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Abstract In this paper we introduce and study a subdifferential, that
is related to the quasiconvex functions in a similar way as the Fenchel-
Moreau subdifferential is related to the convex ones. It is defined for any
lower semicontinuous function, through an appropriate combination of an
abstract subdifferential with the normal cone to sublevel sets. We show
that this “quasiconvex” subdifferential is always a cyclically quasimonotone
operator that coincides with the Fenchel-Moreau subdifferential whenever
the function is convex, and under mild assumptions, the density of its do-
main in the domain of the function is equivalent to the quasiconvexity of
the function. We also show that the “quasiconvex” subdifferential of a lower
semicontinuous function contains the derivatives of its differentiable quasi-
affine supports. As a consequence, it contains the subdifferential introduced
by Martinez-Legaz and Sach in a recent paper. Several other properties and
calculus rules are also established.
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1 Introduction

In the last thirty years, several notions of subdifferential for quasiconvex
functions have been proposed. The oldest ones are the Greenberg-Pierskalla
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subdifferential [6] and the tangential introduced by Crouzeix [4]. These two
subdifferentials have in common that they are convex cones, and are there-
fore too large to give enough information on the function. The lower subd-
ifferential of Plastria [13] is smaller but still unbounded, as are the related
a—lower subdifferentials [10]. All these subdifferentials arise in the context
of some quasiconvex conjugation scheme. Of a different nature is the weak
lower subdifferential [9], which is more in the spirit of nonsmooth analysis in
that its support function partially coincides with the directional derivative;
however this set is not quite satisfactory either, as it is even bigger than the
lower subdifferential of Plastria. Trying to remedy this drawback, Martinez-
Legaz and Sach [11] recently introduced the Q-subdifferential. Given that
it is a subset of the Greenberg-Pierskalla subdifferential, it shares with all
other quasiconvex subdifferentials the property that its nonemptiness on
the domain of a lower semicontinuous function implies quasiconvexity of the
function, which justifies the claim that it is a quasiconvex subdifferential;
on the other hand, unlike all other subdifferentials previously introduced in
quasiconvex analysis, it can be regarded as a small set, as it is contained
in the Fréchet subdifferential. But this advantage is, at the same time, the
main drawback of this subdifferential, as one has to impose rather strong
assumptions on a quasiconvex function to ensure the nonemptiness of its
Q-subdifferential on a dense subset of the domain.

In view of all these considerations, one can reasonably say that the prob-
lem of defining a sufficiently good subdifferential for quasiconvex functions
is still open. To solve it, one has first to set the objectives that such a con-
cept should meet. In this sense, we can formulate the general principle that
a quasiconvex subdifferential should be related to quasiconvex functions in
a similar way as the classical Fenchel-Moreau subdifferential relates to con-
vex functions. Let us be more precise. The Fenchel-Moreau subdifferential
is well defined for an arbitrary function, while, under mild conditions, its
nonemptiness on a dense subset of the domain of a lower semicontinuous
function is equivalent to convexity of the function. Concurrently, a qua-
siconvex subdifferential should be defined for arbitrary functions, but its
nonemptiness on the domain of a lower semicontinuous function should be
equivalent (under mild assumptions) to quasiconvexity of the function. An-
other desirable property of any (quasiconvex) subdifferential is that it should
reduce to the Fenchel-Moreau subdifferential in the case of convex functions.
As we shall prove below, the quasiconvex subdifferential introduced in this
paper satisfies all these requirements. Moreover, it is smaller than all previ-
ously defined quasiconvex subdifferentials (except the Q subdifferential), as
it is contained in the upper Dini subdifferential.



The new subdifferential is defined through an appropriate combination
of an abstract subdifferential (in the sense of the axiomatic scheme of Aussel-
Corvellec-Lassonde [2]) with geometrical considerations based on the notion
of the normal cone to sublevel sets, in a way that it retains important prop-
erties from both. For instance, for the class of quasiconvex functions our
subdifferential is identical (under mild conditions) to the abstract subdiffer-
ential, so that it inherits the same calculus rules; on the other hand, for any
continuous function f, the existence of a non-zero element of the subdiffer-
ential at zy implies that f is “quasiconvex with respect to x(”, in the sense
that if zg = Az + (1 — Ay, with 0 < XA <1, then f(zo) < max{f(z), f(y)}.

The rest of the paper is organized as follows. Section 2 establishes the
notation and some preliminaries related to abstract subdifferentials on which
our quasiconvex subdifferential is built upon. The central part of the paper is
Section 3, where the quasiconvex subdifferential is introduced and compared
with other subdifferentials, and its main properties are discussed.

2 Notation and preliminaries

In the sequel, X # {0} will denote a Banach space and X* its dual. For
any z € X and z* € X* we denote by (z*,z) the value of z* at x. For
z € X and ¢ > 0 we denote by B:(z) the closed ball centered at = with
radius € > 0, while for z, y € X we denote by [z,y]| the closed segment
{tx + (1 —t)y : t € [0,1]}. The segments |z,y], [z,y[ and |z, y[ are defined
analogously.

Throughout the article we shall deal with proper functions f : X —
R U {+o0} (i.e. functions for which dom(f) := {z € X : f(z) < +oo}
is nonempty). For any a € R the sublevel (resp. strict sublevel) set of f
corresponding to a is the set S, (f) = {z € X : f (z) < a} (resp. ST (f) =
{z € X : f(x) < a}). We shall use S, and S if there is no risk of confusion.

The Fenchel-Moreau subdifferential 9" f (z) of f at any = € dom (f),
is defined by the formula

"M f() = {z" € X*: fy) > fl2) + (&"y —2) Yy e X}. (1)

(If = ¢ dom (f), then we set 7'M f(x) = ().
Another useful subdifferential is the Greenberg-Pierskalla subdifferential
d%P f. given by

0T f (z) ={a* € X*: (z*,y —2) > 0= [ (y) > [ (2)}. (2)



Given a set C' C X and z € X, the normal cone to C' at z is by definition
the cone
Ne(z)={z" € X" :Vye C, (z",y—z) <0}.

Let Ny (z) := NSf(m) (x) (resp. Nf< (z) := st(m) (z)) be the normal cone to

the sublevel (resp. strict sublevel) set corresponding to the value f (z). The
following equivalences are straightforward.

2" € Ny (z) <= (Vy € X, («",y —2) > 0= f (y) > [ (z)) (3)
2" € Nf (z) &= (VW€ X, (z",y —x) > 0= f (y) > f (v)) (4)
Combining the above relations it follows
9“T f (z) C N5 (z) and Ny (z) C Nf ().

Besides 0™ and 99" one can define other subdifferentials which, unlike
the former ones, depend only on the local properties of the function f. Such
is the Fréchet subdifferential 67 f(x), defined by

0" f(w) = {z" € X*: f(y) > f(a) + (&",y — z) + oy —2),Vy € X}
where 0 : X — R is some real valued function satisfying

lim @ =
z—0 ||£E||

Another “local” subdifferential is the upper Dini subdifferential oP* f
defined as follows:

+ [ {zr e X*: (a*,d) < [P (2,d),Vd € X}, if x € dom (f)
9" f(x)—{ 0, if 2 ¢ dom (f)
where 1

P (yd) = Timsup - (f (2 + td) — f (). (5)
N0+

Both the upper Dini and the Fréchet subdifferential belong to a larger
class of subdifferentials defined axiomatically. We recall from [2, Definition
2.1] the relevant definition.

Definition 1 A subdifferential O is an operator that associates to any lower
semicontinuous (Isc) function f: X — RU{+oo} and any x € X a subset
Of (z) of X* so that the following properties are satisfied:

of (z) = M f(x), whenever f is convex; (P1)



0 € 9f(x), whenever f has a local minimum at = (P2)
o(f +9)(x) € 0f (z) + Ig(=) (P3)

for all convex continuous functions g for which both 0g(z) and 0(—g)(x) are
nonempty. (Such functions are called O-differentiable at x.)

Other subdifferentials satisfying the above properties are the Gateaux,
Hadamard and Clarke-Rockafellar subdifferentials [2].

Remark 2 Let us observe, in relation to Property (P1), that
oM cof (6)

for any lsc function f. Indeed, take any xo € X and any z* € OFM f (z).
Then relation (1) guarantees that the function

9(x) = f(x) = (2", x = zo)

has a minimum at o, which yields in view of (P2) that 0 € 0g (xy). Using
now Properties (P3) and (P1) we conclude

0 € df (wo) + 0 ({27, —m0)) = Of (z0) — "
i.e. ¥ € Of (zp).

For the purposes of the present paper we shall always use a subdifferential
0 such that 9 C oPT.
We further recall from [2, Definition 2.2] the following definition.

Definition 3 A norm ||.|| on X is said to be O-smooth if the functions of
the form z — Y., unllz — vu||? are O-differentiable, where the sequence (vy)
converges in X, p, > 0 and the series ) i is convergent.

We shall always assume that the space X admits a d-smooth renorm-
ing. (Note that this condition is automatically satisfied if 0 is the Clarke-
Rockafellar subdifferential; also, all reflexive Banach spaces admit a 9F-
smooth renorming). In such a case, the following Mean-Value theorem holds
[2, Theorem 4.1]:

Theorem 4 Let f be lsc and O be a subdifferential. If z,y € X and f (y) >
f(z), then there exists z € [z,y[ and sequences (z,) C domf, (z}) C X*,
such that z,, — z, =}, € Of (z,,) and

(xr,z+1t(y—x) —zpn) >0, for all t > 0.

In particular, dom(0f) is dense in dom(f).



Subdifferentials can be used to characterize lsc quasiconvex functions.
We recall that a function f : X — R U {400} is called quasiconvez if its
sublevel sets S, are convex subsets of X for all @ € R. In [1] it has been
shown that a function f is quasiconvex if, and only if, the following property
is true:

If z* € 0f (x) and (z*,y —z) > 0 then f (z) < f(y) for all z € [z,y].
(7)

An easy consequence of (7) is the following property of lsc quasiconvex
functions (for df C 9P f):

If z* € 9f (x) and (z*,y —x) > 0 then f (y) > f (z). (8)

Indeed, z* € df (z) and (z*,y — z) > 0 yield fP° (z,y — ) > 0; hence for
some t > 0 (suitably small) we have f (z) < f(x +t(y —x)). From (7) it
follows that f (x 4+t (y —x)) < f (y) hence the result.

Let now T : X = X* be a multivalued operator. Following [5] we say
that T is cyclically quasimonotone, if for any n > 1 and any z1, 9, ..., T, €
X, there exists ¢ € {1,2,...,n} such that

(f, xip1 — xi) <0,V € T(x;) (9)

(where zp41 := z1). If we restrict n in (9) to n = 2, then T is called
quasimonotone.

3 The “quasiconvex” subdifferential 07

In this section we introduce the “quasiconvex” subdifferential 8¢ whose
definition depends on both local and global properties of the function. We
show that this subdifferential seems completely adapted in quasiconvex anal-
ysis (as far as one considers that the Fenchel-Moreau subdifferential 9"
is apt in convex analysis). In Subsection 3.1 we compare the subdifferential
07 with the one defined recently in [11], while in Subsection 3.2 we present
some interesting properties of 99.

Given an abstract subdifferential 0 (according to Definition 1) contained
in P +, we introduce below the “quasiconvex” subdifferential 07:

Definition 5 The quasiconvez subdifferential 01f : X = X™* of f is defined
for all x € dom(f) as follows:

ap(y ) OF (@) Np(z), if Ni(z) #{0}
&) (@) _{ 0, ifNj% () = {0}



If x ¢ domf, then we set 91f (x) = (.
Here are some fundamental properties of 09.

Proposition 6 For every proper function f, the operator 01f is cyclically
quasimonotone.

Proof It is sufficient to show that the operator Ny (relation (3)) is cyclically
quasimonotone. The proof follows exactly the same pattern as the proof of
quasimonotonicity of Ny in [12]. If z; € X, i =1,2,...n and =] € Ny (z;)
are such that (z}, i1 — ;) > 0 for all ¢ (where 2,11 = z1) then (8) implies
that f (zit1) > f (z;) for all . By transitivity we conclude f (z1) > f (1),
hence a contradiction. 0

Proposition 7 Let f be a radially continuous function (that is the restric-
tion of f on line segments is continuous). Then
(i) For all x € dom (f) we have

_J of (@)N Ny (x), ifd"f(x)#0
8qf ((L‘) - { @, Zf 8GPf ((L‘) — (Z)
In particular for any x € X, if 91f (z) # 0 then 0T f (z) # 0.

(i) 0Uf (@)\{0} SO f (x).

Proof (i) If 0 € 99T f (z) then 09T f (z) = X*. Hence, if 99T f (z) #
then Nf< (z) # {0}. So we have only to prove that if 99F f (z) = () then

N7 (z) = {0}. Note that from (4) we always have 0 € N7 (z). Let us

show that N (z) \ {0} C %P f (z). To this end, let z* € N7 (z)\ {0} and
suppose that (z*,y —x) > 0. Choose d € X such that (z*,d) > 0. For any
t > 0 one has (z*,y +td — ) > 0 hence f (y+td) > f(x). Letting t — 0
and using radial continuity we get f (y) > f (), that is z* € 97 f (z).

(ii) The second assertion follows from the following inclusions
97f (2) \{0} C Ny (2)\ {0} C NF (2) \ {0} € 99" f (z).
The proof is complete. O

Proposition 8 Suppose that f is lsc and that satisfies one of the following
conditions:

(i) f is convex;

(11) f is quasiconver and for all a > inf f the sublevel sets S, (f) have



nonempty interior.
Then
of =0f.

Proof It follows directly from Definition 5 that 97f C 9f. To show that
equality holds consider any z* € df (z).

Suppose first that z* # 0. Then (8) and (3) entail that 2* € N¢(x), hence
x* € 01 (x).

If now 2* = 0, then obviously z* € 0f (£)NNy (). According to Definition 5
it suffices to ensure that N f< () # {0}. Indeed, if z is a global minimum then
N f< () = X*. If z is not a global minimum, then f cannot be convex, hence
assumption (ii) holds. It follows that the convex set ij(m) has nonempty
interior. Thus by the Hahn-Banach Theorem there exists y* € X*\ {0} such

that (y*, z) > (y*,z') for all 2’ € S?(:r)' We now conclude that y* € Nf< (z),

ie. N5 (z) #{0}. O

Remark. The same proof shows that Proposition 8 (ii) holds without any
assumption on the sublevel sets, in case that X is finite-dimensional.

Note that if f is Isc quasiconvex and radially continuous, then S, has
a nonempty interior for all ¢ > inf f. This is a direct consequence of the
following proposition.

Proposition 9 If f is quasiconvez, lsc and radially continuous then it is
continuous.

Proof Since f is lsc, it suffices to show that S is open. For any = € S, let
b be such that f (z) < b < a. Since f is radially continuous, for any y € X
we can find € > 0 such that |z — ey,z + ey[ C S, . Hence z € algint Sj.
For closed convex sets in Banach spaces the algebraic and the topological
interior coincide ([7, pg 139] e.g.). It follows that € int S, C int S;-. Hence
S is open. O

In the same spirit is the following lemma.
Lemma 10 Let K C X be closed. If algint K # (), then intK # .

Proof Let z € algint K. Then obviously

Un(K—x):X.

neN



By Baire’s lemma, there exists ng € N such that int (ng (K —z)) # 0. We
conclude that intK # 0. O

We are now ready to state the following result.

Proposition 11 Let f be Isc and suppose that either f is radially continu-
ous, or dom (f) is convex and S, has nonempty interior for all a > inf f.
(1) If the set {z € X : Nf< (xz) # {0}} is dense in dom (f), then f is quasi-
CONVEL.

(1) f is quasiconvex if, and only if, the domain of 0?f is dense in dom (f).

Proof (i) To show that f is quasiconvex, it suffices to show that S, is
convex for all a with inf f < ¢ < 4o00. For this it is sufficient to show
that any x € X\S, can be strictly separated from S, by means of a closed
hyperplane. By Lemma 10, both assumptions imply that int S, # (). Choose
any y € int S,.

Case 1: Suppose that f is radially continuous. Then the restriction of f on
the line segment [z, y| takes all the values between f (z) and f (y). Hence
there exists z € |z, y[ such that a < f (2) < 4+o00. In particular z € dom (f),
so (by assumption) we can find ¢* € Nf< (¢) \ {0} where c is as close to z as
we wish. Since f is Isc we may assume that f (¢) > a and ¢ €]z, y[ for some
y' € int S,. Using now (4) we obtain

(c*,d) > 0= flc+d) = f(c).

For all w € S, we have (¢*,w —¢) < 0 (otherwise we would have f (w) >
f(¢) > a). In particular, (c*,w —c) < 0 for all w € y' + B (y') for a
suitable ¢ > 0. It follows easily that (¢*,4’ — ¢) < 0, hence (¢*,z — ¢) > 0.
Summarizing,

(c",w) < (c",c) < (c",z),Yw € S,.

Consequently, ¢* separates strictly S, and z.

Case 2: Suppose that dom (f) is convex. If 2 ¢ dom(f) then we can strictly
separate  and dom(f) by means of a closed hyperplane. In particular, the
same hyperplane strictly separates  and S,.

If z € dom(f) then [y, z[ C intdom (f). Since S, is closed and = ¢ S,,
there exists z € Jy,z[ such that a < f(z) < +00. As in Case 1, it now
follows that z and S, can be strictly separated.

(ii) If f is quasiconvex, then by Proposition 8 we conclude 07f = df. Hence
(by Theorem 4) dom(df) is dense in dom (f). Conversely, if dom (97f)



is dense in dom (f), then the set {z € dom (f) : Nf< () # {0}} is dense in

dom (f), hence by (i) the function f is quasiconvex. O

Combining Proposition 8, Proposition 11 and Theorem 4, we obtain the
following corollary.

Corollary 12 Let f be a Isc radially continuous function (respectively, f
s a Isc function with conver domain and its sublevel sets have monempty
interior). Then the following are equivalent:

(1) f is quasiconvexz.

(ii) 01f = Of
(113) 01f satisfies the conclusion of Theorem 4 (Mean Value theorem)
(1v) dom(07f) is dense in dom (f).

3.1 Comparison of 07 with other subdifferentials

We start with the following result.

Proposition 13 For any lsc function f
"M fColf Cof. (10)

Proof The second inclusion follows directly from Definition 5. To prove the
first inclusion, consider any z* € 9™ f(z). It is straightforward from (3)
that z* € Ny(z) C Nf< (x). Note also that Nf< () # {0} (if z* = 0 then (1)
yields that NV f< () = X*). Hence (10) follows in view of Remark 2. O

Remark 14 In view of Proposition 8, the inclusion 01f C Of becomes
equality if the function f is quasiconvezr and continuous, while both inclusions
in (10) become equalities if the function f is convexz.

We shall further compare 97 with the subdifferential 99 introduced re-
cently in [11, Def. 2.1]. Before recalling the definition of the latter, we
provide a result concerning the representation of Isc quasiconvex functions
by means of quasiaffine functions. We recall that a function f is called
quasiaffine if it is both quasiconvex and quasiconcave. In contrast to the
rest of the paper, in the next proposition we allow the functions to take the
value —oo.

10



Proposition 15 A function f: X — RU {+o0, —o0} is Isc quasiconvezr if,
and only if, it satisfies
f(z) = supq(z)
qeq
where Q is the set of continuous quasiaffine minorants q : X — RU {400, —0c0}
that are differentiable on ¢~ (R).

Proof The “if” part of the statement is obvious, since all continuous quasi-
affine functions are lsc quasiconvex, and this class is closed under pointwise
suprema. To prove the “only if” part, let f : X — RU {400, —o0} be lsc
quasiconvex and define g : X — RU {400} by g(z) = e/(®) (using the con-
ventions e = +oo and e > = 0). It follows that g is quasiconvex and
nonnegative. Combining [8, Theorem 5.15] with implication (ii)=-(i) in [8,
Theorem 5.1], we conclude that g is the pointwise supremum of the col-
lection of its real valued, differentiable quasiaffine minorants with bounded
derivatives. It follows that g is also the supremum of a collection of contin-
uous nonnegative quasiaffine functions, which are differentiable at all points

where their value is positive. Let us observe that f(z) = Ing(z) (with
the conventions In0 = —oo and In+oo = +00), and that the logarithmic
function

In: [0, +00]— RU {+00, —00}

is continuous, differentiable on ]0,+oo[ and increasing. The proposition
follows from the observation that the composition ¢ = Ino r of In with a
continuous quasiaffine function r which is differentiable at all points z such
that r(x) €]0,4o00[ yields a continuous quasiaffine function ¢ differentiable
on ¢~ (R). O

Given a lsc function f : X — RU {400} let us recall the definition of the
subdifferential 99 f given in [11].
The subdifferential 9% f(z) of f at 2 € dom(f) is the set of all z* € X* such
that for some non-decreasing differentiable function ¢ : R — R (depending
on z*) with ¢(0) = 0 and ¢'(0) = 1 the following relation holds:

fy) = f(x) +o({z*,y —z)), for all y € X. (11)

Let us observe that the right part of the above inequality defines a differen-
tiable quasiaffine support function of f at z (i.e. a differentiable quasiaffine
function g satisfying f > g and f(x) = g(x)). Therefore 99 f(z) is contained
in the set of the derivatives at x of the differentiable quasiaffine supports of
f at x.

11



Proposition 16 Let f : X — RU {400} be Isc and suppose that O f C Of.
(i) If x* is the derivative of a continuous quasiaffine support of f at x
differentiable at x, then z* € 01f(x).

(ii) 99 f () C 07f (w).

Proof (i) From Theorem 2.31 of [8] it follows that a continuous function A :
X — R is quasiaffine if, and only if, there exist y* € X* and a nondecreasing
continuous function ¢ : R — R such that A = 1 o y*. Thus, if h is a
quasiaffine support of f at x and z* is the derivative of A at x, then z* =
Y ({y*, z))y*. Since h is a support of f at x, we have obviously z* € 0F f ()
thus z* € Of (x).

Let us first assume that z* # 0. Let y € X be such that (z*,y — z) > 0.
Since z* € df (x) and h is quasiconvex, using (8) we conclude f(y) > h(y) >
h(z) = f(z). Thusy ¢ S<(x)(f), which proves that z* € Ny (z) C N7 (z).
Hence z* € 0f () N Ny (x) = 09f(=).

Suppose now that * = 0. Then obviously z* € df (x) N Ny (), hence it
suffices to show that N f< (z) # {0}. This certainly holds if = is a global
minimum of f. If this is not the case, then y* # 0. Let us prove that, in
this case, y* € Nf< (z) . Indeed, for y € ij(x)(f) one has ¥ ((y*,y)) < f(y) <
f(z) =¥ ((y*,z)), whence, as 1) is nondecreasing, (y*,y) < (y*, ).

(ii) It follows directly from (i) and (11). O

3.2 Other properties of the subdifferential 97

In this section we establish calculus rules for the quasiconvex subdifferen-
tial 9. Let us first remark that inside the class of lsc quasiconvex functions
whose sublevel sets have nonempty interior, the quasiconvex subdifferential
07 inherits calculus rules from the abstract subdifferential 9, see Corollary
12. On the other hand, for any lsc function f, Definition 5 yields the follow-
ing necessary condition for global optimality:

f has a global minimum at xg = 0 € 9f(x). (12)

Remark: Thanks to Proposition 8, relation (12) holds true also for local
minima, whenever f is Isc quasiconvex and for all ¢ > inf f the sublevel sets
Se (f) have nonempty interior.

Let us further show a calculus rule based on the “supremum”, operation
important in Quasiconvex analysis.

12



Proposition 17 Suppose that 0 is either the upper Dini subdifferential Pt
or the Fréchet subdifferential OF. Let {f;}icr be a family of lsc functions on
X and set f = sup;cr fi. Then for every xg € X

" | U 9fi(x0) | SO (o) (13)

i€I(zo)

where I(xg) :={i € I : fi(zo) = f(x0)} and ¥ (K) denotes the w*-closed
convez hull of K.

Proof Let zp € X. If zy ¢ dom(f), then for all i € I(zy), fi(zo) = f(zo) =
+o00 and 91f (zg) = 01f; (xo) = 0. Hence we may suppose that 2o € dom(f).
Let us observe that 07f (zp) is a w*-closed and convex subset of X*. Thus

it suffices to show that if z* € |J 09f;(zo) then z* € 99f (z¢). To do
iEI(Io)

so, let i € I(zg) and z* € 07f; (zg). Since 97f; (z¢) # 0, we deduce that

fo_ (zo) # {0}. Using the fact that f(z¢) = fi(zo) and f(x) > fi(z) for all

x € X, we obtain Nf< (zo) # {0}. Thus it remains to show (see Definition 5)

that z* € OP" f (z) N Ny (o) (respectively, z* € 9% f (z9) N Ny (zp)). But
this follows easily from the fact that Ny, (z9) C Ny (z0) and P fi(z) C
P f (mo) (respectively, 8 f; (zo) C OF f (w0)). O

Remark

1. Relation (13) holds true whenever 0 is an abstract subdifferential satis-
fying 0f (zo) C 0g (xp), whenever f(zo) = g (zo) and f < g.

2. Equality in (13) is generally not true, even if f is the supremum of two
continuous quasiconvex functions. Indeed, let

_ V—z ifz <0
fl(x)_{ —Vz ifz>0

and fo = —f;. Then f(z) = max{fi(x), fa(z)} = \/m and 97f(0) = R,
while 8qf1(0) = aqu(O) = (Z)

Let us give a special case where (13) holds with equality. Suppose
that {f1, f2, ..., fr} be a finite family of locally Lipschitz quasiconvex func-
tions on X that are regular (respectively, strongly regular) at zp, that is
0P fi(zo) = 0°fi(zo) (respectively, 07 fi(zg) = 0°f;(w0)), where 0°fi(zo)
stands for the Clarke subdifferential of f; at zo ([3]). If f = max f; and
x* € 91f (z¢), then obviously z* € 9°f (x¢), hence by [3, Proposition 2.3.12]
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x* € co ( U o°fi (x0)>. Thanks to Corollary 12 (ii) and the regular-
i€1(zo)

ity (respectively, strong regularity) of each f;, we infer that 0°f; (o) =

df; (x9), so equality in (13) follows.

A more general result is given in the following proposition.

Proposition 18 Let f = malei, where {f;}icr is a finite set of lsc quasi-
e

convezx functions such that for all a > inf f; the sublevel sets S, (f;) have
nonempty interior, and let xy € X. Further, let O be the upper Dini subdif-
ferential, and assume that for alli € I and d € X

DT (19, d) = sup {(z*,d) : z* € Of; ()} . (14)

(This condition is in particular satisfied whenever f is reqular, or (Pshenich-
nyi) quasidifferentiable at xo with nonempty subdifferential.) Then

@ | | 0fi(z0) | =0°f (w0), (15)

i€1(zo)
where I(xg) :={i € I : fi(zo) = f(z0)}-

Proof: Thanks to Proposition 17, we have only show the right hand side
inclusion “D”. Let us suppose, towards a contradiction, that there exists

z* € 9f (z0) \CO™ U 9f; (xo)) . Then by the Hahn-Banach theorem,
i€1(zo)

there exists d € X and ¢ > 0 such that for all z* € co*" ( U o9f; (x0)>
iEI(Io)

we have (z*,d) > (z*,d)+e. Since [ is finite, it can be easily shown that there

exists i € I such that fP (zg,d) < fiDJr (29, d). Our assumptions imply (see

Proposition 8 (ii)) that 9f; (zg) = 01f; (z¢). Since 09f (zo) C Of (x0) we

get z* € 9f (zp), that is

P (xo,d) > FP7 (z0,d) > (z*,d) > (2*,d) + e, for all z* € 9f; (o).
This clearly contradicts (14). O

Note that whenever X is finite-dimensional, the assumption on the sub-
level sets is superfluous (see the remark after Proposition 8). The following

14



example shows that the assumption that the family is finite cannot be over-
come, even if all f; are convex and the supremum is actually a maximum at
each point:

Example Let f : R — R be the convex function

f($)2{0 if 2 <0

z+x22 ifo<z °

For each n € N, let g,, () be the equation of the straight line which is tangent
to the graph of f at (1/n,f (1/n)) and =, €]0,1/n[ be the intersection of
this tangent with the z-axis. Let us define

0 ifz <z,
fn () =< gn(z) ifxn<x§%
f) L<s

Then f, is convex, f(z) = mgicf (x) for each z € R, 97f, (0) = {0} while
d9f (0) = [0,1]. Hence, (15) does not hold.
In the sequel we shall show that 97 obeys a chain rule. We start with

the corresponding rule for classical subdifferentials.

Proposition 19 Suppose that 9 is either " or OF , let f: X > RU{+o0}
and suppose that g : RU{+o00} = RU {+o0} is non-decreasing.
(i) If g is differentiable at f (zo) for some xy € dom(f), then

g’ (f (%0)) 0f (z0) C 0 (g o f) (o) ; (16)

(ii) If, moreover, f is convex and ¢’ (f (xo)) > 0, then (16) holds with
equality.

Proof (i) Assume first that & = 0", Let a < f" (z0,d). It follows from
(5) that for any ¢ > 0 there exists 0 < t < § satisfying

[ (zo + td) — f (o)
t

> a.

Hence f (zg +td) > f(xo) + at and g (f (zo +td)) > g (f (zo) + at). Since
g is differentiable at f (z) it follows

g (f (zo) +at) = g (f (z0)) + g (f (z0)) at + o (at)
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o(t)

where limT = 0. Hence
t—0

9 (f (zo +td)) — g (f (z0))
t

o (at)
t

> ag' (f (o)) +

which yields (g o f)D+ (zo,d) > ag’ (f (xp)). Consequently,

+
g (f (20)) £ (0,d) < (g o )P (w0, )
hence (16) holds.
Assume now that 0 = 0F and take any z* € 0F f (x9). Then

i ing! (ot ) = f(zo) — (2%, u
[ll™\O0 ||

>20.

Let a < 0. Then there exists 6 > 0 such that for all u € X with ||ul| <

f (o +u) — f(z0) — (2%, u)

[l

> a.

Since ¢ is non-decreasing, the previous inequality implies

g9 (f (zo+u)) 2 g (f (z0) + (z",u) +a|lul))

and since g is differentiable at f (zp),

g (f (w0 +u)) > g (f (0)) + 9" (f (w0)) (2", u) + allull) + o ((z",u) + alull)

where %1_1;%@ = 0. Since (||z*|| — a) ||u|| > [{z*,u) + a ||u||| it follows that
hmlnf(g ° f) (l'[] + 'LL) - (g © f) ($0) B gl (f (l‘U)) <$*,U> 2 agl (f (xo)) .
lull N0 [l
(17)

Since the above relation is true for all a < 0, the left-hand side is nonnega-
tive. This implies that ¢’ (f (zo)) =* € 0¥ (g o f) (70), hence (16) holds.

(ii) Suppose now that f is convex. Then the function ¢ — f (z¢ + td) is right
differentiable, hence the same holds also for the function ¢t — (gof) (2o + td).
It follows from the usual chain rule for differentiable functions that

+
g (f (20) £ (20,d) = (g o )" (w0,d). (18)
Hence if & = OP", (16) holds with equality.
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Suppose now that & = 9. It is sufficient to show that if z* ¢ 9% f (o)
then ¢’ (f (w0)) z* ¢ OF (g o f) (x0). Since f is convex we have 9T f = 9F'M f,
hence from (1) there exists v € X such that f (zo +u) — f(z0) < (z*,u).
Choose a < 0 such that

f (o +u) = f (z0) < (z%,u) +alull. (19)

Convexity of f guarantees that the function ¢ — w is non-
decreasing for all ¢ > 0. Thus, for any 0 < ¢ < 1 we infer from (19)
that

(50 +tu) — £ (30) < (&, u) + alul)) £

Since ¢ is nondecreasing we obtain
g9 (f (xo +tu)) < g (f (x0) + (2", u) +ta|[ul])
and since g is differentiable at f (z0)

g (f (w0 + tu)) < g(f (z0))+tg' (f (w0)) (2", u) + allull)+o (t (z*, u) + talul)
o(t)

where lim; ,o =~ = 0. Dividing by ¢ ||lu|| and letting ¢ — 0 we deduce
_ ol *
limtigf) (gof)(xo+tu)—(go {t)uﬁro) g (f (z0)) (z*, tu) < ag' ( (20)).

Since a < 0 and ¢' (f (zg)) > 0 it follows that the left-hand side of (17) is
negative. Hence, ¢’ (f (zo))z* ¢ 0% (go f) (zo) - O

Proposition 20 Let f : X — RU{+oo} be lsc and g : RU{+0c0} —
RU {400} be non-decreasing. Assume that the subdifferential O satisfies
assertions (i) and (i) of Proposition 19 (for instance d = ¥ or OP"). If g
is differentiable at f (zo) with ¢’ (f (x9)) > 0 for some zo € dom(f), then

9" (f (%0)) 9°f (zo) € 0" (g f) (w0) ; (20)
the above inclusion becomes equality whenever f is conver.

Proof Since g is nondecreasing and ¢’ (f (zg)) > 0 we can easily deduce
that

N7 (w0) = Ny (o) (21)
and
Ny(zo) = Nyos(wo)- (22)
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Thus, if z* € 0f (o), then (21) yields Ny (o) # 0. Since 9f C df, we
infer from (16) that

g' (f (x0)) 2" € D (g o f) (o) -

Besides, since z* € Ny(z) and Ny r(zo) is a cone, (22) implies

g’ (f (o)) =" € Nyog (o).

Hence (20) holds.

If now f is convex, then by Proposition 8, 09f = 0™ f = 0f. Hence, in
order to show the equality in (20), we have to show that 97 (go f) (zg) =
d(go f)(xo). Tt suffices to show that if z* € 9(go f)(zo) then z* €
07 (g o f) (zg). Since (16) holds with equality, we have

*

7 (F @) € 0f (o) = 97f (20) -
Hence, Ny, (z0) = Ny (z0) # {0} and (since Ny (o) is a cone), z* €
Ny (z0) = Ngos (x0). It follows that z* € 09 (g o f) (o). O

Let C C X and let us define the (upper Dini tangent) cone Th+ (C, x¢)
of C at zy € C as follows:

Tp+ (C,zp) ={ue X :30 >0: Vt €]0,0], zo +tuec C}.
We have the following proposition.
Proposition 21 Let f: X — RU {+o0o} and g € f 1 (R). Then

{z* € X*: (2%, —1) € Nepi s (w0, f (20))} C 0f (x0)
C {z" e X*: (2%, —1) € (Tp+ (epif, (zo, f (20))))"}

Proof The first inclusion follows from (10) and the observation that
"M f (x0) = {a* € X* : (2%, =1) € Nepi g (o, f (20))} -
To prove the second inclusion, since 99 C 9 C 9” " it suffices to show that
0" f (a0) = {a" € X"+ (2%, ~1) € (Tp+ (epi £, (w0, f (20))))"}

To this end, let z* € P f (zo). For any (u,v) € Tp+ (epif, (w0, f (z0)))
there exists 0 > 0 such that

[ (zo+tu) < f(xo) + tv
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for all ¢ €]0, 0[. It follows that

f (zo + tu) — f (z0)

(z*,u) < limsup <w
N0 t

ie. (z*,—1) € (Tp+ (epi f, (zo, f (20))))’-

Conversely let z* € X* be such that (z*,—1) € (Tp+ (epi f, (zo, f (z0))))’.
For each u € X set v = f27 (z9,u). Then for any A €]v,+oo| we can find
d > 0 such that for all ¢ € |0, [

f(zo + tu) — f (z0) <
p <\

It follows that (u,A) € Th+ (epi f, (xo, f (z0))) hence (z*,u) < A. Since this
is true for all X €]v, +-00[ we deduce that (z*,u) < v, hence z* € P f (z0).
El

Let us finally state the following corollary.

Corollary 22 Let A C X and denote by 64 : X — RU {400} the indicator
function of A defined by

5,4(:17):{ 0, ifre A

+oo, ifz ¢ A.
For all xg € A we have

0704 (zo) = Na (z0) -
Proof We have the following equivalences:

z* € "6, (v0) & Vo € X, (2%, 2 — mo) < 64 () — da (x0)
eVre A, (", —x9) <0 x" € Ny(z).

Hence (10) implies that N4 (zg) C 9904 (o) . Conversely, if x* € 9704 (xo)
then z* € N;, (zo). It is very easy to see that Ns, (z9) = N (zo) and the
corollary follows. O
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