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Abstract. Lagrangian relaxation is useful to bound the optimal value of a given optimization
problem, and also to obtain relaxed solutions. To obtain primal solutions, it is conceivable to
use a convexification procedure suggested by D.P. Bertsekas in 1979, based on the proximal
algorithm in the primal space.

The present paper studies the theory assessing the approach in the framework of com-
binatorial optimization. Our results indicate that very little can be expected in theory, even
though fairly good practical results have been obtained for the unit-commitment problem.
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1. Introduction, Motivation

This paper is motivated by a practical application: the unit-commitment prob-
lem, more precisely to optimize the generation schedules of the set of electrical
power plants in France. Such a problem is usually solved through duality ([2,
12], see also [7,13] for additional references). After solving the dual comes the
question of recovering a primal feasible solution, possibly suboptimal. An idea
is to add in the production cost a quadratic term penalizing the deviation from
the relaxed solution, obtained by dual means. This can give fairly good practical
results, reported elsewhere: [5].

Our aim here is to study theoretically this approach, with emphasis on com-
binatorial problems lending themselves to Lagrangian relaxation. To this aim,
we consider first the general optimization problem

inf f(z), z€R". (1.1)

In this simplified notation, possible constraints are incorporated into f via the
indicator function (0 on the feasible set, +0o outside). We have particularly in
mind discrete optimization, say

ming(z), Az >ceR™, ze€Z:={x1,...,2x} (1.2)

(where we could have a linear objective function g(z) = b'z); in this case f of
(1.1) is

g(z) f Az >cand z € Z,
+oo otherwise.

@)= { (13)
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Our aim is to study for such problems a convexification procedure introduced
by D.P. Bertsekas in [1], based on the (primal) proxzimal algorithm.

1.1. The General Idea: Moreau Envelope

The basic idea of this procedure is to introduce the intermediate function

fr(@,y) = f@) +rllz -yl (1.4)
where r > 0 and y € R” is an additional variable, and to set
or(y) == inf {f.(z,y) 1z € R*}. (1.5)

Usually, ¢, is called the Moreau-Yosida regularization of f, originally assumed
to be convex; for more general functions f see [16], where ¢, is called the Moreau
envelope. Let us mention some intuitive facts, which will be stated more precisely
in §1.3 below. Minimizing f (with respect to z) is “equivalent” to minimizing
fr (with respect to (x,y)), which in turn is “equivalent” to minimizing ¢, (with
respect to y); and this amounts to finding y* such that f.(-,y*) attains its
minimum at the point z = y*. In other words, minimizing f can be viewed
as finding a fixed point of the so-called prozimal mapping y — Argmin f,.(-,y).
This is the motivation for the proximal algorithm, which computes yii+1 by
minimizing f,(-, yg)-

Such a mechanism sounds highly artificial (why not set r = 0!). However
observe that f,.(-,y) is “more convex” (for fixed y) than f and its minimization
might therefore be easier. Now if ¢, is “sufficiently convex”, then its minimiza-
tion may be easy as well. Observe, incidentally, that the minimization of ¢, is
an unconstrained problem (p, is +00 nowhere — unless f = +00).

Keeping in mind the good results reported in [5], an interesting question is
then whether the above approach (heuristic anyway) can be assessed by some
theory. In a way, the present paper brings a negative answer to this last point.
In the next subsection we give a flavor of our main results.

1.2. Content of the paper

Subsections §1.3 and §1.4 contain some general properties of ¢, and its minimum
points, in the abstract case (1.1). Under mild assumptions, the local [global] min-
ima of f coincide with the local [global] minima of ¢,.. The proximal algorithm
decreases the value f(yi) by a definite amount at each iteration (implying in
particular that each yy, is feasible) and its cluster points are fixed points of the
proximal mapping.

In the rest of the paper we focus our attention on (1.2), assuming first in §2
that ¢, can be computed exactly. Then the situation is not bad. Local minima
of ¢, coincide with fixed points of the proximal mapping. The proximal mapping
stops at a local minimum of ¢,., which is
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— an optimal solution of (1.2) if r is small enough,
— or an arbitrary feasible point of (1.2) if r is large enough.

However, minimizing f.(-,y) is normally as difficult as minimizing f. We
therefore consider in §3 the case where ;. has to be approximated via Lagrangian
relaxation. Still considering (1.2), call

= - ; 2 T

Pr(y) = max mip { g(z) +rllz —yl* = AT (A2 — )} (1.6)
the value obtained by minimizing f,(-,y) through Lagrangian relaxation (note
that @, < ¢, because of the weak duality). The study of ¢, involves substantial
technicalities; here we give a superficial and informal description of our results.

Lagrangian relaxation is known to convexify Z in (1.2). Its effect on the
(nonlinear) objective function of (1.6) is more complex; in fact it is possible to
construct a function (which will be denoted by ~, in §3.2) making it possible to
express ¢, as a min-function, just as .. To understand what -y, is, assume a
linear problem: g(z) = "z in (1.2) and look at Fig. 1.1.

§(z)]

r1 T T2 T3

Fig. 1.1. Convexification of the squared norm over Z := {z1,z2,z3}

The lower curve of Fig. 1.1 represents the squared norm ||z||>. The upper
polygonal line represents the largest convex function whose value at each z € Z
is lower than [|z]|? (in other words: the convex hull of the sum ||z]|?> + indicator
function of Z). Defining the function §(z) to be the difference between the two,
g(z) =b"z in (1.6) can be replaced by b"z + ré(z); in other words,

Gr(y) =min {b" 2z +ré(z) + 7|z —y||* 1z € c0Z, Az > c}. (1.7)

Remark 1.1. Because the squared norm is convex, d(z) > 0 for all z: the objective
function of (1.7) is larger than in the original Lagrangian relaxation

min{b'z:2 €coZ, Az > c}. (1.8)

Besides § is 0 on Z — at least when ¢ is linear. This has two consequences.

(i) The Moreau-Yosida regularization does reduce the duality gap, even in the
bad cases where it merely reproduces a solution of (1.8); see a) below; such
a solution will be denoted by z. in the sequel. However, this property is of
little use unless the global minimal value of @, is known.



4 A. Daniilidis, C. Lemaréchal

(ii) The feasible polyhedron in (1.8) has two kinds of extreme points: those in Z
and “parasitic” ones, not lying in Z. The extra term §(z) in (1.7) attracts
the minimizers toward Z. Replacing ¢, by ¢, is better than merely applying
the Moreau-Yosida regularization to (1.8). o

Having thus put ¢, in a form amenable to our framework, we can study the
variant yr4+1 = Z(yx) of the proximal algorithm, where Z(y) is a primal solution
of (1.6) or (1.7) (assumed to be computable). Note, however, that the Moreau-
Yosida regularization is applied to the function b" 2 + ré(z), which depends on
r; this entails further technicalities. Note also that §2 does not apply since the
feasible set in (1.7) is not finite.

The situation is now much less favourable than in §2. The sequence y; has
at least one cluster point, say y*, which is a priori a local minimum of ¢,., and
therefore of b"z + rd(x) as well. Then several cases may occur:

a) If r is small, then y* may be an optimal solution z. of the relaxed problem
(1.8).

b) If r is large, then y* may be any feasible point in (1.2).

c¢) It may happen that y* € Z. Then we are roughly in the situation of §2: y*
is a local minimum of ¢,..

Finally, observe another deficiency of the implementable variant: nothing
guarantees that the sequence g(yi) of objective values is monotone decreasing.

1.8. General Properties of the Moreau Envelope

Before specializing to discrete optimization problems, we give here a few general
results relating the minimization of f and of ¢,.

Lemma 1.2. The following general properties hold.
(i) For all y € R", the function r — ¢,.(y) is nondecreasing.
(ii) or(y) < fy) for ally € R™ and all r > 0.
Assume that f is lower semicontinuous and bounded from below. Then:
(141) if yo is a local minimum of p, then x = yo is the unique minimum point
of fr(-y0) in (1.5). In particular ¢r(yo) = f(yo);
(1v) local minima of @, are also local minima of . for r' >r.

Proof. (i) Obviously, f.(z,y) in (1.4) is a nondecreasing function of r and this
property is transmitted to the infima.

(ii) Just observe that ¢r(y) < fr(y,y) = f(y)-

(iii) Let y = yo in (1.5). Then our assumption implies that the infimum is
attained at some xy. Now for any y close to yo, we can write

F(xo) +rllyo — zoll* = ¢r(yo0) < r(y) < fl@o) +rlly — zoll”,
hence ||yo — 2o]|?> < ||y — zo||>. Take in particular y = yo — t(yo — o), so that
y—x0 = (1—1)(yo—z0)- Then ||yo — zo||* < (1—1)?||yo —x0l|?. This is impossible
if [|yo — ol|* > 0 and ¢t € (0,2), hence ||yo — zo||* = 0.
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(iv) Using (i), we have for a local minimum yq of ¢,:

©r(y) = or(y) = or(yo) for y close to yo ;

but from (iii) and (ii), ¢~ (yo) = f(yo) = ¢+ (yo), which completes the proof. O

Remark 1.3. In these results, (iii) is the most important. An alternative proof
can be given as follows. Being a min-function, ¢, is usually not differentiable:
the concept of derivative, or gradient, is then replaced by that of directional
derivatives:

, oy +td) — o (y)
. (y,d) == ltlfol , ,

for given d € R™ .

Now a well-known formula (due to J.M. Danskin in [4]) says that, under
appropriate assumptions on f,., the directional derivative of functions given by
(1.5) exists and has the expression

¢\ (y,d) = min {d' V, f,(z,y) : = minimizes f.(-,y)}. (1.9)

Here V, fr(z,y) = 2r(y — z) is the partial derivative of f, with respect to y. In
plain words: when moving from y to y + td (¢ > 0 small), the marginal change
of ¢, is the smallest scalar product of d with the partial derivatives of the
minimand, computed at all the minimizing x’s. For a local minimum, this change
must be nonnegative: ¢! (y,d) > 0 for any d € R*, i.e. d' V, f,(z,y) > 0 for any
minimizing z and any d € R". This just means V, f,(z,y) = 2r(y —x) = 0, i.e
x = y for any z minimizing (1.4). a

Lemma 1.2 (iii) suggests that points y such that f,(-,y) is minimized at y (we
use the notation y € Argmin f,.(-,y)) play a special role. The following result says
a little more about that:

Proposition 1.4. If y € Argmin f,.(-,y), then y is the unique minimum of
frCyy) for all v’ > r.

Proof. Just write that, for all x # y,

Fr(yy) = fy) < f(@) +rlle —yl* < fla) +r'llz -yl
and observe that f. (y,y) = f(y)- O

Intuitively, minimizing ¢, in (1.5) is equivalent to minimizing f; this can be
made precise:

Theorem 1.5. The minimization of f and of ¢, are related as follows:
(i) inf {f(z) :x € R"} =inf {p,(y) 1y € R" }.
(i1) If x* minimizes f, then x* minimizes ..
(iii) Assume f is lower semicontinuous and bounded from below. If y* minimizes
(resp. minimizes locally) ¢, then y* minimizes (resp. minimizes locally) f.



6 A. Daniilidis, C. Lemaréchal

Proof. (i) For any z and y in R*, f.(xz,y) > f(z); hence p,(y) > inf f and

inf ¢, > inf f. On the other hand, Lemma 1.2 (ii) gives inf ¢, < inf f.

(i) In view of (i) and of Lemma 1.2 (ii), inf ¢, = inf f = f(z*) > . (z*).
(iii) It follows from Lemma 1.2 (ii), (iii) that f(y*) = ¢ (¥*) < ¢-(y) < f(y) for
all y € R™ (resp. for y close enough to y*). O

Thus, the approach replaces a single minimization (of f) by the minimization
of ,; this requires several computations of ¢, (y), i.e. several minimizations of
fr(-,y), a function which is “more convex” than f. Then a natural question is
whether ¢, has a chance of being convex; this holds at least when f itself is
convex:

Theorem 1.6. Assume f is bounded from below. Then
f convex <= f, convex (jointly) =, convex .

Proof. For the second implication, the marginal function associated with a con-
vex function is still convex; this is a classical result, see for example [10, Corol-
lary B.2.4.5].

As for the first equivalence: if f is convex, then f,. is obviously convex (jointly
with respect to x and y). If f,. is convex, then in particular z — f(z) = f.(z,z)
is convex. a

In view of Theorem 1.5, better convexification properties could hardly be
expected from this procedure. Indeed (1.1) contains just about any optimization
problem; in particular, there are instances of (1.1) which are difficult, but for
which f,. is convex in z and computing ¢, is “easy” — §3.6 will be devoted to a
class of such problems. In these cases, minimizing f could not be equivalent to
minimizing ¢,., if the latter were convex!

On the other hand, a classical convexification scheme is augmented La-
grangian [15]. Applied to a problem such as (1.2), for example, it would add
the term r||Az — c||?. This also corresponds to introducing a Moreau envelope,
but in the dual space; it does result in a convex optimization problem for r large
enough but is hardly implementable; see [9, § XII.5.2] for example. As mentioned
in [1], the present primal approach has the advantage of preserving separability
of f, if any. The crucial point is that the quadratic term in (1.4) is a sum over
the coordinates of the primal variable x; as such, it is not too complicating. In
fact, we are interested in instances of (1.1) amenable to Lagrangian relaxation —
such is the case of (1.2). Our aim will then be to reduce the duality gap, and/or
to produce heuristic primal solutions, generated by the algorithm minimizing

Pr-
1.4. The Proximal Algorithm

The algorithm suggested in [1] to minimize ¢, is essentially

Ykt+1 € Argmin {f.(z,yr) : z € R" }, (1.10)
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where the set Argmin of global minimizers is assumed nonempty (this is the
case when f is lower semicontinuous and bounded from below); naturally, the
algorithm stops when yg1 = yg. This is called the prozimal algorithm, whose
convergence properties rely on the following result:

Theorem 1.7. Assume yj41 ezists in (1.10).
(i) There holds at each iteration:

Fyrsr) < Flyr) = rllye — yrra -

(ii) Assume that f(yx) is bounded from below. Then Y, ||yr+1 — yxl|* < +00.
(111) Assume further that f is lower semicontinuous. Then any cluster point y*
of yr. is the unique minimum of f.(-,y*), for any r' > r.

Proof. By definition of y;4; and from Lemma 1.2 (ii),

FWrar) + rllyrsr — vl = o0 (yr) < Flyr)

which is the stated inequality in (i).
We obtain by summation

K
Frsn) = Fn) < —r Y ke — well?
k=1

which shows that the series Y, ||yr+1 — yx||* converges, unless f(yx) J —oo; (ii)
follows.
For (iii), using again the definition of y41, write for each k

f@) +rlle = yill® > flyrsr) + rllyesr —yell*,  forallz € R™ .
Pass to the limit; f is lower semicontinuous and ||yr+1 — yx|| — 0 from (ii), so
f@) +rlle =y P = fole,y) > F°) = fr(y",y"), forallz e R";
but this means f,.(x,y*) > fr(y*,y*). The rest follows from Proposition1.4. O

We explain the motivation of the proximal algorithm in the light of Re-
mark 1.3. To avoid excessive generality, assume that ¢, is a smooth function,
namely that it has a gradient Vo, (y) at every y € R™. Then its directional
derivatives are ¢’ (y,d) = d'Vip,(y) for all d € R*; with Danskin’s formula
(1.9), this clearly implies that f,(-,3) must have a unique minimizer' z(y), and
that Vo, (y) = 2rly — z(y)]. In particular, each next iterate yi41 in (1.10) exists
and is defined without ambiguity. Besides, since

1 1
Yrt1 = (Yr) = yr + gQr(w(yk) —Yr) = Yk — ng(yk) ,

we see that the proximal algorithm is just the minimization of ¢, by a standard
gradient method. Now, from Theorem 1.7:

1 To see this, observe that the directional derivative is linear in d, hence symmetric; with
several minimizers, we would have ¢/.(y,d) # —¢/ (y, —d) for some direction d, a contradiction.
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— either f(ygx) = —oo (then we are certainly minimizing f successfully!)

—or 2r(ye — Yr+1) = Vor(yr) = 0.

In the latter situation, assume that the sequence {y;} has some cluster point
y*. If o, is actually continuously differentiable (this means that the mapping
y — x(y) is continuous), then we see that Vo,.(y*) = 2r[y* — z(y*)] = O:
the proximal algorithm can only produce stationary points of ¢,., which have a
chance to be local minimizers.

2. Discrete Optimization Problems: Conceptual Forms

In this section we focus on the particular case where (1.1) is actually an opti-
mization problem on a finite set: we consider

ming(z), xz€ F={x1,...,zx}. (2.1)

The function g is left unspecified for the moment; it is completely characterized
by its (finitely many) values {g(z)}_ . With respect to our previous notation,

f(m):{g(xk) if x = xp, forsome k=1,..., K, (2.2)

+o00  otherwise.

Needless to say, this function is bounded and lower semi-continuous: the as-
sumptions made in §1 (especially Theorem 1.5) are trivially satisfied. As for the
“outer” objective function, it becomes

r(y) = min {g(z) +rllz - y[*} (2.3)

First of all, local minima of ¢, can be characterized in this particular situa-
tion:

Proposition 2.1. A point yo is a local minimum of ¢, if and only if x = yo
is the unique optimal solution of (2.3) for y = yo. In particular, every local
minimum of o, is a strict local minimum.

Proof. In view of Lemma 1.2 (iii), we have only to prove that, if © = yo is the
unique solution of (2.3) for y = yo, then yo is a strict local minimum of ¢,.. Note
first that, since F' is a finite set, there is € > 0 such that, for all x € F' different
from o,

g(@) +rllz = yoll® > g(yo) + 2¢ = ¢r(yo) + 2¢.

Now take y close enough to yo so that, for all z € F,
rllz = ylI” > rlle —yol* — .
Summing these two inequalities, we obtain

g(@) +rllz = yl* > or(yo) +¢
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and hence

min {g(z) + rllz —yl* : 2 € F\{yo}} > or(yo) +e.

As a result: for y close enough to yo,

¢r(y) = min {p,(y0) + &, ¢r(y0) + 7llyo — ylI} = ¢ (v0),
and the second inequality is strict if y # yo. O

Note that ¢, is the minimum of finitely many quadratic functions. The y-
space is divided into regions inside which the minimum in (2.3) is attained at
some point z € F, call it zj (k depending on the region in question). The corre-
sponding quadratic portion has the equation g(zy) + r|ly — zx||?, with gradient
2r(y — x). Altogether, ¢, looks as indicated in Fig.2.1. Local minima can be
points such as y; or y»; but at ys, there are two minimum points in (2.3): z = ys
and some other z € F'; in view of Lemma 1.2 (iii), y3 cannot be a local minimum
of ;.

Lo ()

Ve

Y1 Y2 Y3
Fig. 2.1. A piecewise quadratic function

We already know from Proposition 2.1 that local minima of ¢, lie in F'. Our
next result specifies which feasible points can be thus obtained.

Theorem 2.2. For any r > 0, any local minimum of p, lies in F. Moreover:
(i) For r large enough, the local minima of , are exactly the points in F'.
(i1) Forr small enough, the local minima of v, are exactly the optimal solutions

of (2.1).

Proof. If yo is a local minimum of ¢,., Proposition 2.1 shows that yy minimizes
fr(z,y0) = g(x) + r||]z — yo||*> over z € F; then in particular yo € F.

(i) We have to prove that an arbitrary yo € F' is a local minimum of ¢, if r is
large enough. Define the diameter of g(F)

I':=max{g(z) —g(z'): v € F,2' € F},
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the “discreteness” of F'
e:=min{||lz —2'||:x € F,2' € F,z #1'},

and take r > I'/g%.
For y close to yo, namely for ||y — yo|| < § := e — /I'/r > 0, there holds for
all z € F different from yo:

lz —yll > llz —yoll = llyo —yll > e -6 =/T'/r.

Then we write
g9(@) +rlly — =l > g(yo) + 9(x) — g(yo) + r(e — 9)*
> g(yo) = I' +r(e — 0)?
=9(Yo) = #r(yo),
where the last inequality is Lemma 1.2 (ii). The conclusion follows by taking the
infimum over z (knowing that the inequality holds trivially for z = ).

(ii) Call v* the optimal value in (2.1) and V* the set of optimal solutions; let
vt :=min {g(z) : x € F\V*}
the “next to optimal” value of g over F', and finally let
D :=max{||z —2'| : z,2' € F}

the diameter of F' (D > 0 — except in the trivial case where F' is a singleton).
Note that v+ > v* and take 0 < r < (v —v*)/D2.

Take z* € V* (so that g(z*) = v*) and let y be a local minimizer of ¢,. We
already know that y € F' and that ¢,(y) = g(y) (Proposition 2.1); then write

9(y) = ¢r(y) < g(@™) +rllz” —ylI* < g(a*) +rD* < g(z*) + v —v* =07
By definition of v, g(y) has to be equal to v*; from Theorem 1.5 (i), this means
yeVv®. O

The proximal algorithm of §1.4 can then be described in the present context:

Algorithm 2.3 (Conceptual proximal algorithm) Choose r > 0.

STEP 0. Take y, arbitrary in R™; set k = 1.

STEP 1. Let xy, realize the smallest of the numbers g(xy) + 7|lyx — znl|?, for
h=1,...,K.

STEP 2. If z, = y, then stop.

STEP 3. Set yip+1 = i, replace k by k + 1 and go to Step 1. O

Convergence is easy to establish:

Theorem 2.4. The above algorithm terminates at some k with a yi € F which
is a local minimum of @, for any r’' > r.
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Proof. The y;’s can take on finitely many values; but in view of Theorem 1.7,
Yr+1 — Yk tends to 0; hence yr4+1 —yr = 0 at some k. By construction, this means
T} = yp minimizes the function z — g(z) + ||z — y||*:

r(yr) = g(yr) < g() +rllz —yl®, forallz € F;
use Proposition 1.4 and Proposition 2.1 to finish the proof. O

Let us sum up this §2.

(i) First remember Lemma 1.2 (iv): when r grows from 0 to +o00, the local min-
ima of ¢, form nested sets, growing from the “ideal” set of optimal solutions
of (2.1), to the “worst” whole feasible set. It is therefore advantageous to
take a “small” r (whatever this means).

(if) The proximal algorithm produces such a local minimum — a feasible point
for (2.1). In terms of the objective function g, the quality of this point
depends on
— the initialization: in view of Theorem 1.7, the objective function is im-

proved by at least r||yr1 — yi||> at each iteration;
— the value of r: in view of Theorem 2.2, only an optimal solution can be
produced if r is small enough.

(iii) If we were able to guarantee a global minimum of ¢, instead of local, then
we would for sure have an optimal solution, no matter how r was chosen
(Theorem 1.5).

Unfortunately, this algorithm is only conceptual anyway: ¢, cannot be com-
puted exactly — a fortiori minimized globally.

3. Discrete Optimization Problems: Implementable Forms

From now on, we assume the feasible set F' of (2.1) to be some structured finite
set amenable to Lagrangian relaxation: our problem becomes

ming(z), z€ F:={r€Z:Az>ceR"}, Z finitein R" . (3.1)
Common instances in combinatorial optimization have
Z:{xG{O,l}”:BmZdER”}. (3.2)

The important feature is that (3.1) becomes “easy” when its linear constraints
are relaxed. The “proximized” version becomes

¢r(y) = min {g(z) +rllz —ylI* 12 € Z, Az > ¢}, (3-3)

also assumed easy if Az > ¢ is relaxed.
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3.1. Introducing Lagrangian Relazation

Here, with the extra variable A € R"*, we introduce the Lagrangian associated
with (3.3) and the corresponding relaxation @, of ¢,

&r(y) :=supb,(X,y), where
A0

34
6, (\y) = min {g(x) + AT (c — Az) + rlle — g} o4
We will denote respectively by
v* :=ming(z) and v, :=sup min{g(z)+\(c— Az)} (3.5)
zEF A>0 T€Z

the optimal value of (3.1) and of its relaxation (naturally v* = ¢o(y) and v, =
Po(y) for all y).

Lemma 3.1. The function r — ¢,.(y) is nondecreasing; v. < ¢r(y) < pr(y) for
all y. It follows that

Ve < yieanf" Gr(y) <0
Proof. Weak duality (see [11] for example) guarantees ¢, (y) < ¢r(y). Further-
more, the Lagrangian g(z) + A" (¢ — Az) + r||z — y||* in (3.4) is obviously a
nondecreasing function of r; and this property is transmitted to the infima and
suprema. The rest follows easily, use in particular (3.5) and Theorem 1.5 (). O

Thus, the “proximized” dualization (3.4) can potentially improve the duality
gap (if one is able to minimize {,); Proposition 3.9 will tell more.

To express ¢, in a form more amenable to calculations than (3.4), we lift the
formulation (3.1) in the graph-space: we define the set

Z, :={(z,v) :x € Z,v > g(x) +r[z|*} CR" xR,
which is nothing but the epigraph? epi g, of the function g, defined by

g(z) +r|z|]? ifz € Z,

+00 otherwise . (3.6)

R 5 z — g,(x) ::{

Developing ||z — y||?, we can then formulate (3.3) as

¢r(y) = rllyl|* + min, {gr(z) —2ry "z : 2 € R", Az > ¢}
=rlly|l”> + ming ) {v —2ry "z : (z,0) € Z], Az > c}.

The second line above reveals a linear Lagrangian: indeed 6, in (3.4) can also be
written

0.\, y) :==r|yl|* + zmin ’ [v—2ry "z + A" (c— Az)] (3.7)

W)E
and the well-known convexification effect of Lagrangian relaxation can be in-
voked. Convexifying Z] is a rather simple operation because it is confined to the
convex hull of Z, a compact set.

2 Recall that the epigraph of a function f is epi f := {(z,v) : v > f(z)}. It will be useful in
the sequel to keep in mind that, as a general rule, the symbol ’ (as in Z’) will denote a lifting
into the graph-space R™ x R.
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Theorem 3.2. The function @, has the equivalent expression

&r(y) = rllyll* + gﬂuﬁ {v—2ry"z:(2,0) €coZ],Ax > c}. (3.8)

Proof. Using the form (3.7), this is a classical result; see for example [6, Thm 3.5],
[8, Thm 1(d)], [14, Lemma2.2], [13, §2.3] or [11, §3.2] — among others. a

The introduction of (3.8) is useful to express @, as a min function, in contrast
with (3.4). However the proximal algorithm of the previous sections operates in
the z-space, making it necessary to eliminate the v-variable from (3.8). This
introduces some technicalities, dealt with in our next subsection.

3.2. Some Technical Results

Recall in our context that the convex hull (biconjugate) f** of a function f of

the form (2.2) can equivalently be defined as

— the function whose epigraph is the convex hull of the epigraph of f: notation-
ally, epi f** = coepi f;

— or the largest convex function smaller than f,

—or f**(x) := min ), a; f(x), where the sum runs over all sets of points z,
and convex multipliers ay, such that Ek QaRTp = T.

See for example [10, § B.2.5], more particularly Example B.2.5.5; see also Fig. 3.1.

Remark 3.3. In our context, given an arbitrary y € co Z, we can say that

— for any convex combination Zk apzy of points xp in Z with Ek apTr = v,
there holds g;*(y) < X, argr(zx) (for all r, including r = 0);

— there is a convex combination Ek apzy of points zp in Z with Zk QT =Y,
and such that ¢:*(y) =Y, argr(zw). a

co Zj = epig** coZ| =epig*

' gr(z3)

gr(1) :
: :gr(xZ) :
o) E g(z2) g(ml); ?g(l‘z)
e e

Fig. 3.1. Convexifying epig as epi g,, with Z := {z1,z2, 23}

Accordingly, the convex hull of Z], introduced in (3.8), is itself the epigraph
epigr* of the biconjugate of the function g, defined in (3.6). It is useful to
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understand that Z! is made up of finitely many vertical half-lines: one for each
r € Z, with bottom at altitude g.(z) = g(x) + r||z||*>. Its convex hull co Z].
is a convex polyhedron, unbounded from above, whose z-part is the bounded
polyhedron co Z, and having finitely many extreme points. Alternatively, the
convex hull g** of g, is a polyhedral function with domain co Z. The z-part of
any extreme point of co Z! = epig** certainly lies in Z; but conversely, a point
in Z need not be the projection of an extreme point of epig** (see for example
the point z» in the left part of Fig.3.1).
Now the feasible set in (3.8) can be denoted by

7! :={(z,v) €coZ : Az > ¢},

and its extreme points form an important object since the minimand in (3.8) is
linear. Denoting by ext F' the set of extreme points of a set F, we define

F! = ext{(x,v) € c0Z.: Az > ¢},
which we project onto the xz-space:
F,:={xecoZ: (x,v) € F' for some v}. (3.9)

Lemma 3.4. Define the function v,.(z) := gt*(z) — r||z||*>. Then

¢r(y) = rllyl* + min, {g;*(z) — 2ry 2 : z € £} (a)
= mming {3(2) +rlly — o : 7 € Fr} ® (310
= min, {7, (z) +r|ly —z||* : x € co Z, Az > c}. (c)

Proof. Consider the linear program (3.8).

(i) The z-part [resp. v-part] of its feasible set is bounded [resp. from below]: the
minimum value is finite, and is therefore attained at some extreme point:

Gr(y) =rlyll? + i {v-2ry"z: (z,v) € F}.

(ii) In fact, only the lower bound of v for each x need be considered; but this
lower bound is g}*(x):

@r(y) = rllyll® + min {g;" (@) — 2ry @ :x € B},

which is (3.10)(a). Rearrange the terms to obtain (b). Finally, (c¢) is obtained by
performing (ii) (and rearranging the terms) directly on (3.8). o

It is worth mentioning that the solutions of (3.10) for = 0 solve the convex-
ified primal problem: such solutions z. produce the relaxed value v. = g**(z.).
The following result confirms the intuitive property that all the useful values of
gr are preserved by ¢:* if r is large enough (see the right part of Fig.3.1); then
F,. contains the whole feasible set F of (3.1) — plus some parasitic points due to

the intersection with the constraint Az > c.

Lemma 3.5. There exists 7y > 0 such that, whenever r > 74:
(i) g:*(z) = gp(z), for all x € Z,
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(ii) the extreme points of co ZI. = epigt* are exactly the points (x, g,(x)), with
x describing Z,
(iii)) F C F,.
These properties hold with ¥4 = 0 if g is the restriction to Z of a convex
function.

Proof. Interpolate g by some polynomial p (that is, p = g on Z). Let A be a
lower bound on the minimal eigenvalue of the Hessian V?p(z) over z € coZ
(a bounded set!). If 2r + X > 0, ie. if r > 7y := —\/2, then the function
pr:=p+r| -]||? is strictly convex over co Z.

(i) By construction, p,(x) = g-(z) for any = € Z; besides, p,(z) < g-(x) = +o0
for = ¢ Z. Altogether, p, is a convex function below g,., hence p, < g:* < g,. In
particular,

pr(m) = g,-(l') < g:*(x) < gr(m) ifreZ,

and this is actually a chain of equalities.
(if) Now any extreme point (x,v) of co Z! must
— satisfy v = g,.(z) (otherwise, with € > 0 so small that v — e > g,(z) we would
have the contradiction (z,v) = 3(z,v —¢) + +(z,v +¢)) and

— lie in Z] (convexification cannot create extreme points).
Conversely, let (z,g-(z)) lie in Z.. Then g.(z) = p.(z) (since z € Z), and
strict convexity of p, implies that (z, g.(x)) = (z, p.(x)) is extreme?® in epip,. A
fortiori, it is extreme in co Z] = epig’* C epip;.
(iii) In the stated situation, any point x € Z satisfying Az > ¢ (i.e. any point in
F) certainly lies in F),.

Finally, when g has a convex extension, p can be taken as that extension,
instead of a polynomial; then p, is strictly convex for any r > 0 and the above
arguments still hold. O

The set co Z! was usefully viewed as an epigraph. Now it is just as useful to
see the feasible set of (3.8) as an epigraph:

7! :=coZ n{(z,v) : Az > ¢} = epi §**,
where the function g;* is defined by

ox* J— g:*(x) if Az 2 ¢,
g7 (@) = {+oo otherwise .

Naturally, Remark 3.3 also applies to ¢:* whenever the considered point y € Z
satisfies Ay > c.

Lemma 3.6. The set Fs := U,«;OFT is finite. In particular,

d:=min{llz—y|?:z,ye F,x £y} >0.

3 For a strictly convex function f, all points (z, f(x)) are extreme in epi f.
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Proof. Call zy, the points of Z: Z = {x1, 22, ...,2zx} and introduce a “canonical
epigraph”

I = {(a,t) e RE XR:%:ak = l,zk:akAmk > ¢, (a,t) 20}.

~ kK

We claim that epi g;* is the image of I under the linear operator T, which,
to (o, t) € RE x R, associates

z(a,t) >k kT

T, = ’ = k .

r(a,t) <Ur(a,t)> <Zkak9r(1’k)+t>

Indeed, if (o, ) € I, then (e, ) € co Z and Ty (o, t) € epi g»x*; but we even have
T, (a,t) € epigr* since Az(a,t) > c. Conversely, let (z,v) with v > §:*(z) and

take convex multipliers aj, realizing the minimal value of ), axgr(zi), subject
to Y, apxy = x: this value is just §;*(z) (Remark 3.3). Hence

t:=v— Zakgk(mk) =v—gr(x) =20
k

and (a,t) € I".

Now let z € 1:} for some r > 0 and let v, be such that (z,v,) is extreme in
epi g**. The pre-image by T, of (z,v,) is a face of the convex polyhedron I
every (a,t) in this face satisfies ), arzr = x. Because the set I (which does

not depend on r) has finitely many faces, F, can only be finite. O

3.3. Local Minima of @

First of all, Proposition 2.1 can be reproduced as such:

Proposition 3.7. A point yg is a local minimum of @, if and only if x = yo is the
unique optimal solution of (3.10) fory = yo, or equivalently (x,v) = (Yo, 9:*(yo))
is the unique optimal solution of (3.8).

Proof. The fact that 7, in (3.10) depends on 7 has no impact on Proposition 2.1.
As for the second form, just apply the definitions. O

Lemma3.5 has revealed an 7, > 0, whose role is to compensate possible
nonconvexities present in g; this key property will appear continually in what
follows. We begin by mimicking Proposition 1.4.

Proposition 3.8. Let r > 7, of Lemma 3.5 and suppose that (3.10) has an op-
timal solution x =y which lies in Z (i.e. is feasible in (3.1)). Then this y is a
local minimum of o for all v’ > r.

Proof. In view of Lemma3.5 (i), v-(y) = g,(y) — r||y||> = g(y). Then the proof
goes as in Proposition 1.4. O
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With respect to the pure Lagrangian relaxation, the proximal term does
improve the duality gap strictly.

Proposition 3.9. Take r > 7, of Lemma3.5. If there is a duality gap (i.e.
ve < v*), then any local minimizer yo of @, satisfies @, (yo) > ve.

Proof. With r as stated, let yg be a local minimum of ¢,. In view of Proposi-
tion 3.7, & = gy is the optimal solution in (3.10)(b) with y = yo, hence

@r(yo) = 1 (yo) = g+ (o) — rllyoll*- (3.11)

Suppose first yo € Z. Then (Lemma3.5 (1)) ¢5*(yo) = gr(y0); thus, from the
definition (3.6) of g,

||2 *

@r(Yo) = 9(yo) + llyoll®> = rllyol®> = g(yo) > v

because yo is indeed feasible in (3.1).

If yo ¢ Z then (yo,9:*(yo)) is not extreme in co Z. (convexification can-
not create extreme points): there is a nontrivial convex combination of points
(zg,vr) € epig, (i.e. o € Z and vg > g-(z1)) such that

Yo = Zakmka 9:" (yo) = Zakvk Z Zakgr(wk)-
k k

k

Combining with (3.11), we deduce

957"(:[/0) > Ek akgr(mk) - 7°||y0||2

=Y eang(@r) +r > arllzel* — rllyol? [definition (3.6) of g.]
> 3k arg(@i) + rllyoll* — rllyoll? [strict convexity of || - 2]
> 9" (yo) [Remark 3.3]
> @o(yo) [yo is feasible in (3.10)]
and the proof is complete since we know that @o(yo) = ve. O

This result echoes Lemma 3.1: providing that g, looks convex, the duality
gap is strictly improved — although computing this duality gap implies as before
the global minimization of &,.. Now we turn to echoing Theorem 2.2.

Proposition 3.10. For r large enough, the set of local minima of @, contains
the whole feasible set F' of (3.1).

Proof. Use the notation maxz g [resp. minyz g] for the max [resp. the min] of g
over Z. With d of Lemma 3.6, take r > max {7,, (maxz g —miny g)/d}, y € F
and z € F, different from y. First of all, y is feasible in (3.10)(a) (recall from
Lemma3.5 (iit) that F C F,). Next, g=*(z) = Y., axgr(z1), for some convex



18 A. Daniilidis, C. Lemaréchal

combination of points in Z making up z (Remark 3.3). Then we apply the defi-
nition of g,:

97" (@) = 2y ang(e) + 1370 ol

> > anglzy) + rljz|? [convexity of || - ||?]
> miny g + r||z||? [each z}, lies in Z]
> ming g + g(y) — maxz g + r||z|]? lye FC 2]
> g(y) — rd + rlz|]? [choice of 7]
> g(y) —rllz = ylI* + r||z|]? [@#y€F C Fux]

=g(y) +2ry Tz — rllyl|*.

Thus we have proved

97" (@) = 2ry "z > g(y) = rllyll® = 9r(y) = 2rllylI* > 97" (y) — 2rllylI*-
In a word, y is the unique minimum point in (3.10)(a); as such, it minimizes

&r locally (Proposition 3.7). O

Let us now study global minima of ¢,.. First, the upper bound v* is attained
in Lemma 3.1.

Theorem 3.11. For r large enough, the global minima of @, are exactly the
optimal solutions of (3.1).

Proof. For y ¢ Z, let (y) be the smallest value of Y, ag|lzk||* — |ly]|* over all
convex combinations of points x; € Z such that ), ajx) = y; strict convexity

of the squared norm implies £(y) > 0 and, since ﬁ'OO\Z is a finite set,
e:=min{e(y) : y € Fru\Z} > 0.

Then take r > max {F,, (v* —miny g)/e} and let yo be a local minimum of @,.
Suppose for contradiction that yo ¢ F'; because yo is feasible in (3.10)(c), the
definition of F in (3.1) shows that yo ¢ Z. Then write from (3.10)(a)

@r(Y0) = g, (yo) — r||y0||2 [Proposition 3.7]
= Ek argr(Tr) — 7°||y0||2 [Remark 3.3]
=Y ang(zr) + (3 arllzell* = llyoll?) [definition (3.6) of g,]
> ming g +re. [definition of €]

Thanks to the choice of r, @,.(yo) > v*, i.e. yo cannot minimize @, globally
(Lemma3.1). As a result, every global minimum of ¢, certainly lies in F'.
Let yo minimize ¢, globally and use Lemma 3.5 (i): because yo € F' C Z,

[a

&r(yo) = 95" (o) — rllyoll”> = gr(wo) — rllyoll” = g(yo) > v*.

In view of Lemma 3.1, yo solves (3.1): in fact, inf, ¢, (y) = &r(yo) = v*.
Conversly, let y* solve (3.1):

g(y*) = v =inf @, < or(y7) < or(y™) < 9ly”),

where we have used successively Lemma3.1 and Lemma 1.2(ii). The above in-
equalities therefore hold as equalities and the theorem is proved. O
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Finally we show that the proximal term is useless if r is too small.

Theorem 3.12. For r > 0 small enough, the global minimizers of &, are the
solutions of the relazed problem (3.10) with r = 0.

Proof. For any y € F, define the number
r(y) := inf{r > 0 : y minimizes (globally) @, }.
This is a nonnegative number, possibly +oo. Then define
F:=min{r(y) 1y € Foo,r(y) > 0};

note that 7 > 0 because F'oo is a finite set.

Fix r < 7 and let § be an arbitrary global minimizer of 3,; then § € Fi
and, by definition of 7, r(§) cannot be positive: 7(g) = 0. This means that there
exists a sequence r, J 0 such that § is a global minimizer of ¢,,. In view of
Proposition 3.7:

gy (@) = 2reg @ > 977 (5) — 2l (3.12)
for all x feasible in (3.10)(a) and £ =1,2,...

When r, | 0, it is mere technicalities to establish the pointwise convergence of
biconjugates (form convex combinations ), agrx; the ’s and «’s are bounded
and it suffices to pass to the limit for each k). Then, passing to the limit in (3.12)
shows that ¢**(x) > ¢** (). a

3.4. An Example

As an illustrative example, consider the problem with two binary variables !,
22 and one constraint

meilrrl {z' +42%}, where F:={z€ Z:={0,1}? : z* +22° > 2}. (3.13)
T

The feasible points are z* = (0, 1) (the optimal solution, with objective value
g(z*) =4 =v*) and e := (1, 1), so that

or(y) = min {4+ rlly — 21,5+ rlly — e[’} .
Working out the calculations, we obtain

)= { ATl = P i e —at) Ty < @2,
r\¥) = 5+rly—e||* otherwise .

First observe that (e — z*)Tz* = 0 is always smaller than (1 + 7)/2r, hence

y = x* is always a local minimum. Now consider three cases:

~If (1+r)/2r <1 (ie. r > 1) then y = e is another local minimum — Theo-
rem 2.2 (i).

~If (1+r)/2r > 1 (i.e. r < 1), this latter local minimum vanishes — Theo-
rem 2.2 (ii).
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(1,4)

Fig. 3.2. An illustrative example

— We leave it to the reader to check the case (1 4+ 2r)/2r =1, and in particular
to see why y = e is not a local minimum.

Now we study @,. The relaxed primal solution (i.e. solving (3.10) with r = 0)
is z. = (1,1/2), with objective value g(z.) = 3 = v.. As a function defined
over the whole of R?, g is linear, hence 7, = 0 (see Lemma 3.5). Observe that
F, = {z*,e,x.} for all r > 0. We have from (3.10)(a)

&r(y) = rllyll* +min {g;*(z) — 2ry Tz : x € {2, e, 2} },

knowing that
g (@*) = gp(a*) =4 +r = 2ry°,
g:*(e) = gr(e) =5+2r —2r(y' +y?)

(both z* and e lie in Z), and it is easy to see that

* % gr]-)O + g-(€e 3r
(e = HED LI g oy,

Calculations are left to the reader; the final results are as indicated in Ta-
ble 3.1. Note:
—min@, = min{3+r/4,4} which, as predicted by Lemma1.2(i)), is nonde-
creasing;
— min @, >3 = v, for all r > 0 (Proposition 3.9);
— each point of the feasible set {z*,e} becomes a local minimum of @, for r > 4
(Proposition 3.10);
— z* becomes global minimum of ¢, for r > 4 (Theorem 3.11).

r 0 1/3 4 +00
local mins. Te Te T* Te T* e
@r values 3+r/4|3+r/4 4 |34+r/4 4 5

Table 3.1. Local minima of @,.
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3.5. The Relaxed Proximal Algorithm

Consider now the proximal algorithm (1.10) to minimize ¢,. It needs a black box
to compute @, (y) for a given y € R™. Of course this is done by some optimization
process, which produces an z(y) solving one of the “equivalent” problems (3.4)
or (3.10).

Then we do the following.

Algorithm 3.13 (Implementable proximal algorithm I) Choose r > 0.
STEP 0. Take y1 arbitrary in R™; set k = 1.

STEP 1. Call the black box to obtain x(yy).

STEP 2. If x(yk) = yi then stop.

STEP 3. Set yr+1 = x(yx), replace k by k + 1 and go to Step 1. O

Convergence properties of this algorithm are reminiscent of Theorem 2.4:

Theorem 3.14. The sequence yi, generated by the above algorithm has some
cluster point y*.

Ifr > 7y, any such cluster point lying in Z is feasible in (3.1), and is a local
minimum of @, of (3.3), for any r' > r.

Proof. The first statement is true because y; varies in co Z, a compact set.
Then take a cluster point y* € Z. By construction, each y, = x(yr—_1) sat-

isfies Ay > ¢; hence y* € F C F, (Lemma 3.5 (iii)). Then proceed as in Theo-

rem 1.7 (iii) (being convex, the function v, is continuous on co Z): for all z € E,,

Yo(@) +rlle — y* P = v *) = g5 ") — rlly*II> = 9(y*),

where the last equality comes from Lemma3.5 (i).
Take in particular x € F; then z € Z, hence v,.(z) < g-(z) — rljz||* = g(=):
we have in fact proved

g(@) +rllz —y*|* > gy*) forallz e F .
The rest follows from Proposition 1.4. O

Observe that nothing guarantees y* € Z: actually, y* may well be in the
parasitic set ﬁ'r\F. Since F) is finite, the algorithm would stop at Step 2 if we
could guarantee z(y;) € F) for each k; but it is not clear how this can be done:
— Either we solve (3.4) by some dual algorithm (i.e. by column generation, see

[11, §5.2]); this produces solutions of (3.10)(c), which need not lie in F}..

— To obtain for sure an extreme point, (3.10) should be solved by a simplex-
like algorithm; but this supposes a linear objective g(z) = b’z and a close
description of the polyhedron co Z — at least of its intersection with Az > c.
In case (3.2), for example, this essentially means that the so-called integrality
property is satisfied, or equivalently that nothing is changed if all constraints
are dualized: Z = {0,1}".

As a conclusion, let us compare with the situation in §2.
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(i) Replacing ¢, by ¢, has a substantial price. The proximal algorithm pro-
duces iterates yj, which need no longer be feasible (say yr € F,\F) and
the sequence g(y) is no longer decreasing. Instead of producing a feasible
point for sure (Theorem 2.4), we may land at some parasitic point in ﬁ'r\F,
including a relaxed solution z., solving (3.10)(b).

(ii) Taking a small r was recommended in §2; this is now unwise since it will
probably produce a relaxed solution (Theorem 3.12). A relaxed solution z.
will even be produced for sure if Algorithm 3.13 is initialized on ¥y, = z..

(iii) The only way to escape from z. is to increase r. However this is dangerous,
since the algorithm might produce a bad feasible point of (3.1) (Propo-
sition 3.10); besides, it is not sure that larger values of r will eventually
eliminate . from the set of local minima.

(iv) Once again, global minimization of @, would eliminate any problem; yet
we should also take r large enough (Theorem 3.11).

3.6. Case of 0-1 Variables

This section considers the particular case where Z = {0,1}" in (3.1). An inter-
esting property with the present unit cube Z is that all of its points are extreme
in co Z. As a result, g can be extended by a convex function to the whole of co Z,
the results of the previous sections can therefore be reproduced with 7y, = 0:

Proposition 3.15. For any = € {0,1}", ¢**(z) = g(x).

Proof. Just apply Remark 3.3, observing that a nontrivial convex combination
of 0-1 points cannot be 0-1. O

We now turn to a variant of the proximal algorithm, which can also be used in
the present particular case. The trouble with the convexification procedure of §2
is that the quadratic term can by no means convexify the objective function f of
(2.2). In fact, the original motivation for [1] was to treat “ordinary” (continuous)
nonlinear programming problems, whose Lagrangian’s Hessian could be made
positive definite, simply by adding a big enough diagonal rI to it. For a strict
application of this idea, we extend g to the whole of [0, 1]™ by a convex function
h — this is possible thanks to Proposition 3.15, for example with h := g**. Then
(3.1) takes the form

minh(z), ze€Z:={0,1}", Az >c, (3.14)
the feasible set being
F:={ze{0,1}": Az > c}. (3.15)

We still denote by v* and v, the optimal values of (3.14) and of its relaxation,
as in (3.5).
Now we penalize the integrality constraints by the factor

p(z) :==e'z —||z]|*, wheree:=(1,...,1). (3.16)
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Taking a large parameter 7 > 0, we transform (3.14) to
min [h(z) + 7p(z)], z€Q CcoZ =10,1]", (3.17)

@ being a closed convex polyhedron containing F'. The following result confirms
the general belief that (3.17) is just another form of (3.14) if the penalty is
big enough. We state this result in a form allowing a large flexibility for @ —
of course, the most natural choice is to simply change {0,1} to [0,1] in (3.14),
which reproduces the feasible set of (3.10)(c).

Theorem 3.16. Assume in (3.17) that the objective function h + wp is concave.

Then

(i) h + ©'p is strictly concave for any 7' > .

Let h+ wp be strictly concave and assume that the feasible set () contains the
feasible set F' of (3.14), (3.15). Then:

(i1) The optimal value of (3.17) is not larger than the optimal value v* of (3.14).
Any optimal solution of (3.17) lying in F is also optimal for (3.14).

(111) Assume further that Q@ does not contain any other 0-1 point than those
in F. For w large enough, any optimal solution of (3.17) lies in F. As a
result:

— the optimal value of (3.17) is v*,
— the sets of optimal solutions in (3.14) and (3.17) coincide.

Proof. (i) Obvious since h+ 7'p = (h + mp) + (7' — 7)p and p is strictly concave.

(ii) Just observe that (3.17) is a relazation of (3.14): both their objective func-
tions coincide on the feasible set F' C {0,1}" of the latter.

(iii) From (ii), v* is an upper bound for the optimal value of (3.17). With h+7p
strictly concave on @ C [0,1]™, the feasible set in (3.17) can be restricted to
the set ext  of its extreme points. Denote by F := ext Q\F the set of parasitic
points. Set ¢ := min, ¢ p(z) and note that 6 > 0 because p > 0 on the finite set
F.

Increase 7 if necessary so that 7 > (v* — ming h)/d, let * € ext @ solve
(3.17) and assume 2* € F:

v* > h(z™) + mp(z*) > ngnh + 7 >v",

a contradiction. Thus, any z, optimal in (3.17) lies in F. In view of (ii), z, solves
(3.14); and, since p is 0 on F, the optimal value of (3.17) is v*. Conversely, any
x* optimal in (3.14) is feasible in (3.17) and has h(z*) + mp(z*) = h(z*) = v*;
thus z* is optimal in (3.17). O

Now the proximal convexification procedure can be applied to (3.17) instead
of (3.14): we define

Yrr(y) = min [h(z) + mp(z) + rlly - ||”] (3.18)
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and all the results of §1 apply, ¢, playing the role of ¢,. Observe that the
minimand f.(-,y) = h(-) + mp(:) + 7|l - —y|* in (3.18) is convex for r > 7: in
contrast with ¢,, the computation of ¥, can be made “easy”. By contrast, its
global minimization is not straightforward (of course). Assume for example h is

(r=mI _TI> (I is the identity in R™),

linear; then the Hessian of f.(-,-) is 2 Tl

which is never positive semidefinite?.

Algorithm 3.17 (Implementable proximal algorithm II) A black boz is
assumed available to solve (3.18) for given y. Take r > 7.

STEP 0. Take y, arbitrary in R™; set k = 1.

STEP 1. Call the black box to obtain z(yi) € Q.

STEP 2. If x(yx) = yi then stop.

STEP 3. Set yr+1 = x(yx), replace k by k + 1 and go to Step 1. O

Theorem 3.18. The sequence yi, generated by the above algorithm has some
cluster point. Any such cluster point is a local minimum of Y., for any r’' > r.

Proof. Use Theorem 1.7 (iii) (h and p are continuous) and Proposition2.1. O
The present variant turns out to bring little with respect to §3.1:

Proposition 3.19. Call Z the feasible set in (3.10)(c) (Z being {0,1}").
(i) If Q D Z, then ¥y, (y) < Gr(y) for ally € R® and r > 0.
(ii) Equality holds if Q = Z and h in (3.14) is linear.
(151) In the latter case, any local minimum of @, is a local minimum of Y. for
all ¥’ > r.

Proof. In view of Remark 3.3, any z feasible in (3.10)(c) is a convex combination
of 0-1 points zj, such that

g (z) = Zakg(:rk) + rZakHa:kHz = Zakh(a:k) + rZakeTa:k .
k k % k

Using the convexity of h, we therefore have
(@) +rlle = yl* > h(z) +rpz) +rllz - yl?,

with equality if h is linear. In the righthand side above, we recognize the mini-
mand in (3.18) (with = = r): this latter problem being a relaxation of (3.10)(c),
(i) and (ii) are proved.

To prove (iii), the local minima of @, and of ;. coincide in the situation
(ii); and in view of Lemma 1.2 (iv), the latter are also local minima of ¢,,. O

Thus, using the minimal value 7 = 7 in (3.18) can only increase the duality
gap (unless @) can be made smaller). In the “standard” case (h linear, @ = Z),
using r > 7 can only increase the set of parasitic points where Algorithm 3.17
stalls.

4 TIn this case, convexity of ¥, becomes unlikely: assuming for example that the constraint

z € Q is inactive in (3.18), a brief calculation shows that ¢, is quadratic with Hessian % 1.
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General Conclusion. We have studied in the framework of combinatorial op-
timization a general convexification procedure (the primal proximal algorithm),
assessed by a useful heuristic for some special problem (unit-commitment, see
[5]). This procedure gives birth to various conceptual and implementable heuris-
tic algorithms to generate primal solutions, and our results suggest that little
is to be expected in theory from the approach. In fact, the ability itself of the
approach in producing feasible suboptimal solutions is controversial. From our
conclusion of §3.5, such an ability implies a delicate tuning of the proximity
parameter, to avoid

Charybdis: being attracted with a small r toward the relaxed solution x.,
as well as

Seylla: jumping with a large r to an uncontrollable feasible point in (2.1).
Yet, even if these two dangers are avoided, the mere production of a feasible
point is never guaranteed.

Acknowledgement. We are indebted to an anonymous referee, whose lucid sug-
gestions helped us to considerably enhance the earlier version [3] of this paper.
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