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10th July 2008

ABSTRACT

We consider the problem of minimizing nonsmooth convex functions, defined piecewise by

a finite number of functions each of which is either convex quadratic or twice continuously
differentiable with positive definite Hessian on the set of interest. This is a particular case

of functions with primal-dual gradient structure, a notion closely related to the so-called VU
space decomposition: at a given point, nonsmoothness is locally restricted to the directions

of the subspace V , while along the subspace U the behaviour of the function is twice dif-
ferentiable. Constructive identification of the two subspaces is important, because it opens

the way to devising fast algorithms for nonsmooth optimization (by following iteratively the
manifold of smoothness, on which superlinear U -Newton steps can be computed). In this

work we show that for the class of functions in consideration, the information needed for this
identification can be obtained from the output of a standard bundle method for computing
proximal points, provided a minimizer satisfies the nondegeneracy and strong transversality

conditions.
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1 Introduction

Consider the problem

min
x∈<n

f(x), (1.1)

where the objective function f : <n → < is convex. If f is not differentiable at a solution
x̄ of (1.1), constructing fast practical algorithms to compute x̄ is a challenge. Essentially,

this has to do with the intrinsic difficulty in using (or even defining!) appropriate “second-
order” objects that capture the behaviour of f around x̄. One line of research (e.g., [13, 23,
17, 14, 2]) suggests introducing second-order information about f by means of its Moreau-

Yosida regularization, which is a smooth function. The other line of research parts from
the viewpoint that nonsmoothness in practical applications is usually “structured” [25, 18,

15, 7, 24]. Nonsmooth functions may behave smoothly and even have appropriate second-
order representations on certain manifolds along certain directions. If this structure can be

constructively identified and if the relevant manifold can be “followed” iteratively, this opens
the potential for designing algorithms with fast local convergence.

In this work, we contribute to the second line of research, and in particular to constructing
the so-called VU -decomposition [12] for functions with primal-dual gradient (PDG) structure

[18, 19, 20, 21] (see Section 2 below for definitions and a summary of relevant details). This
development is important for the following reasons. In [19, 21] it is shown that if f has PDG
structure and f satisfies at x̄ the strong transversality condition stated in (2.2) below, then

for points close to x̄ the proximal map generates points on the manifold of smoothness M,
called “fast track”. Since proximal points can be approximated arbitrarily well by bundle

techniques, [22] proposes a fast VU-algorithm that performs a corrector-predictor step at
each iteration. More precisely, by means of the bundle subroutine, a (corrector) proximal

step is made in order to bring the iterate to the fast track M. Then the U -Newton (predictor
step) is performed to gain superlinear decrease of the distance to solution. A geometrical

study of such methods, including relations with Sequential Quadratic Programming, can be
found in [16]. While computing the U -Newton step certainly requires approximating the

proximal point well enough, [22] shows that this computational effort can be worthwhile
when compared to standard bundle methods that stop this approximation much earlier (as
soon as sufficient descent of the objective function is attained). This is especially so in cases

where high precision is required. Standard forms of bundle methods may be quite slow (even
sublinear) when approaching a solution, which makes obtaining high precision impossible.

This is where the U -Newton superlinear steps are most important. We refer the reader to
[22] for a comparison of an overall computational behaviour of a usual bundle method and a

VU -algorithm, where practical superlinear convergence of the latter had been verified.
While [22] suggests a way of generating a basis for U in the process of computing the

proximal point by the bundle subroutine, the fact that this construction is “correct” is essen-
tially stated as an assumption, albeit a clearly reasonable one. In what follows, we prove that

for the given class of functions, if x is close enough to x̄ then the subspace V (and, hence,
also U) at the proximal point p of x can indeed be recovered from the objects generated by
the bundle subroutine in the process of computing p. Numerical results presented in Section

4 confirm this assertion.
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Our notation is fairly standard. We shall denote by Bε(x̄) the open ball with center
x̄ ∈ <n and radius ε > 0. For x, y ∈ <n, 〈x, y〉 stands for the inner product of x and y. Given

a convex function f : <n → <, we denote by ∂f(x) its subdifferential at the point x ∈ <:

∂f(x) = {g ∈ <n : f(y) − f(x) ≥ 〈g, y− x〉, for all y ∈ <n}. (1.2)

The canonical simplex in the space <s will be denoted by

∆s =

{

t ∈ <s : t ≥ 0 ,

s
∑

i=1

ti = 1

}

.

For a convex set C, by riC we denote its relative interior. For any set C ⊂ <n, linC stands

for its linear hull (the smallest subspace of <n that contains C) and aff C for its affine hull
(the smallest affine manifold of <n that contains C). Finally, the cardinality of a (finite) set

I is denoted by |I |.

2 Analytic description of the function structure

We consider the class of convex functions defined piecewise by a finite collection of twice

continuously differentiable convex functions. Specifically, for all x ∈ <n,

f(x) ∈ {fj(x), j = 0, . . . , m},
where f is convex and fj : <n → <, j = 0, . . . , m, are convex of class C2.

(2.1)

We shall refer to the functions fj , j = 0, 1, . . . , m, as structure functions. For some of our
results we shall eventually assume that, in addition to the above, each structure function fj

is either quadratic or has positive definite Hessian in a relevant neighbourhood of a minimizer
of f . Those assumptions do not introduce any restrictions that are truly relevant with respect

to the task at hand – identification of the smoothness structure of (structured) nonsmooth
functions.

A classical example of (2.1) is the max-function f(x) = maxj=0,...,m fj(x), where fj are
convex of class C2. However, the class given by (2.1) is not restricted to max-functions.

2.1 Primal-dual gradient structure and space decomposition

Given a convex function of the form (2.1), its subdifferential at a point x ∈ <n can be

computed in terms of the derivatives of the structure functions that are active at x. More
precisely,

∂f(x) =
{

g ∈ <n : g =
∑

j∈I(x)

tjf
′
j(x), t ∈ ∆|I(x)|

}

,

where

I(x) =
{

j ∈ {0, . . . , m} : f(x) = fj(x)
}

is the set of “active” indices at x. Let x̄ ∈ <n be a solution to (1.1), where f has the form of
(2.1). By continuity of the structure functions, there exists a ball Bε(x̄) ⊆ <n such that

∀ x ∈ Bε(x̄), I(x) ⊆ I(x̄).
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For convenience, we assume that the cardinality of I(x̄) is m1 + 1 and reorder the structure
functions, if necessary, so that I(x̄) = {0, 1, . . . , m1}. From now on, we consider that

∀ x ∈ Bε(x̄), f(x) ∈ {fj(x), j = 0, . . . , m1}.

The class of functions (2.1) belongs to the PDG-structured family ([21]; see also [18, 20]).

More precisely, following the terminology and notation of [21], a function f satisfying (2.1)
has a PDG structure at x̄ relative to the set Bε(x̄) with primal functions fj , j = 0, . . . , m1,
and dual multiplier set ∆m1+1. We note that PDG structures are closely related to the so-

called VU-space decomposition (see [12, 18, 20, 21]), which shall be the focus of our analysis.
Given a point x ∈ <n and any subgradient g ∈ ∂f(x), the VU -space decomposition at x is

given by
V(x) = lin{∂f(x)− g}, U(x) = V(x)⊥.

The nonsmoothness of the function f at x is reflected by its V -shaped graph along the sub-

space V , while along the subspace U the function appears to behave smoothly [12]. Roughly
speaking, the function f is “partly smooth” with respect to some “active” manifold M con-

taining x̄, in a way that for every x ∈ M the U -space of the VU-space decomposition at x
is the tangent space of the manifold M at x (see the precise terminology in [15], and also

[16, 4] for more details).
When the function f has a PDG structure (thus, in particular, in the case of (2.1)), for

every x ∈ <n and any fixed l ∈ I(x) it holds that

V(x) = lin{f ′j(x)− f ′l (x), j ∈ I(x)}.

We say that f satisfies at x̄ the condition of strong transversality if

the set { f ′j(x̄) − f ′0(x̄), j = 1, . . . , m1} is linearly independent. (2.2)

The following properties are consequences of strong transversality:

– The set

{f ′j(x̄) − f ′0(x̄), j = 1, . . . , m1}

is a basis for the subspace V(x̄) (of dimension dimV(x̄) = |I(x̄)| − 1 = m1).

– For any x ∈ B(x̄) and any fixed l ∈ I(x), the set

{f ′j(x)− f ′l (x), j ∈ I(x) \ {l}}

is linearly independent and forms a basis for the subspace V(x)
(of dimension dimV(x) = |I(x)| − 1 ≤ m1).

– For all x ∈ B(x̄), “interior” subgradients are generated by “interior simplicial multipli-

ers”, in the sense that for any p ∈ Bε(x̄) such that I(p) = I(x̄), it holds that

ri∂f(p) :=
{

g ∈ <n : g =

m1
∑

j=0

tjf
′
j(p), t ∈ ∆m1+1 , t > 0

}

, (2.3)

see [10, Remark III.2.1.4].
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The main motivation of this work is to provide some building blocks in order to design
(and implement) fast VU-algorithms. Our objective is to determine a basis for the V-space

(thus also U -space) at points p satisfying I(p) = I(x̄), so that a superlinear U -Newton step
can be computed. Under the strong transversality condition (2.2), locally the set of such

points coincides with the active manifold M which, under the nondegeneracy condition (see
(2.5) below), contains proximal points of points that are close enough to the solution x̄. As
a consequence, this manifold can be iteratively followed by an implementable algorithm and

be combined with superlinear U -Newton steps, as will be explained in the sequel.

2.2 Connections with smooth manifolds and proximal points

Since the subspaces U and V generate the whole space <n, every vector can be decomposed

along its VU -components. In particular, any z ∈ <n can be expressed as

<n 3 z = zV(x̄) ⊕ zU(x̄) ∈ <dimV(x̄) × <dimU(x̄).

As is shown in [21, Thm. 3.1], a PDG-structured function that satisfies the strong transver-
sality condition at x̄, has a smooth primal track which assigns for each sufficiently small

u ∈ U(x̄) an element χ(u) of the active manifold M. Since along the track the U(χ(u))-
component of the subdifferential of f is a singleton [21, Thm. 4.1(ii)], the restriction of the

function f along the track (active manifold) appears to be smooth. (Moreover, let us recall
that in [19] the smooth primal track from [21] allowing a second order expansion of f along

the U -subspace was called “fast track”.)
The active manifold M is theoretically defined as follows:

M = {p ∈ Bε(x̄) : fj(p) = f(p), j = 0, 1, . . . , m1} , (2.4)

or equivalently,

M = {p ∈ Bε(x̄) : I(p) = I(x̄)} .

Note that the latter, in view of (2.2), yields that M is a smooth manifold. It is easy to
verify that in this case f is also partly smooth with respect to the manifold M, according to

the terminology introduced in [15] (see [16] for details). Furthermore, the Riemanian gradient
of the restriction of f on M at a point x = χ(u) ∈ M is the projection of the subdifferential
∂f(x) on the U -space at x, while the normal cone NM(x) is the V(x)-subspace.

For all p close enough to x̄ it holds ([7, Thm. 5.15] and [21, Thm. 5.3]) that

p ∈ M ⇐⇒ p = χ(u(p)) with u(p) = (p− x̄)U(x̄) .

It follows that the concepts “fast track” χ(u) and “smooth manifold”M describe in a different

manner the same object, that identifies the smoothness structure of f . However, since both
χ(u) and M are defined implicitly, their computation is far from being straightforward. It is

at this stage that the important connection with proximal points comes into play, as discussed
next.

In the sequel, the following notion will be needed. We say that f satisfies at its minimizer

x̄ the nondegeneracy condition if
0 ∈ ri∂f(x̄). (2.5)
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This nondegeneracy condition is not very restrictive. The situation when a given minimizer
of f has 0 in the “extreme boundary” of its subdifferential, as for instance for the function

f(x) =

{

x1 if x1 ≥ 0,

0 if x1 < 0,
x ∈ <n,

where ∂f(0) = [0, 1] × {0n−1}, is unstable and generically not present in practice. On the

other hand, condition (2.5) ensures a certain stability in the behaviour of the subdifferential
mapping. Indeed, it has been shown that if f is a strongly transversal PDG-structured lower
semicontinuous (respectively, convex) function, the condition stated in (2.5) is transmitted to

some specific continuous selections of subgradients (parameterized by u), see [21, Thm. 4.2]
(respectively, [19, Thm. 5.2]). More specifically, the following holds (see [4, Lemma 20]).

Lemma 2.1.1. (Persistence and stability of the nondegeneracy condition)
Let f be a convex PDG-structured function, and let M be the active manifold along which f

admits a fast track.
Then for any continuous selection

p 7→ g(p), p ∈ M

of the affine space mapping
p 7→ aff(∂f(p)), p ∈ M

that satisfies g(x̄) ∈ ri∂f(x̄) for x̄ ∈ M, it holds that g(p) ∈ ri∂f(p) for all p ∈ M near x̄.

Given a point x ∈ <n and a prox-parameter µ > 0, the proximal point of f at x, denoted
by pµ(x), is given by

pµ(x) = arg min
y∈<n

{

f(y) +
µ

2
‖y − x‖2

}

.

(Clearly, the mapping pµ is single-valued, by the strict convexity of the norm.)

The relevance of proximal points in our context is two-fold.

– When x is sufficiently close to x̄ and the nondegeneracy condition (2.5) holds, pµ(x) lies
on the fast track (active manifold M); see [19, 7, 21, 4]. Since pµ(x) ∈ M, by definition

of the smooth manifold, we see that

I(pµ(x)) = I(x̄) or, equivalently, f(pµ(x)) = fj(pµ(x)), j = 0, 1, . . . , m1 . (2.6)

– A sequence of null steps of a bundle subroutine can approximate proximal points within

any desired accuracy [3] (see also [9] for the nonconvex case).

Therefore, under the condition (2.5), the theoretical concepts of fast track and active manifold

of a partly smooth function f can be locally related to the set of proximal points of f , opening
the way to implementable and fast VU-algorithms. Essentially, these algorithms follow a

trajectory of proximal points leading to x̄, with superlinear Newtonian acceleration at those
points. This acceleration is possible due to the fact that proximal points belong to the active
manifold M on which f has second-order expansion along U(p), and so at such points a fast

(superlinear) U -Newton step can be computed, provided the subspaces V and U are known,
or sufficiently well approximated [22].

5



3 Identifying structure by the bundle technique

We proceed to analyze the computation of the proximal point pµ(x) of a given x ∈ Bε(x̄) for

a convex function f of the form (2.1). We show that a basis for the subspace V at pµ(x) is
obtained as a by-product of computing pµ(x) by the bundle technique.

We start with the following remark: complete knowledge of the subdifferential ∂f(p) at
the proximal point p = pµ(x) ∈ M is certainly sufficient for determining the V-space of
VU -decomposition at p. However, such information is considered prohibited (impossible to

obtain) in practice. Indeed, apart from the point p being unknown (it needs to be computed
by an iterative procedure), the typical practical requirement in computational nonsmooth

optimization (referred to as black-box information, see, e.g., [1, Part II]) gives access to only
one subgradient at each point, and not to the whole subdifferential. Information about

the relevant subspaces of the VU -decomposition should therefore be built iteratively, in the
process of computing the proximal point. The practical way of computing proximal points is

the bundle method [11, 10, 1]. We next show how this procedure can be used to build a basis
for the V-space at p. Let us first state formally what we mean by the black-box information,

specifically for a convex function f of the form (2.1) :

Given xi ∈ <n (input), an arbitrary index ji in I(xi) is available (in principle, only one).
(3.1)

This information gives one affine function

fji
(xi) + 〈f ′ji

(xi), y − xi〉, y ∈ <n,

which supports the graph of f from below. The bundle method approximates the proximal
point p of x by iteratively computing proximal points of the cutting-plane approximations of

f defined by the previously accumulated affine functions. Specifically, if x0(= x), x1, . . . , xk−1

are the previous iterates, then the k-th iterate is given by

xk = arg min
y∈<n

{

ψk−1(y) +
µ

2
‖y − x‖2

}

, (3.2)

where

ψk−1(y) = max
i=0,1,...,k−1

{

fji
(xi) + 〈f ′ji

(xi), y − xi〉 , ji ∈ I(x
i)

}

, (3.3)

is the cutting-planes model of f . This problem is solved via its quadratic programming (QP)
reformulation

min(y,r)∈<n+1

{

r + µ
2‖y − x‖2

}

s.t. fji
(xi) + 〈f ′ji

(xi), y − xi〉 ≤ r, i = 0, 1, . . . , k − 1.

By the optimality condition for (3.2), it holds that

xk = x−
1

µ
gk, where gk ∈ ∂ψk−1(x

k). (3.4)

Since the model ψk−1 is a convex max-function, its subgradients at xk are convex combinations
of the derivatives of its active pieces at xk , with coefficients given by the multipliers (dual
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solutions) of the QP. Eliminating all the indices corresponding to zero multipliers (including
active ones, if there exist zero multipliers corresponding to active QP constraints), we can

write
gk =

∑

i∈Ĩk

tki f
′
ji
(xi), tk ∈ ∆|Ĩk |

, tk > 0, (3.5)

where

Ĩk =
{

i ∈ {0, 1, . . . , k− 1} : tki > 0
}

⊂
{

i ∈ {0, 1, . . . , k− 1} : ψk−1(x
k) = fji

(xi) + 〈f ′ji
(xi), xk − xi〉

}

.

We note that to ensure convergence, for the (k + 1)-iteration it is sufficient to keep in
the bundle memory only those affine functions that correspond to indices in Ĩk at the k-th

iteration, permanently deleting all the rest (but adding the new affine function computed at
xk). Without introducing this feature explicitly in the analysis, we shall make the following

(related) assumption:

(H) The cardinality of Ĩk, k = 0, 1, . . ., is uniformly bounded in k.

While there is no formal argument to justify this assumption, as a practical matter it is
very natural. In fact, many (active set) QP solvers choose linearly independent bases, i.e.,

work with “minimal” representations. In the representation of gk ∈ <n in (3.5), this means
that QP solver gives a solution such that |Ĩk| ≤ n + 1 (such a solution always exists by the
Carathéodory Theorem). A similar assumption/property for a QP solver had been used, for

a different QP-based method, in [6, Sec. 5].
Our development below relies on the PDG structure of f at x̄ relative to Bε(x̄). For this

reason, we first ensure that iterates do not leave the relevant set.

Proposition 3.1.1. (Localization of the bundle iterates)

Let f be a convex function and let {xk} be a sequence generated according to (3.2)–(3.3), with
x0 = x ∈ Bε(x̄).

Then for every δ ∈ (0, ε) there exists µ̄ > 0 such that if µ ≥ µ̄ and x ∈ Bε−δ(x̄) then
{xk} ⊂ Bε(x̄).

Furthermore, if f satisfies at x̄ the nondegeneracy condition (2.5) then

I(xk) ⊆ I(x̄) = I(pµ(x)) for all k. (3.6)

Proof. For any index k, the cutting-plane model ψk given in (3.3) has the same Lipschitz

constant as f , say L > 0. Since, by (3.4), gk = µ(x − xk) ∈ ∂ψk−1(x
k), this means that

µ‖xk − x‖ ≤ L for all k. Hence,

‖xk − x̄‖ ≤ ‖xk − x‖ + ‖x− x̄‖ ≤
L

µ
+ ε− δ,

and the assertion follows taking µ ≥ µ̄ = L/δ.
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The inclusion in (3.6) follows from the continuity of the structure functions, while the
equality is a consequence of (2.5) (see (2.6)).

From now on, the prox-parameter µ > 0 is assumed to be sufficiently large to ensure that
{xk} ⊂ Bε(x̄) and (3.6) holds. Therefore, any bundle index ji ∈ I(xi) belongs to the set

I(x̄) = {0, 1, . . . , m1}. For each k, we define the “accumulation” of the simplicial multipliers
in (3.5), corresponding to the same structure function fl as follows:

qk
l =

∑

i∈Ĩk ; ji=l

tki , l = 0, 1, . . . , m1. (3.7)

(We formally set the result of summing up over an empty set to be 0.) Clearly, these

multipliers satisfy
qk := (qk

0 , . . . , q
k
m1

) ∈ ∆m1+1 for all k.

The following result concerns asymptotic approximation of the specific subgradient µ(x−p) ∈

∂f(p), p = pµ(x), by the sequence {gk} produced by the bundle procedure.

Proposition 3.1.2. (Asymptotic behaviour of the bundle procedure)

Let f be a convex function of the form (2.1) and assume that it satisfies at x̄ the nondegeneracy
condition (2.5).

Let a sequence {xk} be generated according to (3.2)–(3.3), and let p = pµ(x). Then for
all k ≥ 0 there exist τi ∈ [0, 1], i ∈ Ĩk, such that

∑

i∈Ĩk

tki 〈f
′′
ji
(xi + τi(p− xi))(p− xi), p− xi〉 → 0 as k→ ∞, (3.8)

gk =

m1
∑

l=0

qk
l f

′
l (p)−

∑

i∈Ĩk

tki

∫ 1

0
f ′′ji

(xi + θ(p − xi))(p− xi)dθ→ µ(x− p) as k→ ∞. (3.9)

Proof. As is well known (e.g., [3, Prop. 4.1]), for iterates generated by the bundle procedure

it holds that ψk−1(x
k) ↗ f(p) and xk → p as k → ∞. Therefore, taking into account also

that the sequence {gk} is evidently bounded (by (3.4) and Proposition 3.1.1), we deduce that

lim
k→∞

(

ψk−1(x
k) + 〈gk, p− xk〉

)

= f(p). (3.10)

By the definition of Ĩk, and since tk ∈ ∆|Ĩk |
, we have that

ψk−1(x
k) =

∑

i∈Ĩk

tki (fji
(xi) + 〈f ′ji

(xi), xk − xi〉).

Together with (3.5), this gives

ψk−1(x
k) + 〈gk, p− xk〉 =

∑

i∈Ĩk

tki (fji
(xi) + 〈f ′ji

(xi), xk − xi + p− xk〉)

=
∑

i∈Ĩk

tki (fji
(xi) + 〈f ′ji

(xi), p− xi〉). (3.11)
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By the Mean-Value Theorem, for each i ∈ Ĩk there exists τi ∈ [0, 1] such that

fji
(xi) + 〈f ′ji

(xi), p− xi〉 = fji
(p) −

1

2
〈f ′′ji

(xi + τi(p− xi))(p− xi), p− xi〉

= f(p)−
1

2
〈f ′′ji

(xi + τi(p− xi))(p− xi), p− xi〉,

where we have used that fji
(p) = f(p) (By (2.6) and the fact that, by Proposition 3.1.1, we

have that ji ∈ I(p) for all i ∈ Ĩk and all k ≥ 0).
Combining now the latter relation with (3.11), we obtain that

ψk−1(x
k) + 〈gk, p− xk〉 =

∑

i∈Ĩk

tki (f(p)−
1

2
〈f ′′ji

(xi + τi(p− xi))(p− xi), p− xi〉)

= f(p)−
1

2

∑

i∈Ĩk

tki 〈f
′′
ji
(xi + τi(p− xi))(p− xi), p− xi〉,

where we have used again that tk ∈ ∆|Ĩk |
. Relation (3.8) now follows from (3.10).

By the Mean-Value Theorem (for vector functions), for each i ∈ Ĩk we can also write

f ′ji
(p) = f ′ji

(xi) +

∫ 1

0
f ′′ji

(xi + θ(p− xi))(p− xi)dθ.

Then, using (3.5), we have that

gk =
∑

i∈Ĩk

tki

(

f ′ji
(p)−

∫ 1

0
f ′′ji

(xi + θ(p− xi))(p− xi)dθ

)

=

m1
∑

l=0

qk
l f

′
l (p) −

∑

i∈Ĩk

tki

∫ 1

0
f ′′ji

(xi + θ(p− xi))(p− xi)dθ.

Since xk → p as k → ∞, from (3.4) we have that gk = µ(x − xk) → µ(x − p), and (3.9)
follows.

Until now our analysis did not require any assumptions on the structure functions fj other
than twice continuous differentiability. For our main result, concerning the construction of

a basis for the subspace V by means of the active bundle gradients, we assume that each
structure function is either quadratic or its Hessian is positive definite (on the set of interest).

Theorem 3.2. (Asymptotic determination of the V-space)
Let f be a convex function of the form (2.1), and suppose that it satisfies at x̄ the nondegen-

eracy condition (2.5) and the strong transversality condition (2.2). Suppose further that each
structure function fj, j = 0, 1, . . . , m1, is either quadratic or its Hessian is positive definite

on the relevant set Bε(x̄). Assume, finally, that the hypothesis (H) is satisfied.
Then the representation (3.5) for gk (output of the bundle procedure) provides asymptot-

ically a particular basis of the V-space at p = pµ(x) (thus, implicitly, also of the U -space at

p), in the sense that
V(p) = lin{vl/sl − v0/s0, l = 1, . . . , m1},

9



where

vl = lim
k→∞

∑

i∈Ĩk ; ji=l

tki f
′
ji
(xi), 0 < sl = lim

k→∞

∑

i∈Ĩk ; ji=l

tki , l = 0, 1, . . . , m1.

Proof. Let x ∈ <n be sufficiently close to x̄ and µ > 0 be sufficiently large, so that the

assertions of Propositions 3.1.1 and 3.1.2 hold.

As already noted,

gk =
∑

i∈Ĩk

tki f
′
ji
(xi) → µ (x− p) ∈ ri∂f(p),

where the inclusion holds by Lemma 2.1.1 (under the nondegeneracy condition (2.5), for x
close enough to x̄). Taking now into account (2.3), that holds under the strong transversality

condition (2.2), we have that

µ(x − p) =

m1
∑

j=0

sjf
′
j(p), s ∈ ∆m1+1, s > 0, (3.12)

where the “simplicial” multiplier vector s > 0 is uniquely defined.
The key idea is to show that the contribution of gradients of all those pieces i ∈ Ĩk that

are active at the (unknown) proximal point p, is present and “asymptotically positive” in
the representation of gk in (3.9). Specifically, with the notation of (3.7), the sequence {qk

l }

converges to a strictly positive number for each l = 0, 1, . . . , m1, while the second term in
(3.9) vanishes.

Since, by the convexity of all structure functions fj , the matrices f ′′j (·) are positive semidef-
inite, we have that all the terms in the sum in (3.8) of Lemma 3.1.2 are nonnegative. Since

the sum tends to zero, it then follows that each of those terms tends to zero:

∀ i ∈ Ĩk, 0 = lim
k→∞

tki 〈f
′′
ji
(xi + τi(p− xi))(p− xi), p− xi〉. (3.13)

We next show that

∀ i ∈ Ĩk, 0 = lim
k→∞

tki

∫ 1

0
f ′′ji

(xi + θ(p− xi))(p− xi)dθ. (3.14)

For i ∈ Ĩk such that limk→∞ tki = 0, the relation in (3.14) is obvious (since the other
term in the product is evidently bounded).

Consider now i ∈ Ĩk such that lim infk→∞ tki > 0. For such i, the relation (3.13) implies
that

〈f ′′ji
(xi + τi(p− xi))(p− xi), p− xi〉 = 0. (3.15)

For each j ∈ {0, 1, . . . , m1} such that j = ji, i ∈ Ĩk, occurs infinitely often, we next
consider separately the case when fj is quadratic and the case when the Hessian of fj is
positive definite.

10



Case 1 (fji
(·) is quadratic). Let

fji
(x) =

1

2
〈Aji

x, x〉+ 〈aji
, x〉+ cji

,

where cji
∈ <, aji

∈ <n and Aji
is an n × n symmetric positive semidefinite matrix. Since

f ′′ji
(·) = Aji

, we obtain from (3.15) that

〈Aji
(p− xi), p− xi〉 = 0,

which means that p− xi is a minimizer of the nonnegative quadratic form 〈Aji
y, y〉, y ∈ <n.

Hence, its gradient is zero at this point:

2Aji
(p− xi) = 0.

Recalling again that f ′′ji
(·) = Aji

, this implies (3.14).
Case 2 (f ′′ji

(·) is positive definite). Under this assumption, we immediately obtain from
(3.15) that

p− xi = 0,

which again implies (3.14).

Recalling now that |Ĩk| is uniformly bounded (assumption (H)), and summing up (3.14)
for all i ∈ Ĩk , we obtain that

0 = lim
k→∞

∑

i∈Ĩk

tki

∫ 1

0
f ′′ji

(xi + θ(p− xi))(p− xi)dθ,

i.e., the second term in (3.9) asymptotically vanishes, and we have that

µ(x− p) = lim
k→∞

gk = lim
k→∞

m1
∑

l=0

qk
l f

′
l (p). (3.16)

As the multiplier s in (3.12) is unique, it then follows from (3.16) and (3.12) that

lim
k→∞

qk
l = sl > 0, l = 0, 1, . . . , m1. (3.17)

Moreover, using the Mean Value Theorem, (3.17) and (3.14), we have that for all l =

0, 1, . . . , m1, it holds that

slf
′
l (p) = lim

k→∞
qk
l f

′
l (p)

= lim
k→∞

∑

i∈Ĩk ; ji=l

tki f
′
ji
(p)

= lim
k→∞





∑

i∈Ĩk ; ji=l

tki

(

f ′ji
(xi) +

∫ 1

0
f ′′ji

(xi + θ(p− xi))(p− xi)dθ

)





= lim
k→∞

∑

i∈Ĩk ; ji=l

tki f
′
ji
(xi) = vl.

Given that V(p) = lin{f ′l (p)− f ′0(p), l = 1, . . . , m1}, and taking into account that sl > 0 for

all l = 0, 1, . . . , m1, this verifies our claim.

11



4 Numerical benchmark on max-type functions

In order to assess from a practical point of view the theoretical statement of Theorem 3.2,

we hereby present some numerical results on a collection of functions having the form (2.1).
We consider 180 randomly generated functions, which are all defined as pointwise maxima

of a finite collection of convex quadratic functions. The test-set is defined in such a way that

– for each problem the minimum is attained at x̄ = 0 ∈ <n ;

– strong transversality (2.2) and nondegeneracy (2.5) are satisfied at x̄.

We have performed numerical tests using seven different variants of the stopping rules

for approximating the proximal point. The results are reported in a form of tables and
performance profiles for different criteria, including accuracy and number of iterations.

4.1 Generating Strongly Transversal Structured Functions

We have used the test-set in the max-quad family created in [8]1, with test functions defined
as pointwise maximum of a finite collection of quadratic functions:

f(x) := max

{

fj(x) :=
1

2
〈Ajx, x〉+ 〈aj , x〉+ cj , j = 0, 1, . . . , m

}

, (4.1)

where Aj are (n×n)-positive definite matrices, aj ∈ <n and cj ∈ <. This family of functions

belongs to the class considered in (2.1) and allows to create many different examples by choos-
ing the dimension of the space n, the number of structure functions m, and then randomly
generating m objects Aj , aj and cj (determining the structure functions). In this setting,

taking x̄ = 0 ∈ <n and fixing the dimension m1 of the V(x̄)-space, we have (reordering indices
if necessary) that

f(0) = cj = C for j = 0, 1, . . .m1, cj < C for j = m1 + 1, . . . , m,

∂f(0) = conv{aj : j = 0, . . . , m1}.

If the random vectors aj , j = 0, . . . , m1, are generated so that they are affinely independent

and
∑m1

j=0 t̄jaj = 0 for some t̄ > 0, then conditions (2.2) and (2.5) are satisfied.
For comparison purposes, we generate problems for which the proximal point p and the

V-space at p are computed a priori. We proceed as follows. For each function, we start by
fixing the desired proximal point to be a small vector p, close enough to x̄ = 0, and satisfying

(2.6). We then set the proximal parameter µ = 1.01L + 1, for the Lipschitz constant

L = max{‖Aj‖ : j = 0, 1, . . . , m}.

Having this information, we take as starting point of the iterative process

x = x0 = p+
1

µ
γ for γ ∈ conv{Ajp+ aj : j = 0, . . . , m1}, (4.2)

1The authors wish to thank Warren Hare for providing the starting matlab blocks for the max-quad family
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a choice equivalent to having p = pµ(x0). We further set the values of ε and δ (cf. Propo-
sition 3.1.1) equal to ‖x0‖ and ‖x0‖/2, respectively, and we check whether µ ≥ 2L/‖x0‖

(which guarantees that Proposition 3.1.1 holds true). If this is not the case, the value of µ is
increased and the process is repeated, until the desired relation holds.

For our benchmark, we use 9 different combinations of the values of n, m and m1, and
randomly generate 20 test functions for each combination. All components of the matrices
Aj , vectors aj and scalars cj are chosen randomly within the interval [−100, 500]. The values

of n, m and m1 are reported in Table 1, as well as the average values of µ and the maximum
number of iterations allowed in the corresponding runs.

Combination # 1 2 3 4 5 6 7 8 9

n 5 5 20 20 20 50 50 100 100

m 4 4 10 20 20 15 60 30 30
m1 = dimV(p) 3 1 3 3 15 8 8 5 25

µ 6129 5310 5456 13193 12642 15599 14067 18875 17187

MaxBB 100 100 300 300 300 400 400 400 400

Table 1: Some relevant data of the test-set

In our runs, only active bundle elements are kept at each iteration. Hence, in (3.3) the
cutting-planes model is defined by taking the maximum of the affine functions for i ∈ Ĩk−1.

The quadratic program (3.2) is solved by the built-in matlab QP solver.

4.2 Assessing solution quality

In order to determine the quality of the VU-subspaces obtained from the objects computed
by the bundle technique, we use four different criteria.

4.2.1 Prox accuracy.

The first measure is the one from [8], and is based on the knowledge of the exact proximal
point p = pµ(x0). More precisely, let xbest denote the point triggering the stopping test of

the analyzed variant at the iteration kbest. Then the formula

AC := − log10

(

‖xbest − p‖

1 + ‖p‖

)

(4.3)

measures the accuracy in computing the actual proximal point. (Adding the term 1 to ‖p‖

in the numerator of (4.3) measures the absolute accuracy when ‖p‖ is small and the relative
accuracy otherwise – in our case p is close to x̄ = 0). On this semi-log scale, a positive number

(roughly) represents the number of digits of accuracy obtained with the variant.

4.2.2 V-approximation

The next two measures estimate the quality of the estimated V-subspace, where we use the
short notation V to refer to V(p). An important point arises in relation to the amount of
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knowledge made available by the black-box. For the max-quad family, the black-box (3.1)
gives as its output an index ji ∈ {0, 1, . . . , m}, corresponding to some structure function

yielding the maximum.2

As a result, knowing the structure functions fj , after each call to the black-box

- the function value f(xi), and

- a subgradient γi ∈ ∂f(xi)

are available, via the relations f(xi) = fji
(xi) and γi = f ′ji

(xi). In fact, the cutting-planes

models (3.3) can be built solely based on the pairs (f(xi), γi). No additional knowledge (such
as the identities f(xi) = fji

(xi) and γi = f ′ji
(xi) = Aji

xi + aji
, or the number of active

structure functions m1 + 1) is used by the algorithm to define the iterates in (3.2). The
actual knowledge of the different indices ji is used only to approximate the vectors vl/sl, l =
0, 1, . . . , m1, (in the notation of Theorem 3.2) that estimate a basis for V . Specifically, keeping

in the bundle memory the structure indices ji allows to build the vectors

wk
l :=

∑

i∈Ĩk ; ji=l t
k
i f

′
ji
(xi)

∑

i∈Ĩk ; ji=l t
k
i

(4.4)

that asymptotically tend to vl/sl, l = 0, 1, . . . , m1.
For other classes of functions, however, the corresponding black-box may only provide

f(xi) and γi ∈ ∂f(xi), but not the index ji. In such cases, when full structure knowledge
is not available, one can still build bundle iterates {xk} that approximate the proximal
point. Whether or not one can still approximate the V-space remains an open theoretical

question. A purely practical answer to this question would be to estimate V by replacing
the unknown vectors wk

l by the subgradients γi provided by the black-box. Note that, by

(3.17), for k sufficiently large the accumulated multipliers qk
l are all positive. This means, in

particular, that for each l ∈ {0, 1, . . . , m1} there is a bundle index il such that tkil > 0 and

f ′ji
l

(xil) = f ′l (x
il). Hence, from some iteration on, all the relevant structure gradients are

present in the bundle. This remark justifies the variant Vγ below as an alternative approach,
reasonable but heuristic, to estimate the V-subspace.

We outline next two alternative approaches to compute V , called Vw and Vγ . We empha-
size that the developed theory covers the Vw variant, while Vγ is a heuristic.

At the final iteration kbest, the final active bundle indices Ĩkbest, defining gkbest in (3.5),

are available. The two alternative variants are the following.

Vw: Compute the vectors wkbest
l , given by (4.4), for all l ∈ Lbest, where

Lbest :=
{

l ∈ {0, 1, . . . , m1} : ∃i ∈ Ĩkbest for which ji = l
}

.

Take l1 ∈ Lbest and form a matrix V best
w such that

the columns of V best
w span the space lin

{

wkbest
l − wkbest

l1
, l ∈ Lbest \ {l1}

}

.

2In our runs, iterates stay in the ball Bε(x̄) defined in Proposition 3.1.1, so in fact the output indices belong
to the subset {0, 1, . . . ,m1}.
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Vγ : Take i1 ∈ Ĩkbest and form a matrix V best
γ such that

the columns of V best
γ span the space lin

{

γi − γi1, i ∈ Ĩkbest \ {i1}
}

.

Matrices V best correspond to a basis of the subspace V(xbest), and the respective rank gives
the approximate V dimension. As for the U -subspace, in both cases we take

Ubest = (V best) ⊥ .

Accordingly, the U -component of gk is given by gk
U = (Ubest) >gk, with k = kbest.

Our second measure of the quality of approximation computes the relative error in the
V-dimension:

RE :=
dimV − dimV(xbest)

dimV
. (4.5)

Note that a negative (respectively, positive) value of RE indicates an under (respectively,

over) estimation of the exact V-dimension.
A third measure, computed only if dimV = dimV(xbest), refers to the orthogonality of

the relevant subspaces, in terms of absolute errors:

AE := max
(

‖V >Ubest‖, ‖U>V best‖, ‖Ubest>V ‖, ‖V best>U‖
)

, (4.6)

where the matrices V and U represent the exact subspaces V and U , respectively. Specifically,

the columns of V span the space lin
{

f ′j(p) − f ′0(p), j = 1, . . . , m1

}

,

and U = V ⊥.

4.2.3 Quality of bundle approximation

We can also check closeness of variants Vγ and Vw, by measuring how well the final active
bundle subgradients γi, i ∈ Ĩkbest, approximate the accumulated vectors wkbest

l . At the

final iteration, the accumulated multipliers qkbest
l , l ∈ Lbest, are compared with the convex

coefficients solving the linear system

[

f ′0(p) . . . f ′m1
(p)

1 . . . 1

]

q̄ =

(

µ(x0 − p)

1

)

.

The corresponding measure is

CF := ‖qkbest − q̄‖∞. (4.7)

Finally, when the stopping test is triggered we also count those indices of relevant structure

functions that are absent in the final active bundle:

HM := |{0, 1, . . . , m1} \Lbest| . (4.8)

For the approximation to be good, we expect these two last measures to be small or null:
CF ≈ 0 and HM = 0.
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4.3 Variants composing the benchmark

We consider four variants of rules for stopping iterations.

Serious-step stopping test. This is the classical descent test in bundle methods,

which stops iterations of approximating the proximal point pµ(x0) once sufficient de-
crease with respect to f(x0) is achieved:

f(xk)− f(x0) ≤ σ̃
(

f(x0) − ψk−1(x
k)

)

.

In our experiments, we take σ̃ = 0.99 (bundle methods usually employ smaller values

for this Armijo-like parameter, for example σ̃ = 0.1; we set a higher value here to
strengthen the test). We refer to this variant as Ser99. At the final iteration, the V

subspace is estimated with variant Vw.

VU-stopping tests. Similarly to [22], the iteration process stops when

f(xk) − ψk−1(x
k) ≤ σ‖gk

U‖
2,

for some σ ∈ (0, 1). For σ = 10−4, we use Uw and Uγ and refer to the respective
variants as VU-w and VU-γ. At the final iteration, the V subspace is estimated with

the corresponding variant, namely Vw or Vγ .

MaxBB-stopping test. The iteration process stops after the black-box was called

k =MaxBB times, with MaxBB given in Table 1. We shall refer to this variant as MaxBB.
At iteration MaxBB, the V subspace is estimated with variant Vw.

The last stopping rule, in particular, is meant to test the asymptotic convergence result
in Theorem 3.2. As such, it is expected to give the best performances.

4.4 Tables and Performance Profiles

Using formulæ (4.3)-(4.8), we calculated the corresponding measures for each test run on all
the variants. In Table 2 we report the smallest, the mean and the largest values obtained for

measures (4.3), (4.5), and (4.6) (for each test set and each variant), as well as the average

AC RE AE BB Bad
Variant min mean max min mean max min mean max mean Run

Ser99 0.00 2.61 6.16 0.00 0.72 0.96 0.00 0.00 0.07 2 160

VU-γ 6.11 8.15 10.25 0.00 0.00 0.00 0.00 0.00 0.00 44 15
VU-w 6.11 8.15 10.25 0.00 0.00 0.00 0.00 0.00 0.00 44 15
MaxBB 6.11 8.43 10.26 0.00 0.00 0.00 0.00 0.00 0.00 300 0

Table 2: Accuracy (AC) obtained in Prox, Relative Error (RE) in V-dimension, Absolute
Error (AE) in VU -orthogonality, number of Black-Box (BB) calls, and Failures.
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number of calls of the black-box (“BB mean”) and the number of failures (“Bad Run”),
either by false positives -finding a wrong V-dimension after triggering the stopping test-, or

by reaching the maximum of iterations.
In terms of accuracy of the approximate proximal point, results are very good for VU-

γ and VU-w. As expected, the highest accuracy was obtained with the MaxBB variant,
reflecting the asymptotic result stated in Theorem 3.2. By contrast, the Ser99 variant
always stopped at the second iteration and gave rather poor performances in all runs (we

had set a minimum of 2 iterations at each run, and this stopping test was always triggered
at this minimum). Since in all runs the results obtained with Ser99 correspond to x2, the

corresponding mean accuracy can be taken as an indication of the average number of exact
digits already present in the starting point x0.

In terms of quality of the V-approximation, Ser99 failed 160 out of 180 cases in finding
the exact V-dimension. The remaining variants, by contrast, exhibit a high level of precision,

and at least for these runs, both VU-stopping tests seem to offer a good compromise between
number of calls to the black-box and accurate estimation of the V-subspace. In fact, both

variants VU-γ and VU-w gave practically identical results. Over the 180 runs, they always
stopped at the same iteration, differing only in the V-basis estimation. Both variants stop
after an average of 44 iterations, having found the exact dimension of the subspace V = V(p),

with very similar bases V best
w , V best

γ . An explanation for the practically identical behaviour
of variants VU-w and VU-γ is that, in our experiments, at the final iteration we have that

|Ĩkbest| = dimV+1, and for each l = 0, . . . , m1,

{i ∈ Ĩkbest : ji = l} = {il} =⇒ qkbest
l = tkbest

il
and wkbest

l = f ′jil

(xil).

In other words, the active bundle information proves to be rather economical, keeping only

one structure gradient per index l = 0, . . . , m1.
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Figure 1: Performance Profile of prox-accuracy

To show in a graphical manner the degree of precision obtained by each variant, we also
present some performance profiles. The performance profile in Figure 1 uses the scale (4.3)
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to plot the AC value on the x-axis versus the portion of tests which successfully achieved
this value on the y-axis. Hence, the location where a profile first decreases from the y value

1 describes the gain in accuracy the variant achieved on every problem, while the location
where a profile first obtains a y value of 0 yields the best gain in accuracy achieved using that

variant. More generally, variants whose profiles are “higher” have out-performed algorithms
with “lower” profiles.

We see in Figure 1 that both VU variants obtained at least 6 digits of accuracy in all

the runs. Since starting points were taken “close enough” for our (local) results to hold, we
analyze a posteriori the initial distance to the smooth manifold M. Thus, for each one of the

180 starting points, we checked how many structure functions were active. We observed that
only 3 starting points satisfied I(x0) = I(p), namely 2 and 1 starting points in combinations

# 2 and # 3, respectively.
To determine the impact of the locality ball Bε(x̄), we made an additional test, performing

again 180 runs with the same functions, this time eliminating the checking of closeness of x0

to p. Since by (4.2), ‖x0 − p‖ = γ/µ, for the same γ and p considered in each one of the

first 180 runs, we set µ = 1 to “push” the new starting point away from the smooth manifold
(in about a factor 10000 with respect to the previous runs, cf. Table 1). The corresponding
results are highly instructive: out of the 180 functions considered, variant VU-w succeeded

finding the exact V-dimension for only 4 cases. Moreover, after having spent an average
of 185 calls to the black-box, neither of the VU variants reached more than two digits of

accuracy in the prox calculation.
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Figure 2: Performance Profile of relative error in V-dimension

With respect to the relative error in V-dimension, measured by the RE quotient in (4.5),

we observe in the performance profile in Figure 2 that variant Ser99 found the exact dimen-
sion in about 10% of the runs, while the VU variants succeeded in all the cases. This last

result, in particular, means that the “Bad run” column in Table 2, showing 15 failures for the
VU variants, corresponds to failures in triggering the stopping test before reaching MaxBB,

and not to failures in finding the exact V-dimension.
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Figure 3: Performance Profile of absolute error in VU-orthogonality

Figure 3 assesses once more the excellent performance of the VU-variant. For this Per-
formance Profile, only successful runs (for which RE = 0) were considered, and this is the

reason why 0.11 (≈ (180−160)/180) instead of 1 is the maximum value reached by the Ser99
variant in the y axis.

Results using measures (4.7) and (4.8) again show that VU-γ and VU-w are comparable.
In all the 180 cases HM = 0, with an average value of CF = 0.02.

Since the bundle scheme incorporates the knowledge of only 1 subgradient at each iter-

ation, at the very least 1 + dimV iterations are needed for having any hope of getting the
right V-dimension. We computed the relation between the number of calls to the black-box

and the dimension of the V-space, again averaging only over the cases where the stopping
test was triggered and the right V-dimension was found:

BBcalls− 1− dimV

1 + dimV
.

We found that VU-w needed in average 8 iterations per structure gradient, so higher V-

dimensions may require a high number of iterations to yield satisfactory estimations. It could
then be thought that for higher dimensions a standard bundle method, like the code n1cv2

derived from [14], might be preferable. The computational work of n1cv2 per iteration is
comparable to the variant Ser99 (is actually slightly cheaper, as Ser99 has the additional

linear algebra calculations to compute the matrices V best and Ubest). A VU-method, like
the one in [22], is more expensive, as it solves a second quadratic programming problem per

iteration to make the U -Newton step. In spite of this apparent handicap, it is important to
keep in mind the fact that standard bundle solvers tend to exhibit slow (linear or even sublin-

ear) rate of convergence when approaching the solution. A graph comparing the superlinear
convergence of the VU-algorithm with the sublinear convergence of n1cv2 (which is one of
the most efficient bundle solvers) can be found in [22, Figure 1]. When high precision is of

interest, instead of making insignificant progress with many cheap iterations, it is preferable
to spend more effort per iteration to progress fast, using the VU -approach. Also, when close
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to a solution, the accumulated bundle is usually rich enough to allow good approximation of
the proximal point, needed in the VU -approach, at a reasonable price.
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[19] R. Mifflin and C. Sagastizábal. Proximal points are on the fast track. Journal of
Convex Analysis, 9:563–579, 2002.
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