω) := cone

((
A ∩ P−1

Ω ω
)
− ω

)
.

(ii) The Fréchet normal cone of Ω at ω is defined by

N̂Ω(ω) = {ω∗ ∈ Rn : 〈ω∗, ω − ω〉 ≤ o(‖ω − ω‖), ∀ω ∈ Ω} ,

Equivalently, ω∗ ∈ N̂Ω(ω), if for every ε > 0 there exists δ > 0 such that

〈ω∗, ω − ω〉 ≤ ε‖ω − ω‖, for all ω ∈ Ω ∩ Bδ(ω). (1)

(iii) The limiting normal cone of Ω at ω is defined by

NΩ(ω) = Lim sup
ω→ω

N̂Ω(ω),

where the limit superior denotes the Painlevé–Kuratowski outer limit.

(iv) The Clarke normal cone of Ω at ω is defined by

NC
Ω (ω) = cl convNΩ(ω).

When ω 6∈ Ω, all of the aforementioned normal cones at ω are defined to be empty.

The restricted normal cone was first introduced in [3, Definition 2.1] and is used in
Example 2.7.

Central to our subsequent analysis is the notion of a truncation of a normal cone.
Given r > 0, one defines the r-truncated version of each of the above cones to be its
intersection with a ball centered at the origin of radius r. For instance, the r-truncated
proximal normal cone of Ω at ω ∈ Ω is defined by

N rP
Ω (ω) = cone

(
P−1

Ω ω − ω
)
∩ Br,

that is, ω∗ ∈ N rP
Ω (ω) whenever ‖ω∗‖ ≤ r and for some σ ≥ 0 we have

〈ω∗, ω − ω〉 ≤ σ‖ω − ω‖2, ∀ω ∈ Ω.

In general, the following inclusions between the normal cones can deduce straight-
forwardly from their respective definitions:

NP
Ω (ω) ⊆ N̂Ω(ω) ⊆ NΩ(ω) ⊆ NC

Ω (ω). (2)

The regularity of sets is characterized by the relation between elements in the graph
of the normal cones to the sets and directions constructable from points in the sets.
The weakest kind of regularity of sets that has been shown to guarantee convergence
of the alternating projections algorithm is elemental subregularity (see [7, Cor.3.13(a)]
and [15, Theorem 3.3.5]). It was called elemental (sub)regularity in [8, Definition 5]
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and [11, Definition 3.1] to distinguish regularity of sets from regularity of collections of
sets. Since we are only considering the regularity of sets, and later functions, we can
drop the “elemental” qualifier in the present setting. We also streamline the terminology
and variations on elemental subregularity used in [8, 11], replacing uniform elemental
subregularity with a more versatile and easily distinguishable variant.

Definition 2.2 (subregularity [8, Definition 5]). Let Ω ⊆ Rn and ω ∈ Ω. The set Ω is
said to be ε-subregular relative to Λ at ω for (ω̂, ω̂∗) ∈ gphNΩ if it is locally closed at ω
and there exists an ε > 0 together with a neighborhood U of ω such that〈

ω̂∗ − (ω′ − ω), ω − ω̂
〉
≤ ε||ω̂∗ − (ω′ − ω)||‖ω − ω̂‖ , ∀ω′ ∈ Λ ∩ U, ∀ω ∈ PΩ(ω′). (3)

If for every ε > 0 there is a neighborhood (depending on ε) such that (3) holds, then Ω
is said to be subregular relative to Λ at ω for (ω̂, ω̂∗) ∈ gphNΩ.

The property that distinguishes the degree of regularity of sets is the diversity of
vectors (ω̂, ω̂∗) ∈ gphNΩ for which (3) holds, as well as the choice of the set Λ. Of
particular interest to us are Clarke regular sets, which satisfy (3) for all ε > 0 and for
all Clarke normal vectors at ω.

Definition 2.3 (Clarke regularity). The set Ω is said to be Clarke regular at ω ∈ Ω
if it is locally closed at ω and for every ε > 0 there exists δ > 0 such that for all
(ω, ω∗) ∈ gphNC

Ω

〈ω∗, ω − ω〉 ≤ ε ||ω∗||‖ω − ω‖, ∀ω ∈ Ω ∩ Bδ(ω). (4)

Note that (4) is (3) with Λ = Ω and U = Bδ(ω), which in the case of Clarke regularity
holds for all (ω, ω∗) ∈ gphNC

Ω . A short argument shows that, for Ω Clarke regular at
ω, the Clarke and Fréchet normal cones coincide at ω. Indeed, this property is used
to define Clarke regularity in [14, Definition 6.4]. It is also immediately clear from the
definitions that if Ω is Clarke regular at ω, then it is subregular relative to Λ = Ω at ω
for all ω∗ ∈ NΩ(ω).

By setting Λ = Rn, letting ω̂ ∈ Ω be in a neighborhood of ω and fixing ω̂∗ = 0 in
the context of Definition 2.2, we arrive at super-regularity which, when stated explicitly,
takes the following form.

Definition 2.4 (super-regularity [10, Definition 4.3]). Let Ω ⊆ Rn and ω ∈ Ω. The set
Ω is said to be super-regular at ω if it is locally closed at ω and for every ε > 0 there is
a δ > 0 such that for all (ω̂, 0) ∈ gphNΩ ∩ {(Bδ(ω), 0)}〈

ω′ − ω, ω̂ − ω
〉
≤ ε ||ω′ − ω||‖ω̂ − ω‖, ∀ω′ ∈ Bδ(ω), ∀ω ∈ PΩ(ω′). (5)

Rewriting the above leads the the following equivalent characterization of super-regularity,
which is more useful for our purposes.

Proposition 2.5 ([10, Proposition 4.4]). The set Ω ⊆ Rn is super-regular at ω ∈ Ω if
and only if it is locally closed at ω and for every ε > 0 there exists δ > 0 such that

〈ω∗1, ω2 − ω1〉 ≤ ε ||ω∗1||‖ω2 − ω1‖,
∀(ω1, ω

∗
1) ∈ gphNΩ ∩ (Bδ(ω)× Rn) , ∀ω2 ∈ Ω ∩ Bδ(ω). (6)
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It is immediately clear from this characterization that super-regularity implies Clarke
regularity. By continuing our development of increasingly nicer regularity properties to
convexity, we have the following relationships involving stronger notions of regularity.

Proposition 2.6. Let Ω ⊆ Rn be locally closed at ω ∈ Ω.

(i) If Ω is prox-regular at ω ( i.e., there exists a neighborhood of ω on which the projector
is single-valued), then there is a constant γ > 0 such that for all ε > 0

〈ω∗1, ω2 − ω1〉 ≤ ε||ω∗1||‖ω2 − ω1‖ ,
∀(ω1, ω

∗
1) ∈ gphNΩ ∩ (Bγε(ω)× Rn) , ∀ω2 ∈ Ω ∩ Bγε(ω). (7)

(ii) If Ω is convex, then

〈ω∗1, ω2 − ω1〉 ≤ 0 , ∀(ω1, ω
∗
1) ∈ gphNΩ, ∀ω2 ∈ Ω. (8)

Proof. The proof of (i) can be found in [8, Proposition 4(vi)]. Part (ii) is classical.

Example 2.7 (Pac-Man). Let x = 0 ∈ R2 and consider two subsets of R2 given by

A = {(x1, x2) ∈ R2 | x2
1 + x2

2 ≤ 1, −(1/2)x1 ≤ x2 ≤ x1, x1 ≥ 0},
B = {(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1, x1 ≤ |x2|}.

The set B looks like a “Pac-Man” with mouth opened to the right and the set A, if you
like, a piece of pizza. For an illustration, see Figure 1.

The set B is subregular relative to A at x = 0 for all (b, v) ∈ gph
(
NP
B|A

)
(the

A-restricted proximal normal cone, see Definition 2.1) with ε = 0 on all neighborhoods.
Indeed, for all a ∈ A, aB ∈ PB(a) and v ∈ NP

B|A(b), we have

〈v − (a− aB), aB − b〉 = 〈v, aB − b〉 − 〈a− aB, aB − b〉 = 0.

In other words, from the perspective of the piece of pizza, Pac-Man looks convex.
The set B, however, is not ε-subregular for any ε < 1 at x = 0 relative to R2 for any

(0, v) ∈ gphNB. Indeed, by choosing x = tv ∈ B (where 0 6= v ∈ B ∩ NB(0), t ↓ 0),
we have 〈v, x〉 = ‖v‖‖x‖ > 0. Clearly, this also means that Pac-Man is not Clarke
regular. ♦

3 Super-regularity and subsmoothness

In the context of the definitions surveyed in the previous section, we introduce an even
stronger type of regularity that we identify, in Theorem 3.4, with subsmoothness as
studied in [1]. This will provide a crucial link to the analogous characterizations of
regularity for functions considered in Theorem 4.6, in particular, to approximately convex
functions studied in [12].
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x A

B

Figure 1: An illustration of the sets in Example 2.7.

Definition 3.1 (Clarke super-regularity). Let Ω ⊆ Rn and ω ∈ Ω. The set Ω is said to
be Clarke super-regular at ω if it is locally closed at ω and for every ε > 0 there exists
δ > 0 such that for every (ω̂, ω̂∗) ∈ gphNC

Ω ∩(Bδ(ω)× Rn), the following inequality holds

〈ω̂∗, ω − ω̂〉 ≤ ε ||ω̂∗||‖ω − ω̂‖, ∀ω ∈ Ω ∩ Bδ(ω). (9)

The only difference between Clarke super-regularity and super-regularity is that,
in the case of Clarke super-regularity, the key inequality above holds for all nonzero
Clarke normals in a neighborhood instead holding only for limiting normals (compare
(6) with (9)). It therefore follows that Clarke super-regularity at a point implies Clarke
regularity there. Nevertheless, even this stronger notion of regularity does not imply
Clarke regularity around ω, as the following counterexample shows.

epi f

ω ωk+1

ωk

ωk−1

x

f(x)

Figure 2: A sketch of the function f and the sequence (ωk) given in Example 3.2.

Example 3.2 (regularity only at a point). Let f : R → R be the continuous, piecewise
linear function (see Figure 2) defined by

f(x) :=


0, if x ≤ 0

− 1
2k+1 (x− 1

2k
)− 1

3·4k , if 1
2k+1 ≤ x ≤ 1

2k
(for k = 1, 2, . . . )

− 1
12 , if x ≥ 1

2 .
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Notice that

− 4

3
x2 ≤ f(x) ≤ −1

3
x2, ∀x ∈

[
0,

1

2

]
. (10)

Let Ω = epi f denote the epigraph of f . Thanks to (10) it is easily seen that Ω is Clarke
regular at ω = (0, 0) in the sense of Definition 2.3. However, Ω is not Clarke regular
at the sequence of points ωk = ( 1

2k+1 ,
1
2k

) converging to ω. Indeed, the Fréchet normal

cones N̂Ω(ωk) are reduced to {0} for all k ≥ 1, while the corresponding limiting normal
cones are given by

NΩ(ωk) = R+

{(
− 1

2k
,−1

)
,

(
− 1

2k+1
,−1

)}
, ∀k ∈ N.

♦

A missing link in the cascade of set regularity is subsmooth and semi-subsmooth sets,
introduced and studied by Aussel, Daniilidis and Thibault in [1, Definitions 3.1 & 3.2].

Definition 3.3 ((Semi-)subsmooth sets). Let Ω ⊂ Rn be closed and let ω ∈ Ω.

(i) The set Ω is subsmooth at ω ∈ Ω if, for every r > 0 and ε > 0, there exists δ > 0
such that for all ω1, ω2 ∈ Bδ(ω) ∩ Ω, all ω∗1 ∈ N rC

Ω (ω1) and all ω∗2 ∈ N rC
Ω (ω2) we

have:
〈ω∗1 − ω∗2, ω1 − ω2〉 ≥ −ε‖ω1 − ω2‖. (11)

(ii) The set Ω is semi-subsmooth at ω if, for every r > 0 and ε > 0, there exists δ > 0
such that for all ω ∈ Bδ(ω) ∩ Ω, all ω∗ ∈ N rC

Ω (ω) and all ω∗ ∈ N rC
Ω (ω)

〈ω∗ − ω∗, ω − ω〉 ≥ −ε‖ω − ω‖. (12)

It is clear from the definitions that subsmoothness at a point implies semi-subsmoothness
at the same point. The next theorem establishes the precise connection between sub-
smoothness and Clarke super-regularity (Definition 3.1).

Theorem 3.4 (characterization of subsmoothness). Let Ω ⊆ Rn be closed and nonempty.

(i) The set Ω is subsmooth at ω ∈ Ω if and only if Ω is Clarke super-regular at ω.

(ii) The set Ω is semi-subsmooth at ω ∈ Ω if and only if for each constant ε > 0 there
is a δ > 0 such that for every (ω, ω∗) ∈ gphNC

Ω

〈ω∗, ω − ω〉 ≤ ε ||ω∗||‖ω − ω‖, ∀ω ∈ Ω ∩ Bδ(ω)

and for all (ω, ω∗) ∈ gphNC
Ω ∩ (Bδ(ω)× Rn),

〈ω∗, ω − ω〉 ≤ ε ||ω∗||‖ω − ω‖.
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Proof. (i). Assume Ω is subsmooth at ω ∈ Ω and fix an ε > 0. Set r = 1 and let δ > 0 be
given by the definition of subsmoothness. Then for every ω1, ω2 ∈ Ω ∩ Bδ(ω) and ω∗2 ∈
NC

Ω (ω2)�{0}, applying (11) for ω∗1 = 0 ∈ N (r=1)C
Ω (ω1) and ||ω∗2||−1ω∗2 ∈ N

(r=1)C
Ω (ω2) we

deduce (9). The same argument applies in the case that ω∗2 = 0 and ω∗1 6= 0. If both
ω∗1 = ω∗2 = 0, then the required inequality holds trivially.

Let us now assume that Ω is Clarke super-regular at ω and fix r > 0 and ε > 0. Let
δ > 0 be given by the definition of Clarke super-regularity corresponding to ε′ = ε/2r
and let ω1, ω2 ∈ Bδ(ω) ∩ Ω, ω∗1 ∈ N rC

Ω (ω1) and ω∗2 ∈ N rC
Ω (ω2). It follows from (9) that

〈ω∗1, ω1 − ω2〉 ≥ − ε

2r
||ω∗1||‖ω1 − ω2‖ ≥ −

ε

2
‖ω1 − ω2‖

and

〈−ω∗2, ω1 − ω2〉 ≥ − ε

2r
||ω∗2||‖ω1 − ω2‖ ≥ −

ε

2
‖ω1 − ω2‖.

We conclude by adding the above inequalities.

Part (ii) is nearly identical and the proof is omitted.

The following corollary utilizes Theorem 3.4 to summarize the relations between
various notions of regularity for sets, the weakest of these being the weakest known
regularity assumption under which local convergence of alternating projections has been
established [15, Theorem 3.3.5].

Corollary 3.5. Let Ω ⊆ Rn be closed, let ω ∈ Ω and consider the following assertions.

(i) Ω is prox-regular at ω.

(ii) Ω is subsmooth at ω.

(iii) Ω is Clarke super-regular at ω.

(iv) Ω is (limiting) super-regular at ω.

(v) Ω is Clarke regular at ω.

(vi) Ω is subregular at ω relative to some nonempty Λ ⊂ Rn for all (ω, ω∗) ∈ V ⊂
gphNP

Ω .

Then (i) =⇒ (ii) ⇐⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (vi).

Proof. (i) =⇒ (ii): This was shown in [1, Proposition 3.4(ii)]. (ii) ⇐⇒ (iii): This is
Theorem 3.4(i). (iii) =⇒ (iv) =⇒ (v) =⇒ (vi): These implications follow from the
definitions.

Remark 3.6 (amenablility). A further regularity between convexity and prox-regularity
is amenability [14, Definition 10.23]. This was shown in [13, Corollary 2.12] to imply
prox-regularity. Amenability plays a larger role in the analysis of functions and is defined
precisely in this context below. ♦
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4 Regularity of functions

The extension of the above notions of set regularity to analogous notions for functions
typically passes through the epigraphs. Given a function f : Rn → [−∞,+∞], recall
that its domain is dom f := {x ∈ Rn : f(x) < +∞} and its epigraph is

epi f := {(x, α) ∈ Rn × R : f(x) ≤ α}.

The subdifferential of a function at a point x can be defined in terms of the normal cone
to its epigraph at (x, f(x)). Let f : Rn → (−∞,+∞] and let x ∈ dom f . The proximal
subdifferential of f at x is defined by

∂Pf(x) = {v ∈ Rn : (v,−1) ∈ NP
epi f ((x, f(x))}. (13)

The Fréchet (resp. limiting, Clarke) subdifferential, denoted ∂̂f(x) (resp. ∂f(x), ∂Cf(x)),
is defined analogously by replacing normal cone NP

epi f (ω) with N̂epi f (ω) (resp. Nepi f (ω),

NC
epi f (ω)) in (13) where ω = (x, f(x)). The horizon and Clarke horizon subdifferentials

at x are defined, respectively, by

∂∞f(x) = {v ∈ Rn : (v, 0) ∈ Nepi f ((x, f(x))},
∂C
∞f(x) = {v ∈ Rn : (v, 0) ∈ NC

epi f ((x, f(x))}.

In what follows, we define regularity of functions in terms of the regularity of their
epigraphs. We refer to a regularity defined in such a way as epi-regularity.

Definition 4.1 (epi-regular functions). Let f : Rn → (−∞,+∞], x ∈ dom f , Λ ⊆
dom f , and (y, v) ∈ gph ∂f ∪ gph ∂∞f .

(i) f is said to be ε-epi-subregular at x ∈ dom f relative to Λ ⊆ dom f for (y, v)
whenever epi f is ε-subregular at (x, f(x)) relative to {(x, α) ∈ epi f | x ∈ Λ} for
((y, f(y)), (v, e)) with e = −1 when v ∈ ∂f(y) and e = 0 when v ∈ ∂∞f(y).

(ii) f is said to be epi-subregular at x relative to Λ ⊆ dom f for (y, v) whenever epi f
is subregular at (x, f(x)) relative to {(x, α) ∈ epi f | x ∈ Λ} for ((y, f(y)), (v, e))
with e = −1 when v ∈ ∂f(y) and e = 0 when v ∈ ∂∞f(y).

(iii) f is said to be epi-Clarke regular at x whenever epi f is Clarke regular at (x, f(x)).
Similarly, the function is said to be epi-Clarke super-regular (resp. epi-super-regular,
epi-prox-regular) at x whenever its epigraph is Clarke super-regular (resp. super-
regular, or prox-regular) at (x, f(x)).

Recent work [2, 4] makes use of the directional regularity (in particular Lipschitz
regularity) of functions or their gradients. The next example illustrates how this fits
naturally into our framework.
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Example 4.2. The negative absolute value function f(x) = −|x| is the classroom example
of a function that is not Clarke regular at x = 0. It is, however, epi-subregular relative to
R+ at x = 0 for the subgradient v = −1 with ε = 0 on the neighborhood U = R for the
same reason that the Pac-Man of Example 2.7 is subregular relative to A at the origin
for elements in the graph of the A-restricted proximal normal cone. Simply stated, the
function looks convex – it’s linear – when restricted to the positive orthant. In contrast,
the function f is not ε-epi-subregular at x = 0 relative to R, again, for the same reason
why the Pac-Man of Example 2.7 is not ε-subregular at the origin relative to R2. ♦

In a subsequent section, we develop an equivalent, though more elementary, charac-
terizations of these regularities of functions defined in Definition 4.1.

4.1 Lipschitz continuous functions

In this section, we consider the class of locally Lipschitz functions, which allows us
to avoid the horizon subdifferential (since this is always {0} for Lipschitz functions).
Recall that a set Ω is called epi-Lipschitz at ω ∈ Ω if it can be represented near ω as the
epigraph of a Lipschitz continuous function. Such a function is called a locally Lipschitz
representation of Ω at ω.

The following notion of approximately convex functions was introduced by Ngai, Luc
and Thera [12] and turns out to fit naturally within our framework.

Definition 4.3 (approximate convexity). A function f : Rn → (−∞,+∞] is said to be
approximately convex at x ∈ Rn if for every ε > 0 there exists δ > 0 such that

(∀x, y ∈ Bδ(x))(∀t ∈ ]0, 1[ ) :

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) + εt(1− t)‖x− y‖.

Daniilidis and Georgiev [5] and subsequently Aussel, Daniilidis and Thibault [1, The-
orem 4.14] showed the connection between approximately convex functions and sub-
smooth sets. Using our results in the previous section, we are able to provide the
following extension of their characterization. In what follows, set ω = (x, t) ∈ Rn × R
and denote by π(ω) = x its projection onto Rn.

Proposition 4.4 (subsmoothness of Lipschitz epigraphs). Let Ω be an epi-Lipschitz
subset of Rn+1 and let ω ∈ bdryΩ. Then the following statements are equivalent:

(i) Ω is Clarke super-regular at ω.

(ii) Ω is subsmooth at ω.

(iii) every locally Lipschitz representation f of Ω at ω is approximately convex at π(ω).

(iv) some locally Lipschitz representation f of Ω at ω is approximately convex at π(ω).

Proof. The equivalence of (i) and (ii) follows from Theorem 3.4(i). This equivalence does
not require Ω to be epi-Lipschitz. The equivalence of (ii), (iii) and (iv) was established
in [1, Theorem 4.14].
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Remark 4.5. The equivalences in Proposition 4.4 actually hold in the Hilbert space
setting without any changes. In fact, the equivalence of (ii)-(iv) remains true in Banach
spaces [1, Theorem 4.14]. ♦

The following characterization extends [5, Theorem 2].

Theorem 4.6 (characterizations of aproximate convexity). Let f : Rn → R be locally
Lipschitz on Rn and let x ∈ Rn. Then the following are equivalent.

(i) epi f is Clarke super-regular at (x, f(x)).

(ii) f is approximately convex at x.

(iii) For every ε > 0, there exists a δ > 0 such that

(∀x, y ∈ Bδ(x))(∀v ∈ ∂Cf(x)) f(y)− f(x) ≥ 〈v, y − x〉 − ε‖y − x‖.

(iv) ∂f is submonotone [5, Definition 7] at x0, that is, for every ε > 0 there is a δ > 0
such that for all x1, x2 ∈ Bδ(x0) ∩ dom ∂f , and all x∗i ∈ ∂f(xi) (i = 1, 2), one has

〈x∗1 − x∗2, x1 − x2〉 ≥ −ε‖x1 − x2‖. (14)

Proof. (i) ⇐⇒ (ii): Since f is locally Lipschitz at x, it is trivially a local Lipschitz repre-
sentation of Ω = epi f at ω = (x, f(x)) ∈ Ω. The result thus follows from Proposition 4.4.
(ii) ⇐⇒ (iii) ⇐⇒ (iv): This is [5, Theorem 2].

As corollary of the above theorem, we deduce the following sufficient condition for
Clarke super-regularity of the epigraph.

Corollary 4.7. Let f : Rn → R be lower semicontinuous (lsc) and approximately convex.
Then epi f is Clarke super-regular at every (x, f(x)) ∈ epi f .

Proof. As a proper, lsc, approximately convex function is locally Lipschitz at each point
in the interior of its domain [12, Proposition 3.2] and dom f = Rn, the result follows
from Theorem 4.6.

Example 4.8 (Clarke super-regularity does not imply approximate convexity). Consider
the counting function f : Rn → {0, 1, . . . , n} defined by

f(x) = ‖x‖0 :=

n∑
j=1

|sign(xj)|, where sign(t) :=


−1, for t < 0

0, for t = 0

+1, for t > 0 .

This function is lower semicontinuous and Clarke epi-super-regular almost everywhere,
but not locally Lipschitz at x whenever ‖x‖0 < n. In fact, f is actually discontinuous
at all such points. Indeed, the epigraph of f is locally convex almost everywhere and,
in particular, at any point (x, α) with α > f(x). At the point (x, f(x)) however, the

11



epigraph is not even Clarke regular when ‖x‖0 < n. Conversely, if x is any point with
‖x‖0 = n, then the counting function is locally constant and so in fact locally convex.
These observations agree nicely with those in [9], namely, that the rank function (a
generalizaton of the counting function) is subdifferentially regular everywhere (i.e., all
the various subdifferentials coincide) with 0 ∈ ∂‖x‖0 for all x ∈ Rn. ♦

4.2 Non-Lipschitzian functions

In this section, we collect results which hold true without assuming local Lipschitz con-
tinuity. In order to state the following proposition, recall that an extended real-valued
function f is strongly amenable at x if f(x) is finite and there exists an open neighbor-
hood U of x on which f has a representation as a composite g ◦ F with F of class C2

and g a proper, lsc, convex function on Rn.

Proposition 4.9. Let f : Rn → (−∞,+∞] and consider the following assertions.

(i) f is strongly amenable at x.

(ii) f is prox-regular at x.

(iii) epi f is Clarke super-regular at (x, f(x)).

Then: (i) =⇒ (ii) =⇒ (iii).

Proof. The fact that strong amenability implies prox-regularity is discussed in [13,
Proposition 2.5]. To see that (ii) implies (iii), suppose f is prox-regular at x. Then
epi f is prox-regular at (x, f(x)) by [13, Theorem 3.5] and hence Clarke super-regular at
(x, f(x)) by Theorem 3.4.

To conclude, we establish a primal characterization of epi-subregularity analogous to
the characterization of Clarke epi-super-regularity in Theorem 4.6. It is worth noting
that, unlike the results in Section 4.1, this characterization includes the possibly of
horizon normals. In what follows, we denote the epigraph of a function f restricted to
a subset Λ ⊂ dom f by epi(fΛ) := {(x, α) ∈ epi f | x ∈ Λ}.

Proposition 4.10. Consider a function f : Rn → (−∞,+∞], let x ∈ dom f and let
(x, v) ∈ gph ∂Cf ∪ gph ∂C

∞f . Then the following assertions hold.

(i) f has an ε-subregular epigraph at x ∈ dom f relative to Λ ⊆ dom f for (x, v) if and
only if there is a neighborhood U of (x, f(x)) such that, for all (x, α) ∈ epi(fΛ)∩U ,
one of the following two inequalities holds:

f(x) + 〈v, x− x〉 ≤ α+ ε‖v‖‖x− x‖
((

1 + ‖v‖−2
) (

1 + |α− f(x)|2‖x− x‖−2
))1/2

,
(15a)

〈v, x− x〉 ≤ ε‖v‖‖x− x‖
(
1 + |α− f(x)|2‖x− x‖−2

) 1
2 . (15b)
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(ii) f is epi-subregular at x ∈ dom f for (x, v) relative to Λ ⊆ dom f if and only if for
all ε > 0 there is a neighborhood (depending on ε) of (x, f(x)) such that, for all
(x, α) ∈ epi(fΛ) ∩ U , either (15a) or (15b) holds.

Proof. (i): First observe that since

Nepi f (x) ⊇ {(v,−1) | v ∈ ∂f(x)} ∪ {(v, 0) | v ∈ ∂∞f(x)} , and

NC
epi f (x) ⊇

{
(v,−1) | v ∈ ∂Cf(x)

}
∪
{

(v, 0) | v ∈ ∂C
∞f(x)

}
,

any point (x, v) ∈ gph ∂f ∪ gph ∂∞f corresponds to either a normal vector of the form
(v,−1) or a horizon normal of the form (v, 0). Suppose first that f is ε-epi-subregular
at x relative to Λ ⊂ dom f for (v, x) ∈ gph ∂Cf with neighborhood U ′ of x. Then epi f
is ε-subregular at (x, f(x)) relative to epi(fΛ) for (v,−1) ∈ NC

epi f (x, f(x)) with constant
ε and neighborhood U of (x, f(x)) in (3). Thus, for all (x, α) ∈ epi(fΛ) ∩ U , we have

〈(v,−1), (x, α)− (x, f(x))〉 ≤ ε‖(v,−1)‖‖(x, α)− (x, f(x))‖

⇐⇒ 〈v, x− x〉 − α+ f(x) ≤ ε
(
‖v‖2 + 1

)1/2 (‖x− x‖2 + (α− f(x))2
) 1

2

= ε‖v‖‖x− x‖
(
1 + ‖v‖−2

) 1
2
(
1 + (α− f(x))2‖x− x‖−2

) 1
2 ,

from which the claim follows.
The only other case to consider is that f is ε-epi-subregular at x relative to Λ ⊂ dom f

for v ∈ ∂C
∞f(x) with constant ε and neighborhood U ′ of x. In this case, epi f is ε-

subregular at (x, f(x)) relative to epi(fΛ) for (v, 0) ∈ NC
epi f (x, f(x)) with constant ε and

neighborhood U of (x, f(x)) in (3). Thus, for all (x, α) ∈ epi(fΛ) ∩ U , we have

〈(v, 0), (x, α)− (x, f(x))〉 ≤ ε‖(v, 0)‖‖(x, α)− (x, f(x))‖

⇐⇒ 〈v, x− x〉 ≤ ε‖v‖
(
‖x− x‖2 + (α− f(x))2

)1/2
⇐⇒ 〈v, x− x〉 ≤ ε‖v‖‖x− x‖

(
1 + (α− f(x))2‖x− x‖−2

)1/2
,

which completes the proof of (i).
(ii): Follows immediately from the definition.

Remark 4.11 (indicator functions of subregular sets). When f = ιΩ for a closed set Ω
the various subdifferentials coincide with the respective normal cones to Ω. In this case,
inequality (15b) subsumes (15a) since all subgradients are also horizon subgradients and
(15b) reduces to (3) in agreement with the corresponding notions of regularity of sets. ♦
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