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A DUAL CHARACTERIZATION OF THE RADON-NIKODYM
PROPERTY

M. BAcHIR & A. DANIILIDIS

Abstract We prove that a Banach space X has the Radon-Nikodym
property if, and only if, every weak*-lower semicontinuous convex
continuous function f of X* is Gateaux differentiable at some point
of its domain with derivative in the predual space X.
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1 Introduction

Collier [5] has shown that a Banach space X has the Radon-
Nikodym property if, and only if, all weak*-lower semicontinuous
convex continuous functions on the dual space X* are generically
Fréchet differentiable. (Such a dual space was called in [5] weak™*-
Asplund). In this article we give the following characterization of
the Radon-Nikodym property in terms of Gateaux derivatives.

Theorem 1 A Banach space X has the Radon-Nikodym property
if, and only if, every weak*-lower semicontinuous convex continuous
function on X* is Gateauz differentiable at some point of its domain
with derivative in the predual space X.

Since Fréchet derivatives of weak*-lower semicontinuous convex
continuous functions of X* are always elements of X (see [7] e.g.),
the improvement upon the aforementioned result of Collier consists
on replacing the Fréchet derivative by Gateaux and on passing from
a dense differentiability assumption to the existence of the derivative
at one point.

If X does not have the Radon-Nikodym property, then it is possi-
ble to have nowhere Fréchet differentiable weak*-lower semicontin-
uous convex continuous functions on X* for which the set of points



where the Gateaux derivative exists and belongs to the predual space
is dense (see Proposition 8). Concurrently, it is also possible to
have weak*-lower semicontinuous convex continuous functions on
X* that are generically Gateaux differentiable with all derivatives
in X\ X. Indeed, consider the Banach space X = ¢y(N), its dual
space X* = (*(N) and the function g(z) = ||z||;, see [10, Example
1.4 (b)] for details.

Let us finally note that characterizations of the Radon-Nikodym
property for dual Banach spaces in terms of the Gateaux derivative
are recently established by Giles in [8, Theorem 2].

The proof of Theorem 1 is given in Section 3, while in the follow-
ing section we fix our notation and we recall relevant definitions.

2 Preliminaries

In the sequel, (X, ||.||) will be a Banach space and (X*,||.||) will
be its dual. We denote by Bx the closed unit ball of X and by R
(resp. N) the set of all real (resp. positive integer) numbers. For
any ¢ € X and any p € X* we denote by (p,z) the value of the
functional p at the point x. Similarly, for any z** in X** we denote
by (p, 2**) the value of z** at p. We also denote by CoF the closed
convex hull of the set F'. For any non-empty closed bounded subset
F of X we denote by ¢ the indicator function of F' (¢p(z) := 0, if
r € F and +oo, if © ¢ F) and by ¢} its Fenchel conjugate, i.e. for
all p e X~

Vr(p) = sup (p,z). (1)

el

It is known that ¢} is weak® lower semicontinuous convex continu-
ous function. (The latter follows from the fact that the boundedness
of F yields dom} = X*). We also recall that every weak*-lower
semicontinuous convex continuous function g : X* — RU {400} co-
incides with the first conjugate f* of a lower semicontinuous convex
function f defined on X (take f := ¢*). We denote by domg :=
{p € X* : g(p) < +o0} the domain of the function g. Then, the
Fenchel-Moreau subdifferential dg of ¢ at any py € dom g is defined
as follows:

0g(po) = {2z € X™ 1 g(p) — g(po) = (p —p0,2™), VP € X7} (2)
If pp € X*\ dom g, then we set dg(poy) = 0.



Given a closed subset F' of X and a point zy of ' we say that x
is a strongly exposed point of F', if there exists py € X* such that

any sequence {x,},>1 in F satisfying ngrfoo<p0,xn> = sulg(pg,@ is
Te

converging to xg for the norm topology. In such case we say that
the functional py strongly exposes zq in F. We denote by se(F’) the
set of strongly exposed points of F.

We now introduce the notion of a weakly exposed point, which
will be useful in the sequel, see Lemma 5.

Definition 2 Let F' be a closed subset of X. A point xo € F is

called weakly exposed point in F, if there exists py € X* such that

any sequence {x, tn>1 in F with lim (pg, x,) = sup(py, z) is weakly
N n—r+00 z€F

converging to .

In the case of the above definition we say that the functional pg
weakly exposes xq in F. It follows easily that py attains its unique
maximum on F' at zy, hence in particular z, is an extreme point
of F. We denote by we(F') the set of weakly exposed points of F.
Furthermore, a point x( is called a point of continuity of F, if the
identity mapping id : (F,Sy) — (F, ) is continuous, where 3,
(resp. ) denotes the relative weak (resp. norm) topology of F'. It
follows directly that x( is a strongly exposed point of F'if, and only
if, it is both weakly exposed and a point of continuity of F'. Finally,
a point zy is called weakly denting (or strongly extreme, according
to the terminology in [4, pg 67]), if for any relatively weakly open
subset W in F' containing xy there exist p € X* and o > 0 such
that the set {x € F': (p,z) > (p, xo) — a} is included in W.

3 Proof of the main result

The proof of Theorem 1 is based on the following result of Bour-
gain [3, Ch. 1; Th. 4]. (For a proof in English, see [4, Cor. 3.7.6].)

Theorem 3 A Banach space X has the Radon-Nikodym property
if, and only if, every nonempty closed convex bounded subset F' of
X has at least one weakly denting point.

We can easily conclude the following corollary. The analogous
result for dual Banach spaces is given in [8, Theorem 4].



Corollary 4 For a Banach space X, the following are equivalent:

(i) X has the Radon-Nikodym property

(1i) Every closed convex bounded subset of X is the closed conver
hull of its weakly exposed points.

(1ii) Every nonempty closed convex bounded subset of X has at
least one weakly exposed point.

Proof It is known ([4, Cor. 3.5.7], [10, Th. 5.21] e.g.) that a
Banach space X has the Radon-Nikodym property if, and only if,
every closed convex bounded subset of X is the closed convex hull of
its strongly exposed points. This shows that (i)==-(ii). Implication
(ii)==(iii) is trivial, while (iii)==-(i) follows from Theorem 3 and
the observation that every weakly exposed point of F' is weakly
denting. O

Remark 1 A weakly denting point is not in general weakly exposed,
even in finite dimensions. Indeed, let X = R?, F = {(z,22) :
f(x1) <z < g(x1)}, where f(z) = max{0,23} and g(z) = = + 1,
and T = (0,0). Then T is a weakly denting point of the compact
convex set F', without being weakly exposed.

Remark 2 A Banach space X has the Radon-Nikodym property
if, and only if, for every nonempty closed convex bounded subset
F of X we have se(F) # (. However, if X does not have the
Radon-Nikodym property, then the fact that we(F) # () (or even
that co(we(F)) = F) for some closed convex bounded subset F' of
X does not necessarily imply that se(F') # (). (Consider the subset
F of ¢y(N) defined by (12) in Proposition 8 and Claims 1 and 2
therein).

We shall finally need the following lemma.

Lemma 5 Let X be a Banach space and F' be any non-empty closed
convex bounded subset X. Then the following are equivalent:

(i) The function 5 is Gateaur differentiable at py with derivative
Xo € X.

(ii) xg € F and the functional py is weakly exposing xq in F.

Proof (i) = (i) : Assume that (i) holds. Since zq = V%)% (po)
(where V&% denotes the Gateaux derivative of %), we obviously
have zy € 09} (po), that is for all p € X*

Vi(p) — ¥E(po) > (P — Po, 7o)
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For p = 0 we obtain

Vp(po) = igg (po, ) = (po, o). (3)

Let now {z,},>1 be a sequence in F' such that

lim (pg,x,) = sup (po, x). (4)
n—-+00 €l
It suffices to show that {x,},> is weakly converging to zy. (Then,
since the weak and the norm closure of the convex set I’ coincide,
it will also follow that xy € F').
Let us assume, towards a contradiction, that there exists a sub-
sequence {zy, }r>1 of {z,}n>1, h € X* and o > 0 such that for all
kE>1

(h, ) — (h,xo) > (5)
Thanks to (3) and (4), we can consider £, N\, 0" in a way that
<p07xn> Z <p071'0> — &p. (6)

Since Y (p) > (p, ), using (3) we get
Ui (p) = ¥i(po)
which in view of (6) yields
Ur(P) = Yr(Po) + (P — Pos Tn) — en. (7)
Set t, = 2¢,/a. Then for p = py + t,,h relation (7) yields
(VF)(Po + tnh) = (VF)(Po) = (tnh, xn) — n

for all n > 1. In view of (5) this implies

(V7)) (po + tn,h) — (V5 (po)

ty,

+ (P, Tn) — (Po, To),

_<h7$0>Z%>0

for all £ > 1. It follows that z; is not the Gateaux derivative of ¢7,
at pg, hence a contradiction.

(i7) — (i) : Suppose that py is weakly exposing xy in F, hence in

particular (py,zo) = sup (py,x). It follows easily from (2) that
rEF



o € 0V} (py). Let us now suppose that (i) does not hold. Then
there exist € > 0, h € X* with ||h]| < 1 and ¢, N\, 0" such that

(V) (o + tah) — (¥5)(Po) > (tnh, To) + Etn. (8)
For every n > 1, choose x,, in F' such that
x In
(o +tahs 2n) > (Up) (Po + tah) — —. (9)

Since (¢5)(po) > (po, Tn), the above inequality yields

(o + tals ) = {po ) > (03 (o + tah) = (03 (o) — 2.
Hence ;
(tnhs @n) > (UF) (po + tah) = ($7) (po) — (10)
Combining (8) and (10) we conclude
(h,xn, —xo) > — %,

which shows that {z,},>1 is not weakly converging to ;. However,

since the sequence {z,},>1 is bounded and the function ¢}, is con-

tinuous, relation (9) yields lim (poy, z,) = (¢¥})(po), obtaining thus
n——+00

a contradiction to Definition 2. O

Remark The above proof was inspired from techniques developed in
[2] where a result between well-posed problems and differentiability
was established. Results on the same spirit are also established in [6,
Section 1], via a different approach. We are grateful to C. Zalinescu
for bringing into our attention the aforementioned reference.

Proof of Theorem 1 The “only if” part follows from the result
of Collier [5] and the fact that the Fréchet derivatives of weak*-
lower semicontinuous convex continuous on X* always belong to
the predual space X (see [7] e.g.).

For the “if” part, let F' be any closed convex bounded subset
of X. Then the function ¢} of X* (given in (1)) is weak™-lower
semicontinuous convex and continuous. From our hypothesis and
Lemma 5 we conclude that we(F') # (). Since F is arbitrary, Corol-
lary 4 asserts that X has the Radon-Nikodym property. 0



Let us recall that a Banach space X is called weakly sequentially
complete, if every weakly Cauchy sequence of X is weakly converging
in X. A typical example of a non-reflexive weakly sequentially com-
plete Banach space is the space L'(p), where y is a o-finite positive
measure. The following remark is due to G. Godefroy.

Corollary 6 Let X be a weakly sequentially complete Banach space.
Then X has the Radon-Nikodym property if, and only if, every
weak*-lower semicontinuous convexr continuous function on X* is
Gateauz differentiable at some point of its domain.

Proof The “only if” part is a direct consequence of Theorem 1. The
“if” part follows from the following observation: if F'is a nonempty
closed convex bounded subset of X, and if V&% (p) is the Gateaux
derivative of the function ¢, at p € X*, then there exists {x,},>1
in F' that is weakly*-converging to V4% (p) (see proof of Lemma
5 (i)==(ii)). It follows that {z,},>; is a weakly Cauchy sequence,
hence in view of our hypothesis V&5 (p) € X. (For similar con-
siderations, see also [9].) We conclude by Lemma 5 (i)==-(ii) and
Corollary 4 (iii)=(i). O

Lemma 5 has also the following consequence. (The proof below
is similar to [10, Theorem 5.20]).

Corollary 7 Let F' be a closed conver bounded subset of X. If 1.
i1s Gateaux differentiable in a dense subset of X™* with derivatives in
X, then F = co(we(F)).

Proof Since F' is bounded, we have dom(¢;) = X*. (In particular
the function 1} is convex and Lipschitz). Since F is closed and
convex, we have ¢o(we(F')) C F. Let us suppose, towards a contra-
diction, that there exists some zy in F'\ ¢o(we(F')). Then applying
the Hahn-Banach theorem, we can find p € X* (p #0) and @ € R
such that

sup {(p,x) : x € co(we(F))} < a < (p, xp).

Set D = {q € X*:3VY(¥;)(q) € X}. Since D is dense in X*, we
may find ¢ € D close to p such that z :== V% (¥%)(q) € X and

sup {(¢g,z) : x € @o(we(F))} < a < (g, xy). (11)



By Lemma 5 we conclude that z € we(F') and that the functional ¢
weakly exposes z. This clearly contradicts (11). O

The space c¢o(N) is a typical example of a Banach space without
the Radon-Nikodym property. In this case, as already mentioned
in Section 1, the norm || - ||; provides an example of a weak*-lower
semicontinuous convex continuous function of ¢'(N), which is gener-
ically Gateaux differentiable with all derivatives in X**\ X. In
the following proposition we give an example of a (nowhere Fréchet
differentiable) weak*-lower semicontinuous convex continuous func-
tion of /' (N), which is Gateaux differentiable with derivatives in the
predual space in a dense set.

Proposition 8 Let X = ¢y(N). Then there exists a weak*-lower
semicontinuous convex continuous function f: X* — R such that:
(1) there exists a dense subset D of X* such that f is Gateauz dif-
ferentiable at every point of D with derivative in the predual space ;
(ii) f is nowhere Fréchet differentiable.

Proof Set X = ¢y(N) and consider the set

F=Bxnci(N) :={z= (2" :|7|c <1 and z' >0 (Vi € N)}.
It is easily seen that F'is closed convex bounded and that "
ext(F) = {z € F: 2" € {0,1} for all i}

where ext(F') denotes the set of the extreme points of F.

CrLAmM 1 Let T € ext(F) and consider the finite set
L={ieN:3 =1}. (13)

Then any functional p = (p'); of X* := (1(N) satisfying
b0 e a4

weakly exposes the point T.

In particular ext(F) = we(F) (hence we(F) #£0).

[Proof of Claim 1: Let 7 € ext(F), I; = {i € N : ' = 1} and
consider any p in ¢'(N) satisfying (14). We first note that for all
x € F and all 7 € N we have

prat <p'F. (15)



It follows that (p,z) < (p,z), for all z € F, i.e. (p,T) = sup(p, ).
rEF

Take now any sequence {z,},>1 in F' such that lirJP (p, x,) = (p, T).
- n—r-+00

Let us show that _

=z (16)

for all 7+ > 0.

Indeed, assume that for some i (16) does not hold. Then there exist
a subsequence {z{° }p>1 of {l0},>1, € > 0 and ko € N such that for
all k& > k -

|pio|”

2t — 2| >
Using (15) we infer that
P xffk < p 3 — .

Combining with (15) we get (p,z,,) < (p,z) — ¢, for all k > k.
This contradicts the fact that (p,z,) — (p,z). It follows that (16)
holds for all 7 > 0.

Since the sequence {z,},>1 is bounded, we conclude from (16) that
&, — Z. Hence the functional p is weakly exposing Z in F. Since
every weakly exposed point is obviously extreme, the proof of the
claim is complete. ¢]

CLAIM 2 se(F) = 0.

[Proof of Claim 2: It clearly suffices to show that any point Z in
we(F') is not a point of continuity for F'. To this end, take any
T € we(F) and consider the sequence {z,},>1 in F' with

0 elsewhere

n

where I is given by (13). Then it follows easily that x, — Z. On
the other hand, for n sufficiently large, we have ||z, — Z||oc = 1. 4]

Consider now the weak*-lower semicontinuous convex continuous

function ¢% : £'(N) — R defined by
Vir(p) = sup(p,7) = [P+ (17)

where |[|-]; is the usual norm of ¢/!(N) and

i P ifp’:>0
P+=1Y 0 ifp <o.



Let us denote by D the set of all functionals p = (p'); in ¢}(N)
satisfying (14) for some finite (possibly empty) subset I of N. For
every such functional p, consider the point Z = (Z'); of ¢;(N) defined
by
ﬂ_{1ﬁm1
=10 ifie N\

Then z € F and I = I; (where I; is given in (13)). It follows by
Claim 1 that the functional p weakly exposes Z. Applying Lemma
5 (ii) — (i) we conclude that T is the Gateaux derivative of ¢} at
P.

Let us now show that D is dense in ¢'(N). Indeed, let any ¢ =
(¢%); in ¢'(N) and any & > 0. Then for some ny € N we have:

no
i€
lglli < Z l¢'| + 3
i=0
Consider now the functional p = (p); defined by

V= ¢ ifi<mngand g #0
—57z  elsewhere.

It is easily seen that p € D. Moreover,

+00 ) ) +00 _ +00 e
lo=pli=2_l¢' =<3 Id1+) 5 <=
i=0 i>no 1=0

We have shown that the function v} is densely Gateaux differen-
tiable with derivatives in the predual space X. On the other hand,
since by Claim 2 the set F' has no strongly exposed points, it follows
from [1, p. 450] that 1} is nowhere Fréchet differentiable.

Let us finally note that the function %} is in fact generically
Gateaux differentiable. Indeed, it is easily seen that for every p =
(p%); with pi # 0 for all i, we have V&% (p) = 2** where 2** € (*°(N)
is given by

(Z)_{Oﬁﬁ<0
O
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