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GRADIENT FLOWS, SECOND-ORDER GRADIENT SYSTEMS AND
CONVEXITY∗

TAHAR Z. BOULMEZAOUD† , PHILIPPE CIEUTAT† , AND ARIS DANIILIDIS‡

Abstract. We disclose an interesting connection between the gradient flow of a C 2-smooth
function ψ and strongly evanescent orbits of the second-order gradient system defined by the square-
norm of ∇ψ, under an adequate convexity assumption. As a consequence, we obtain the following
surprising result for two C 2, convex, and bounded from below functions ψ1, ψ2: if ||∇ψ1|| = ||∇ψ2||,
then ψ1 = ψ2 + k for some k ∈ R.
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1. Introduction. We are interested in the first-order gradient system

(DS-1) u′(t) = −∇ψ(u(t)), t ≥ 0,

in comparison with the second-order gradient system

(DS-2) v′′(t) = ∇V (v(t)), t ≥ 0,

where ψ : H → R is a C 2 function, V : H → R is a C 1 function, ∇ψ, ∇V denote the
respective gradients and H stands for a Hilbert space with inner product 〈· | ·〉 and
associated norm ‖·‖. Throughout this work, the functions ψ and V will be linked by
the relation

(1) V (x) =
1

2
‖∇ψ(x)‖2 , x ∈ H.

The second-order system (DS-2) is introduced here (and studied for the potential V
given by (1)) for the first time in the literature.

In what follows the set of critical points of ψ (singular set) will be denoted by

Critψ = {x ∈ H | ∇ψ(x) = 0} = {x ∈ H | V (x) = 0}.

When ψ is convex, the set Critψ is convex and consists of all (global) minimizers of ψ.
Therefore, in this case the set of critical values ψ(Critψ) is either empty or a singleton.
We may also observe that Critψ is also the set of minimizers of V . Therefore, it is
also convex whenever V is assumed so.
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By a global solution of (DS-1) (respectively, (DS-2)) we mean a function u ∈
C 1([0,+∞), H) (respectively, v ∈ C 2([0,+∞), H)) satisfying (DS-1) (respectively,
(DS-2)) for all t ≥ 0. In both cases, we impose the initial condition

(I0) u(0) = u0 ( respectively, v(0) = u0 )

for some given u0 ∈ H. This is a very common way to obtain unique solutions for
(DS-1), whereas for (DS-2) an additional condition on the initial velocity v′(0) is
normally required. We deliberately refrain from doing so, and instead require the
solutions of (DS-2) to be global on [0,+∞) and to comply with one of the following
asymptotic conditions, introduced in the following definition.

Definition 1.1 (weakly and strongly evanescent solutions). A global solution v
of (DS-2) is called

– weakly evanescent (in short, w-evanescent) if it satisfies

(w-EV) lim inf
t→+∞

‖v′(t)‖ = lim inf
t→+∞

V (v(t)) = 0,

– strongly evanescent if it satisfies

‖v′(·)‖ ∈ L2(0,+∞) and V (v(·)) ∈ L1(0,+∞),

or equivalently

(EV)

∫ +∞

0

(
‖v′(t)‖2 + V (v(t))

)
dt < +∞.

Remark 1.2. (i) Conditions (w-EV) and (EV) as well as the associated termi-
nology appear to be new in the literature. Both conditions correspond to a kind of
boundary condition of the orbit v(t) at infinity. (ii) Any strongly evanescent solution
of (DS-2) is also w-evanescent.

It is straightforward to see that any global solution of (DS-1) is also a solution
of (DS-2). However, this solution might fail to satisfy (EV). To see this, let n = 1
and ψ(x) = −x2, for x ∈ R, and notice that v(t) = e2tx0 is a solution of (DS-1) (and
consequently of (DS-2)), but (EV) fails, since v 6∈ L2(0,+∞). Conversely, a solution
of (DS-2) satisfying (EV) and (I0) might not be a solution of (DS-1) since the system
(DS-2)–(EV) does not distinguish between ψ and −ψ.

Let us further consider the following two conditions:

(C) inf
z∈H
‖∇ψ(z)‖ = 0 and (C?) ψ is bounded below.

By Ekeland’s variational principle [20, Corollary 2.3] we deduce that (C?) =⇒ (C).
This latter condition (C) is necessary for the existence of w-evanescent solutions of
(DS-2).

A constant function v = x̂ is a w-evanescent solution of (DS-2) if and only if
x̂ ∈ Critψ, while Critψ 6= ∅ clearly implies (C). If in addition ψ is convex, then (C?)
is also fulfilled. The example of the convex C 2 function

(2) ψ(x) =

{
− ln(1− x) if x ≤ 0,

1
2x

2 + x if x ≥ 0

shows that (C) and (C?) are not equivalent, despite the fact that ψ is convex (in this
case, only (C) holds).
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Description of the results. First-order and second-order gradient systems have
often been explored independently in the literature (see, e.g., [12, 14, 23, 25, 22, 15,
18, 24, 3] and references therein). A first innovative aspect of this work is to introduce
the particular second-order ordinary differential equation (DS-2), for a potential V (·)
given by (1), and shed light on its connection with the first-order gradient system
(DS-1) when either f or V is convex. Exploring this link reveals some unexpected
properties of convex functions described below. Another by-product, as we shall see,
concerns uniqueness of smooth solutions to a certain eikonal equation.

More precisely, in this work we show that if either ψ or V is convex, then any
solution of (DS-2) satisfying (I0)–(EV) is also a solution of (DS-1)–(I0), and vice
versa. In particular, the second-order system (DS-2) coupled with (I0)–(EV) is well
posed and can be integrated to obtain the first-order system (DS-1). An important
consequence of this result is an intimate link between convexity properties of ψ and
of ‖∇ψ‖2 (Corollary 3.17):

(‖∇ψ‖2 convex and ψ bounded below) =⇒ ψ convex.

This leads to the surprising corollary

‖∇ψ1‖ = ‖∇ψ2‖ =⇒ ψ1 = ψ2 + constant,

provided that one of the following assumptions is fulfilled:
(a) ψ1 and ψ2 are convex and inf ‖∇ψ1‖ = 0 (Theorem 3.8),

(b) ‖∇ψ1‖2 is convex and ψ1 and ψ2 are bounded below (Corollary 3.20).
Another consequence is a uniqueness property for smooth solutions of the usual

eikonal equation

(3) ‖∇ψ‖2 = f

in the whole space. It is well known that uniqueness plays a prominent role in un-
derstanding the structure of the set of solutions of (3) (see, e.g., [27, 30, 16, 17, 29,
8, 32, 9, 21, 26, 10] and references therein). Here we obtain uniqueness of bounded
below C 2 solutions when f is nonnegative and convex. When f is only nonnegative,
we prove that (3) has at most one bounded from below C 2 convex solution. If f is
only nonnegative, we prove that any convex and bounded below solution is unique.

Finally, disclosing the link between (DS-1) and (DS-2) leads to a simple variational

principle for the first-order gradient system (DS-1) when ‖∇ψ‖2 is convex and ψ is
bounded below (Proposition 3.22).

Structure of the manuscript. The rest of the paper is organized as follows. In
section 2 we recall basic properties of the first-order system (DS-1) for ψ ∈ C 2(H)
and for the second-order system (DS-2) for V (x) = 1

2 ||∇ψ(x)||2 that will be used in
what follows. No originality is claimed in subsection 2.1 or in the beginning of sub-
section 3.1, where most of the stated properties of the first-order system (DS-1) are
essentially known. These properties are recalled for completeness, and short proofs
are eventually provided to keep the manuscript self-contained. Subsection 2.2 con-
tains properties of the system (DS-2) with emphasis on Lyapunov functions and on
asymptotic behavior of the orbits, while subsection 2.3 is dedicated to comparing the
solutions of these two systems.

The main results are given in section 3 and organized as follows: subsection 3.1
collects all results obtained under the driving assumption that ψ is convex, while
subsection 3.2 does the same under the assumption that V is convex. We quote in
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particular Theorem 3.8 (determination of a convex function by the modulus of its
gradient) and its variant Corollary 3.20, which are important consequences of The-
orem 3.6 (equivalence of solutions of (DS-1) and (DS-2) if ψ is convex) and Propo-
sition 3.16, respectively. Finally, in subsection 3.3 we associate with the first-order
system (DS-1) an alternative variational principle, which is in the spirit of the results
of this work.

We assume familiarity with basic properties and characterizations of convex func-
tions. These prerequisites can be found in the classical books [35] or [36].

2. Basic properties of first- and second-order gradient systems.

2.1. First-order gradient systems: Basic properties. In this subsection we
recall for completeness basic properties of solutions of the first-order gradient system
(DS-1), which will be used in what follows. In this subsection the functions ψ ∈ C 2(H)
and V (·) given in (1) are not yet assumed to be convex.

Lemma 2.1 (Lyapunov for (DS-1)). Let u(·) be a maximal solution of (DS-1)
defined on [0, Tmax), where Tmax ∈ (0,+∞]. Then,

(i) ρ(t) := ψ(u(t)) is nonincreasing on [0, T ) and, for every T < Tmax,

(4)

∫ T

0

‖u′(t)‖2 dt = ρ(0)− ρ(T );

(ii) ‖u′(·)‖ ∈ L2(0, Tmax) if and only if

(5) inf
0≤t<Tmax

ψ(u(t)) > −∞.

Proof. Since ρ′(t) = 〈∇ψ(u(t)) | u′(t)〉 = −‖u′(t)‖2 = −‖∇ψ(u(t))‖2 ≤ 0, we
deduce (i). The second assertion follows by taking the limit as T → Tmax.

Remark 2.2 (strict Lyapunov). Assuming ψ ∈ C 2(H) yields that both (DS-1)
and the equation w′(t) = ∇ψ(w(t)) admit unique solutions under a given initial
condition. A standard argument now shows that if the initial condition is not a
singular point (that is, ∇ψ(u(0)) 6= 0), then ∇ψ(u(t)) 6= 0 for every t > 0 and ρ is
strictly decreasing.

Lemma 2.3 (maximal nonglobal solutions). If u(·) is a maximal solution of
(DS-1) which is not global (i.e., Tmax < +∞), then

(6) inf
0≤t<Tmax

ψ(u(t)) = lim
t→Tmax

ψ(u(t)) = −∞

and

(7)

∫ Tmax

0

‖u′(t)‖2 dt = +∞.

Proof. In view of Lemma 2.1(i), assertions (6) and (7) are equivalent. Assume
now that (7) does not hold. Then the integral∫ Tmax

0

u′(t)dt,

converges in H to the element u(Tmax)− u0, where u(Tmax) = limt→Tmax u(t). More-
over ∇ψ(u(Tmax)) 6= 0 (cf. Remark 2.2). Considering the Cauchy problem w′(t) =
−∇ψ(w(t)) with initial condition w(Tmax) = u(Tmax), we deduce that the (presu-
mably maximal) solution u(·) can be extended to the right on an interval of the form
[0, Tmax + ε) for some ε > 0, which is a contradiction.
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Corollary 2.4. If ψ is bounded below, then any maximal solution u(·) of (DS-1)
is global and ‖u′(·)‖ ∈ L2(0,+∞).

Proof. If ψ is bounded below, then (6) cannot be satisfied and the solution u is
global. Obviously, (5) is fulfilled, yielding ‖u′(·)‖ ∈ L2(0,+∞).

Remark 2.5 (grad-coercive functions). A function ψ ∈ C 1(H) is called grad-
coercive if ‖∇ψ‖ is bounded on the sublevel sets [ψ ≤ α] := {x ∈ H : ψ(x) ≤ α},
α ∈ ψ(H).

If ψ is grad-coercive, then any maximal solution of (DS-1) is global. Indeed,
let u(·) be a maximal solution defined on [0, Tmax). Since u(t) ∈ [ψ ≤ ψ(u(0))],
for all t ∈ [0, Tmax), the function ‖∇ψ(u(·))‖ is bounded on [0, Tmax]. Setting M =
sup0≤t<Tmax

‖∇ψ(u(t))‖, we obtain∫ Tmax

0

‖u′(t)‖2 dt =

∫ Tmax

0

‖∇ψ(u(t))‖2 dt ≤MTmax < +∞,

which contradicts (7).
Let us observe that ψ can be grad-coercive without being bounded from below.

A simple example is the identity function x 7→ x on R. Similarly, a function which is
bounded below is not necessarily grad-coercive, for example the function x 7→ cos(x2).

Remark 2.6 (relation to other domains). The asymptotic behavior of (DS-1) has
been studied by several authors in the framework of analytic geometry (see, e.g.,
[28, 37]), in relation to convexity (see [7, 18, 19, 31]), to optimization algorithms (see,
e.g., [2, 4, 11]) and to PDEs (see, e.g., [15, 24]). Roughly speaking, good asymptotic
behavior requires a strong structural assumption (analyticity or convexity); see [1] or
[34, Page 12] for classical counterexamples.

2.2. Second-order systems: Properties of strongly evanescent solu-
tions. In this subsection we emphasize properties of weakly and strongly evanescent
solutions of the second-order system (DS-2), where ψ ∈ C 2(H) and

V (x) =
1

2
||∇ψ(x)||2.

Lemma 2.7 (equality of modula). Let v(·) be a w-evanescent solution of (DS-2).
Then

(8) ‖v′(t)‖ = ‖∇ψ(v(t))‖ for all t ≥ 0.

Proof. It is easily seen that I(t) := 1
2 ‖v

′(t)‖2 − V (v(t)) is a first integral of

the system (DS-2), that is, for some k ∈ R and all t ≥ 0 it holds that ‖v′(t)‖2 =
k + 2V (v(t)). Taking the limit inferior as t → +∞ we infer from (w-EV) that k = 0
and the result follows.

Lemma 2.8 (range of orbits). If Critψ = ∅, then the range {v(t) ; t ≥ 0} of any
w-evanescent solution v(·) of (DS-2) cannot be relatively compact.

Proof. Let v(·) be a w-evanescent solution of (DS-2). If {v(t) ; t ≥ 0} were rela-
tively compact, then there would exist a sequence (tn)n≥0 such v(tn) → z0 for some
z0 ∈ H. By (w-EV) we obtain V (z0) = 0. Therefore ∇ψ(z0) = 0, that is, Critψ 6= ∅,
a contradiction.

The following proposition assembles properties of the strongly evanescent solu-
tions of (DS-2).
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Proposition 2.9 (properties of strongly evanescent solutions). Let v(·) be a
strongly evanescent solution of (DS-2). Then the following hold.

(i) We have limt→+∞ ψ(v(t)) ∈ R and

(9) |ψ(v(0))− ψ(v(t))| ≤
∫ t

0

‖v′(s)‖2 ds for all t ≥ 0.

(ii) If ψ is coercive (i.e., [ψ ≤ α] is bounded for all α ∈ ψ(H)), then v(·) is
bounded.

(iii) If
∥∥∇2ψ(v(·))

∥∥ is bounded, then limt→+∞ ‖v′(t)‖ = limt→+∞ V (v(t)) = 0.
(iv) The function

φ(t) := v′(t) + σ∇ψ(v(t)), σ ∈ {−1, 1},
satisfies

φ′(t) = σ∇2ψ(v(t))φ(t).

Proof. Set r(t) := ψ(v(t)), t ≥ 0. Then |r′(t)| = 〈v′(t) | ∇ψ(v(t))〉. By the
Cauchy–Schwarz inequality and Lemma 2.7 we get

|r′(t)| ≤ ‖v′(t)‖ ‖∇ψ(v(t))‖ = ‖v′(t)‖2.

Thus, in view of (EV), r′ ∈ L1(0,+∞) and the limit limt→+∞ r(t) = limt→+∞ ψ(v(t))
exists. Moreover, we have

|r(t)− r(0)| ≤
∫ t

0

‖v′(s)‖2 ds ≤
∫ +∞

0

‖v′(s)‖2 ds < +∞.

We easily deduce that the range {r(t) : t ≥ 0} is bounded, yielding v(t) ∈ [ψ ≤ η]
for some η > 0 and all t ≥ 0. Therefore (ii) holds. Differentiating the function
V (x) = 1

2 ||∇ψ(x)||2 and substituting x = v(t) we deduce

(10) ‖∇V (v(t))‖ ≤
∥∥∇2ψ(v(t))

∥∥ ‖∇ψ(v(t))‖ .

On the other hand,

(11)

∣∣∣∣ ddt [V (v(t))]

∣∣∣∣ = |〈∇V (v(t)) | v′(t)〉| ≤ ‖∇V (v(t))‖ ‖v′(t)‖.

Combining (10) with (11) and recalling (8) and the definition of V we get

(12)

∣∣∣∣ ddt [V (v(t))]

∣∣∣∣ ≤ 2
∥∥∇2ψ(v(t))

∥∥ V (v(t)).

Since v(·) is strongly evanescent, V (v(·)) ∈ L1(0,+∞), while
∥∥∇2ψ(v(·))

∥∥ is

bounded by assumption. We deduce from (12) that d
dt [V (v(·))] ∈ L1(0,+∞). There-

fore the limit limt→+∞ V (v(t)) exists (and necessarily equals zero, since V (v(·)) ∈
L1(0,+∞)). Thus (iii) holds. Finally, (iv) follows from direct calculation, using
(DS-2) and (1).

The following proposition will be used in what follows.

Proposition 2.10 (further asymptotic properties of strongly evanescent solu-
tions). Let v(·) be a strongly evanescent solution of (DS-2), where V is given by (1).
Then

(13)
||v(t)− v(0)||

t
,
‖v(t)‖√
t2 + 1

∈ L2(0,+∞), lim
t→+∞

‖v(t)‖√
t

= 0,
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and for every t ≥ 0 it holds that

(14)

∫ t

0

‖v(t)− v(0)‖2

t2
dt ≤ 4

∫ t

0

‖v′(t)‖2 dt.

Proof. (i) Set w(t) = v(t)−v(0), t ≥ 0 (therefore limt→0+
w(t)
t = v′(0)). Integrat-

ing by parts and using the Cauchy–Schwarz inequality we obtain, for every t > 0,∫ t

0

‖w(s)‖2

s2
ds = −‖w(t)‖2

t
+ 2

∫ t

0

〈w(s) | w′(s)〉
s

ds ≤ 2

∫ t

0

〈w(s) | w′(s)〉
s

ds

≤ 2

(∫ t

0

‖w(s)‖2

s2
ds

)1/2(∫ t

0

‖w′(s)‖2 ds
)1/2

,

yielding ∫ t

0

‖w(s)‖2

s2
ds ≤ 4

∫ t

0

‖w′(s)‖2 ds = 4

∫ t

0

‖v′(s)‖2 ds.

Therefore, (14) follows. In particular, since v(·) is a strongly evanescent solution,
we conclude that t−1 ‖w(t)‖ ∈ L2(0,+∞) (hence, (t2 + 1)−1/2 ‖w(t)‖ ∈ L2(0,+∞)).
Since (t2+1)−1/2 ∈ L2(0,+∞), we deduce easily that (t2+1)−1/2 ‖v(t)‖ ∈ L2(0,+∞).

(ii) Fix t0 > 0. Then for all t > t0 we have∫ t

t0

‖v(s)‖2

s2
ds = −‖v(t)‖2

t
+
‖v(t0)‖2

t0
+ 2

∫ t

t0

〈v(s) | v′(s)〉
s

ds.

Both integrals in the above expression converge as t → +∞, yielding that the limit

limt→+∞
‖v(t)‖2

t also exists. This limit is zero since t−1 ‖v(t)‖ ∈ L2(t0,+∞).

2.3. Comparison of solutions of (DS-1) and (DS-2). We now focus our
attention upon comparison of solutions of the first-order system (DS-1) and evanescent
solutions of the second-order gradient system (DS-2), where ψ ∈ C 2(H) and V is given
by (1).

The following result states that each solution u(·) of (DS-1) is also a strongly
evanescent solution of (DS-2) unless limt→+∞ ψ(u(t)) = −∞. As underlined in the
introduction, the inverse is more complicated: in general, strongly evanescent solutions
of (DS-2) are not necessarily solutions of (DS-1). Surprisingly, under a convexity
assumption on either ψ or V , strongly evanescent solutions of (DS-2) are also solutions
of (DS-1).

Lemma 2.11 (characterization of w-evanescent/strongly evanescent solutions).
Let u(·) be a global solution of (DS-1). Then,

(i) u is a global solution of (DS-2),
(ii) u is a w-evanescent solution of (DS-2) if and only if

(15) inf
t≥0
‖∇ψ(u(t))‖ = inf

z∈H
‖∇ψ(z)‖ = 0,

(iii) u is a strongly evanescent solution of (DS-2) if and only if

(16) inf
t≥0

ψ(u(t)) > −∞.
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Proof. Let u(·) be a global solution of (DS-1). This is obviously also a global

solution of (DS-2) and satisfies ‖u′(t)‖2 = 2V (u(t)). Let us first assume that (15)
holds. If∇ψ(u(0)) = 0, then u(t) = u(0) for all t ≥ 0 and u(·) is trivially w-evanescent.

If ∇ψ(u(0)) 6= 0, then V (u(t)) = 1
2 ‖∇ψ(u(t))‖2 6= 0 for all t ≥ 0 (cf. Remark 2.2),

and hence for every s ≥ 0 it holds that

inf
t≥0

V (u(t)) = inf
t≥s

V (u(t)) = 0,

yielding again that u(·) is a w-evanescent solution of (DS-2). The converse is obvious,
hence (i) is established.

Assertion (ii) follows directly from Lemma 2.1(ii).

Combining Lemmas 2.3 and 2.11 we get the following corollary.

Corollary 2.12. Any bounded maximal solution of (DS-1) is a strongly evanes-
cent solution of (DS-2).

Combining Corollary 2.4 with Lemma 2.11 we obtain the following result.

Proposition 2.13. Let ψ ∈ C 2(H) be bounded from below and let V (x) :=
1
2 ||∇ψ(x)||2. Then, for every x0 ∈ H, (DS-2) has at least one strongly evanescent
solution satisfying v(0) = x0 which coincides with the unique global solution of the
first-order system (DS-1).

3. Main results. This section contains the main results of the manuscript,
which are presented in three subsections. Before we proceed, let us first recall the
following continuous form of the classical Opial lemma [33] which will be used in what
follows. (See also [3, Lemma 17.2.5, Page 704] for a proof.)

Lemma 3.1 (Opial-type lemma). Let S be a nonempty subset of a Hilbert space
H and let w : [0,+∞) → H be a map. Assume that for every z ∈ S the limit
limt→+∞ ‖w(t)− z‖ exists and is finite and that all weak sequential limits of w(·), as
t→ +∞, belong to S. Then w(t) converges weakly to a point of S as t→ +∞ .

3.1. The ψ convex case. Throughout this subsection we shall assume that
the function ψ ∈ C 2(H) is convex and V is given by (1). We shall be interested
in comparing the solutions of (DS-1) and (DS-2). The following result is essentially
known (see for instance [12, Theorems 3.1 and 3.2] for a proof in the more general
context of multivalued evolution equations).

Proposition 3.2 (Lyapunov functions for (DS-1)). Let ψ ∈ C 1(H) be convex.
Then, for every initial condition x0 ∈ H, the unique maximal solution u(·) of (DS-1)
satisfying (I0) is global. Moreover,

(i) ρ(t) = ψ(u(t)) is convex, nonincreasing, and

(17) inf
t≥0

ψ(u(t)) = lim
t→+∞

ψ(u(t)) = inf
z∈H

ψ(z);

(ii) for every y ∈ H and t > 0 it holds that

‖u′(t)‖ ≤ ‖∇ψ(y)‖+
1

t
‖u(0)− y‖;

(iii) t 7→ ‖u′(t)‖ = ‖∇ψ(u(t))‖ is nonincreasing and

(18) lim
t→+∞

‖u′(t)‖ = inf
z∈H
‖∇ψ(z)‖ ;

(iv) ‖u(·)− x̂‖ is nonincreasing for every x̂ ∈ Critψ.
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Remark 3.3 (energy function). Under the assumptions of Proposition 3.2, for
every y ∈ H we set

Ey(t) :=
1

2
‖u(t)− y‖2 +

∫ t

0

(ψ(u(s))− ψ(y)) ds.

Since ψ is convex, we deduce E′y(t) = 〈∇ψ(u(t)) | y−u(t)〉+ψ(u(t))−ψ(y) ≤ 0, that
is, Ey(·) is nonincreasing on [0,+∞).

The following proposition is well known. It relates the behaviour of the orbits to
the critical points of ψ. In what follows we set

dist(x,Critψ) := inf
y∈Critψ

‖x− y‖.

Proposition 3.4. Let ψ ∈ C 1(H) be convex and u(·) be a global solution of
(DS-1).

(i) If Critψ 6= ∅, then limt→+∞ ‖u′(t)‖ = 0 and there exists x̂? ∈ Critψ such that
u(t) −−−−⇀

t→+∞
x̂? (weakly). Moreover, ρ∗(t) := ψ(u(t)) − ψ(x̂?) ∈ L1(0,+∞)

and

(19)

∫ +∞

0

(ψ(u(s))−minψ) ds ≤ 1

2
dist(u(0),Critψ)2.

(ii) If Critψ = ∅, then limt→+∞ ‖u(t)‖ = +∞.
(iii) u(·) is bounded if and only if Critψ 6= ∅.
Proof. The first part of assertion (i) follows from [3, Theorem 17.2.7]. Fix now

any x̂? ∈ Critψ. Since Ex̂?(t) ≤ Ex̂?(0) and ψ(x̂?) = minψ, taking the limit as
t→ +∞ we deduce

(20)

∫ +∞

0

(ψ(u(s))−minψ) ds ≤ 1

2
‖u(0)− x̂?‖2.

Taking the infimum in (20) for x̂? ∈ Critψ, we obtain (19).
Assertion (ii) follows from [3, Corollary 17.2.1], while assertion (iii) is a straight-

forward consequence of the last two assertions.

The following result will play a key role in what follows.

Proposition 3.5. Let ψ ∈ C 2(H) be convex and V (x) = 1
2 ‖∇ψ(s)‖2. Then

any w-evanescent solution of (DS-2) is also a (global) solution of the gradient system
(DS-1).

Proof. Let v(·) be a w-evanescent solution of (DS-2) and set φ(t) = v′(t) +
∇ψ(v(t)). Then, for all t ≥ 0, it holds that ‖φ(t)‖ ≤ ‖v′(t)‖ + ‖∇ψ(v(t))‖ . By
Lemma 2.7 we deduce

‖φ(t)‖ ≤ 2 ‖∇ψ(v(t))‖ = 2 ‖v′(t)‖ → 0,

whence lim inft→+∞ ‖φ(t)‖ = 0, since v(·) is a w-evanescent solution. We also know
that

φ′(t) = ∇2ψ(v(t))φ(t)

(see Proposition 2.9(iv)). Thus,

d

dt

(
‖φ(t)‖2

)
= 2〈φ(t) | ∇2ψ(v(t))φ(t)〉 ≥ 0,
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since ψ is convex. Hence, ‖φ‖2 is increasing. Therefore, since lim inft→+∞ ‖φ(t)‖ = 0
we deduce φ = 0, which yields that v(·) is a solution of the first-order gradient system
(DS-1).

We are now ready to state our main results.

Theorem 3.6 (second-order gradient system; ψ convex). If ψ ∈ C 2(H) is con-
vex, (DS-2) has a w-evanescent solution v(·) satisfying (I0) if and only if (C) holds.
Then v(·) is unique and is also the unique solution of the first-order system (DS-1)
which satisfies (I0). Moreover,

(i) v is strongly evanescent if and only if ψ is bounded below,
(ii) v is bounded if and only if Critψ 6= ∅.
Proof. As already mentioned in the introduction, condition (C) is necessary for

the existence of a w-evanescent solution of (DS-2). Conversely, suppose that (C) is
fulfilled. Then there exists a unique global solution u(·) of (DS-1) satisfying u(0) =
u0 ∈ H (cf. Proposition 3.2). Condition (15) is fulfilled thanks to (18) and (C).
Thus, in view of Lemma 2.11, u(·) is a w-evanescent solution of (DS-2) satisfying
(I0). Uniqueness is straightforward from Proposition 3.5. Indeed, any w-evanescent
solution of (DS-2) which satisfies (I0) is necessarily the unique global solution of
(DS-1) under the same initial condition (I0). Finally, combining (16) with (17) we
deduce that this solution is strongly evanescent if and only if ψ is bounded below.
From Proposition 3.2, we also deduce that this solution is bounded if and only if
Critψ 6= ∅.

To illustrate Theorem 3.6 consider the convex C 2 function ψ given in (2). Recall
that ψ satisfies (C) but not (C?). The first-order system u′(t) = −ψ′(u(t)), u(0) = 0
has the unique solution u(t) = 1 −

√
1 + 2t, t ≥ 0, which is also the unique w-

evanescent solution of (DS-2) (cf. Theorem 3.6). Clearly this solution is not strongly
evanescent (ψ is not bounded from below).

An immediate consequence of Theorem 3.6 and Proposition 3.2 is the following
result.

Corollary 3.7. Let ψ ∈ C 2(H) be convex, assume (C) holds and let v(·) be a
w-evanescent solution of (DS-2). Then v(·) satisfies the properties stated in Proposi-
tion 3.2 and Proposition 3.4.

We are ready to state the following surprising consequence.

Theorem 3.8 (determination via modulus of gradient). Let ψ1, ψ2 ∈ C2(H) be
convex and assume

– ‖∇ψ1(z)‖ = ‖∇ψ2(z)‖ for all z ∈ H,
– infz∈H ‖∇ψ1(z)‖ = 0 (this assumption holds whenever ψ1 or ψ2 is bounded

below).
Then, ψ1 = ψ2 + c for some constant c ∈ R.

Proof. Let ψ1 and ψ2 be two convex functions of class C 2 satisfying ‖∇ψ1‖ =
‖∇ψ2‖ and infz∈H ‖∇ψ1(z)‖ = 0. Let x ∈ H be an arbitrary point and let v(·) be the
unique weakly evanescent solution of the system

v′′(t) = ∇V (v(t)) for t ≥ 0, v(0) = x,

with V = 1
2‖∇ψ1‖2 = 1

2‖∇ψ2‖2 (cf. Theorem 3.6). Then v(·) is also a solution of the
first-order systems

v′(t) = −∇ψ1(v(t)), v(0) = x,
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and
v′(t) = −∇ψ2(v(t)), v(0) = x.

Hence, ∇ψ1(x) = ∇ψ2(x). Since x is arbitrary, the result follows.

Remark 3.9. In [6] it has been shown that a continuous (respectively, smooth)
convex 1-coercive function can be determined (up to a constant) by knowing its sub-
gradients (respectively, gradients) in specific points of its domain (namely, the ones
that correspond to strongly exposed points of the epigraph). Theorem 3.8 asserts that
a knowledge of the modulus of the gradient (rather than the gradient itself) suffices
to determine a C 2 convex function, provided the function is bounded from below.

Remark 3.10. The assumption that ψ1, ψ2 are bounded from below is important.
Consider for instance the example of the functions ψ1(x) = x and ψ2(x) = −x.

A direct consequence of Theorem 3.8 is the following result concerning uniqueness
of convex C 2-smooth solutions of the forthcoming eikonal equation (21).

Corollary 3.11 (eikonal equation I). Let f ∈ C 1(H) be nonnegative. Then, the
eikonal equation

(21) ‖∇ψ‖2 = f

has at most one (up to a constant) convex, bounded below solution in C 2(H).

Remark 3.12. The above result might appear to be restrictive at a first sight.
Indeed, solving (21) in a viscosity sense leads to the existence of possibly nonsmooth
solutions. In particular, if H = Rd and f(x) ≥ α > 0, for all x ∈ Rd, then any
viscosity solution of (21) is unbounded from below (see, e.g., [10, Theorem 1.1]).
Nonetheless, the case in which f is nonnegative and vanishes is actually of great
interest for establishing some weak KAM theorems or existence of solutions for ergodic
problems associated with first-order Hamilton–Jacobi equations. It is also known
that (21) may have essentially different solutions; see [30] or [29]. See also [32] and
references therein for the periodic case, and [9, 21, 10] for the unbounded case. In
the above framework, the set of solutions of (21) is a challenging issue. The above
result as well as the forthcoming Corollary 3.21 could eventually shed new light on
this intriguing issue.

Before we finish this section, let us observe that the assumption ψ1, ψ2 ∈ C 2(H)
in Theorem 3.8, although required in this approach (in view of (DS-2)), does not
seem to be indispensable for the validity of the result. Indeed the conclusion of Theo-
rem 3.8 also seems plausible for C1-convex functions, or even for (nonsmooth) convex
continuous functions, under a different approach. We propose below the following
conjecture which, if true, would generalize Theorem 3.8.

Conjecture 3.13. Let ψ1, ψ2 : H → R be two (finite) convex functions bounded
from below such that

(22) inf
p∈∂ψ1(x)

||p|| = inf
q∈∂ψ2(x)

||q|| for all x ∈ H.

Then ψ1 = ψ2 + c for some constant c > 0.

Proof of the conjecture if H = R. Let us denote by D the set of points where both
ψ1 and ψ2 are simultaneously differentiable. Then ψ′1, ψ′2 are increasing functions on
D and D is dense in R. It follows from (22) that ψ′1(x) = σ(x)ψ′2(x) for all x ∈ D,
where σ(x) ∈ {−1, 1}. Our task is to establish that σ ≡ 1, that is, ψ′1 = ψ′2 on D.
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Then, since ψ1, ψ2 are locally Lipschitz (hence absolutely continuous), the conclusion
follows.

Notice that (22) yields that ψ1, ψ2 have a common set of global minimizers.
Denote by S = arg minψ1 = arg minψ2 this set. If S = ∅, then it is easily seen that
the set of all subgradients ∂ψi(R) = ∪x∈R∂ψi(x) is either contained in (−∞, 0) or in
(0,+∞) for i ∈ {1, 2}. If ∂ψ1(R) is contained in (−∞, 0) and ∂ψ2(R) is contained in
(0,+∞), then we would have σ ≡ −1 and ψ′1 = −ψ′2 on D. Taking into account that
ψ′1, ψ

′
2 are increasing, we deduce that ψ′1, ψ

′
2 are constant, which is impossible since

S = ∅ and ψ1, ψ2 are bounded from below. Therefore both ∂ψ1(R) and ∂ψ2(R) are
contained in the same interval (−∞, 0) or (0,+∞) and σ ≡ 1.

Consider now the S 6= ∅ case. If S = R, then ψ1, ψ2 are constant and the result
holds trivially, while for any x > supS (respectively, any x < inf S) we should have
∂ψi(x) ⊂ (0,+∞) (respectively, ∂ψi(x) ⊂ (−∞, 0)) by monotonicity. Therefore again
σ ≡ 1 and the conclusion follows.

3.2. The V convex case. In this subsection the driving assumption is the
convexity of the function V (x) = 1

2 ||∇ψ(x)||2, where ψ ∈ C 2(H). The focus is again
the comparison of the solutions of the systems (DS-1) and (DS-2).

The following result reveals a characteristic property of the solutions of (DS-2),
which is reminiscent of an analogous property for the orbits of the first-order system
with convex potential.

Proposition 3.14 (contraction of solutions of (DS-2)). Let ψ ∈ C 2(H) and
assume that V (x) = 1

2 ||∇ψ(x)||2 is convex. If v1 and v2 are two strongly evanescent
solutions of (DS-2), then the function

q(t) :=
1

2
‖v1(t)− v2(t)‖2

is convex and nonincreasing on [0,+∞). In particular if v1(0) = v2(0), then v1 = v2.

Proof. It suffices to prove that q is convex and nonincreasing. Differentiating
twice and invoking the monotonicity of ∇V (see, e.g., [35, Chapter 2]) we get

q′′(t) = 〈v′′1 (t)− v′′2 (t) | v1(t)− v2(t)〉+ ‖v′1(t)− v′2(t)‖2

= 〈∇V (v1(t))−∇V (v2(t)) | v1(t)− v2(t)〉+ ‖v′1(t)− v′2(t)‖2 ≥ 0,

which yields convexity of q. Let us prove that q is decreasing. By Proposition 2.10,
we have ∫ ∞

0

q(t)

t2 + 1
dt =

1

2

∫ ∞
0

‖v2(t)− v1(t)‖2

t2 + 1
dt < +∞.

Suppose that there exists t0 > 0 such that q′(t0) > 0. Since q is convex, we would
have

q(t) ≥ q′(t0)(t− t0) + q(t0) for all t ≥ t0,

yielding ∫ ∞
0

q(t)

t2 + 1
dt = +∞, a contradiction.

Hence, q is decreasing and the result follows.
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Lemma 3.15. Let ψ ∈ C 2(H), assume V (x) = 1
2 ‖∇ψ(x)‖2 is convex, and let v(·)

be a strongly evanescent solution of (DS-2). If Critψ 6= ∅, then
(i) h(t) := ‖v(t)− x̂‖ is nonincreasing for every x̂ ∈ Critψ,
(ii) v(·) is bounded,
(iii) there exists x̂? ∈ Critψ such that v(t) −−−−⇀

t→+∞
x̂? (weakly).

Proof. Let v(·) be a strongly evanescent solution of the system (DS-2) and pick
any x̂ ∈ Critψ. Applying Proposition 3.14 for u1(t) = v(t) and u2(t) = x̂ for t ≥ 0, we
get (i). Since Critψ 6= ∅, (ii) is a direct consequence of (i). Finally, (iii) can be proved
in a similar way as in Proposition 3.4, using Lemma 3.1 and the convexity of V . The
details are left to the reader.

Proposition 3.16 (second-order gradient system; V convex). Let us assume

that V (x) = 1
2 ‖∇ψ(x)‖2 is convex and ψ ∈ C 2(H) is bounded from below. Then

(DS-2) has a unique strongly evanescent solution satisfying (I0) which is also the
unique solution of (DS-1) that satisfies (I0).

Proof. From Corollary 2.4 and Cauchy–Lipschitz there exists a unique global
solution of (DS-1) satisfying the initial condition (I0). According to Lemma 2.11 this
solution is also a strongly evanescent solution of (DS-2). Uniqueness follows from
Proposition 3.14.

We obtain the following corollary as a consequence.

Corollary 3.17 (convexity criterium). Let V (x) = 1
2‖∇ψ(x)‖2 be convex and

ψ ∈ C 2(H) be bounded below. Then, ψ is convex.

Proof. Fix z1, z2 ∈ H and denote by u1(·) and u2(·) solutions of (DS-1) with
z1 and z2 as initial data. Since u1 and u2 are also strongly evanescent solutions of
(DS-2), we know that the function

q(t) =
1

2
‖u1(t)− u2(t)‖2 for t ≥ 0

is decreasing (cf. Proposition 3.14). Thus,

0 ≥ q′(t) = −〈∇ψ(u1(t))−∇ψ(u2(t)) | u1(t)− u2(t)〉,

or, equivalently,

〈∇ψ(u1(t))−∇ψ(u2(t)) | u1(t)− u2(t)〉 ≥ 0.

Taking the limit as t→ 0 we deduce that

〈∇ψ(z1)−∇ψ(z2) | z1 − z2〉 ≥ 0,

which yields that ψ is convex (see, e.g., [35, Chapter 2]).

Remark 3.18. Corollary 3.17 is false if ψ is not bounded below. Indeed, let ψ(x) =
x3. Then V (x) = 1

2 |ψ
′(x)|2 = 9

2x
4 is convex, but ψ is not. Another two-dimensional

example is ψ(x1, x2) = x41 − x22.

Remark 3.19. If V (x) = 1
2 ‖∇ψ(x)‖2 is convex and ψ ∈ C 2(H) is bounded from

below, then combining Corollary 3.17 with Theorem 3.6 we deduce that every strongly
evanescent solution u(·) of (DS-2) satisfies the assertions of Corollary 3.7 (since ψ is
convex). In particular, u(·) is bounded if and only if Critψ 6= ∅.
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The following result is a direct consequence of Theorem 3.8 and Corollary 3.17.

Corollary 3.20. Let ψ1, ψ2 ∈ C 2(H) be bounded below satisfying

‖∇ψ1(x)‖ = ‖∇ψ2(x)‖ for all x ∈ H.

Then, if V (x) = 1
2‖∇ψ1(x)‖2 (= 1

2‖∇ψ2(x)‖2 ) is convex, we deduce that both ψ1 and
ψ2 are convex and equal (up to a constant).

An illustration of Corollary 3.20 is given in case the case in which ψ1 and ψ2 are
of the quadratic form

ψ1(x) =
1

2
〈x | A1x〉 and ψ2(x) =

1

2
〈x | A2x〉,

where Ai is a symmetric linear bounded operator for i ∈ {1, 2}. One can quickly check
that ψi is bounded below if and only if Ai is positive semidefinite. In the latter case,
the identity ‖∇ψ1‖ = ‖∇ψ2‖ means that ‖A1x‖ = ‖A2x‖ for all x ∈ H, yielding
A2

1 = A2
2. Thus, A1 = A2 (since A1 and A2 are positive semidefinite) and ψ1 = ψ2.

This is in accordance with Corollary 3.20. This example also shows the importance
of the assumption that ψ1 and ψ2 are bounded below. Indeed, if A2 = −A1 6= 0, then
‖∇ψ1‖ = ‖∇ψ2‖ and ψ1 − ψ2 is not constant.

A direct consequence of Corollary 3.20 is the following result.

Corollary 3.21 (eikonal equation II). Let f ∈ C 1(H) be nonnegative and con-
vex. Then, the eikonal equation

(23) ‖∇ψ‖2 = f

has at most one bounded below solution in C 2(H) up to an additive constant. In
addition, this solution is convex.

3.3. An alternative variational principle for (DS-1). In [14, 12, 13], Brézis
and Ekeland proved the following variational characterization when ψ is a proper,
convex, and lower semicontinuous functional defined on a Hilbert space H. In this
case (DS-1) becomes

u′(t) ∈
a.e
−∂ψ(u(t)), t ≥ 0.

If u(·) is an absolutely continuous solution of the above differential inclusion on [0, T ]
for some T > 0, with initial condition (I0), then u(·) is the unique minimizer of the
functional

J (u) =

∫ T

0

(ψ(u(t)) + ψ?(−u′(t))) dt+
1

2
‖u(T )‖2 ,

where ψ? designates the Legendre conjugate of ψ. We also refer to [5] and [22] for
extensions of this variational principle.

We now present an alternative variational principle for the first-order gradient
system (DS-1). The formulation is based on the connection with the second-order
system (DS-2). This latter can be seen as the Euler–Lagrange equation associated
with a conventional functional. More precisely, for any real number T > 0, we consider
the functional

J(T ;w) =

∫ T

0

(
1

2
‖w′(t)‖2 +

1

2
‖∇ψ(w(t))‖2

)
dt+ ψ(w(T )).

We state the following proposition.
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Proposition 3.22 (variational formulation). Let V (x) = 1
2 ‖∇ψ(x)‖2 be convex,

ψ ∈ C 2(H) be bounded below, and T > 0. Then u ∈ C 0([0, T ];H)∩C 1((0, T );H) is a
solution of (DS-1) on [0, T ] if and only if

(24) J(T ;u) ≤ J(T ;w)

for all w ∈ C 0([0, T ];H) ∩ C 1((0, T );H) satisfying w(0) = u(0).

Proof. In view of Corollary 3.17, ψ is convex. Let u(·) be a solution of (DS-1) on
[0, T ] and w ∈ C1([0, T ],H) be such that w(0) = u(0). Set h = w − u. Then,

J(T ;w)− J(T ;u) =

∫ T

0

(
〈u′(t) | h′(t)〉+

1

2
‖h′(t)‖2 + V (u(t) + h(t))− V (u(t))

)
dt

+ψ(u(T ) + h(T ))− ψ(u(T )).

Using convexity of ψ and V we deduce

J(T ;w)− J(T ;u) ≥
∫ T

0

(〈u′(t) | h′(t)〉+ 〈∇V (u(t)) | h(t)〉) dt

+〈∇ψ(u(T )) | h(T )〉.

Integrating by parts yields

J(T ;w)− J(T ;u)

≥
∫ T

0

〈−u′′(t) +∇V (u(t)) | h(t)〉 dt+ 〈u′(T ) +∇ψ(u(T )) | h(T )〉.

Since u(·) is solution of (DS-1), it is also solution of (DS-2), and therefore∫ T

0

〈−u′′(t) +∇V (u(t)) | h(t)〉 dt+ 〈u′(T ) +∇ψ(u(T )) | h(T )〉 = 0,

yielding J(T ;w) ≥ J(T ;u).
Conversely, let u ∈ C1([0, T ],H). Assume that J(T ;w) ≥ J(T ;u) for all w ∈

C1([0, T ],H) such that w(0) = u(0). By a conventional argument, we know that u is of
class C 2. Moreover, u satisfies the Euler–Lagrange equation u′′(t) = ∇V (u(t)) and the
transversality condition u′(T ) +∇ψ(u(T )) = 0. Set φ(t) = u′(t) +∇ψ(u(t)) for t ≥ 0.
We know that φ is a solution of the linear differential equation φ′(t) = ∇2ψ(u(t))φ(t)
(see Proposition 2.9) with φ(T ) = 0, so then φ is the trivial solution φ = 0, that is, u
is a solution of (DS-1) on [0, T ]. This ends the proof.

We now consider the functional

J?∞(w) =

∫ +∞

0

(
1

2
‖w′(t)‖2 +

1

2
‖∇ψ(w(t))‖2

)
dt.

We also state the following corollary.

Corollary 3.23. Suppose that ψ ∈ C 2(H) is bounded below, Critψ 6= ∅, and

[x 7→ ‖∇ψ(x)‖2] is convex. Then, u ∈ C 1([0,+∞);H) is a global solution of (DS-1)
if and only if

(25) J∞(u) ≤ J∞(w)

for any bounded function w ∈ C 1([0,+∞);H) with w(0) = u(0).
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Proof. Let u ∈ C 1([0,+∞);H) be a global solution of (DS-1). For T > 0 and
z ∈ C 1([0, T ];H) we set

J?(T ; z) =

∫ T

0

(
‖z′(t)‖2 + ‖∇ψ(z(t))‖2

)
dt.

Let w ∈ C 1([0,+∞);H) be a bounded function satisfying w(0) = u(0) and set h =
w − u. Following the proof of inequality (24), we obtain

(26) J?(T ;w) ≥ J?(T ;u) + 〈u′(T ) | h(T )〉.

Let us observe that u is bounded and limT→+∞ ‖u′(T )‖ = 0 (thanks to Proposi-
tion 3.4). Thus, h = w − u is also bounded. Taking the limit when T → +∞ yields

(27) J?∞(w) ≥ J?∞(u).

Conversely, suppose that u ∈ C 1([0,+∞);H) satisfies (27) for any bounded function
w ∈ C 1([0,+∞);H) with w(0) = u(0). Let x̂ ∈ Critψ 6= ∅ and consider the function

w0(t) = e−t(u(0)− x̂) + x̂.

Let us denote by [x̂, u(0)] = {θ(u(0)− x̂) + x̂ ; θ ∈ [0, 1]} the segment between x̂ and
u(0). Obviously [x̂, u(0)] is a compact subset of H and w0(t) ∈ [x̂, u(0)] for all t ≥ 0.
We deduce that

V (w0(t)) = V (w0(t))− V (x̂) ≤ sup
x∈[x̂,u(0)]

‖∇V (x)‖ ‖w0(t)− x̂‖ .

It follows that V (w0(t)) ≤ supx∈[x̂,u(0)] ‖∇V (x)‖ ‖w0(0)− x̂‖ e−t. Therefore we obtain
J?∞(w0) < +∞, whence J?∞(u) < +∞.

Consider now an arbitrary real number T > 0 and let h ∈ C 1([0,+∞);H) have a
compact support included in [0, T ]. Then,

J?∞(u+ h)− J?∞(u) = J?(T ;u+ h)− J?(T ;u).

Thus,

J?T (u+ h) ≥ J?T (u).

From the latter we deduce that u satisfies the Euler–Lagrange equation u′′(t) =
∇V (u(t)) on (0, T ). Since T > 0 is arbitrary, u is a global solution of (DS-2) on
[0,+∞). Since J?∞(u) < +∞, it is also a strongly evanescent solution. In view of
Proposition 3.16, u is also solution of (DS-1).

Remark 3.24. In the second part of the proof, we can show that J?∞(u) < +∞ in
another way. Indeed, one can choose w0 as the unique strongly evanescent solution of
(DS-2) which satisfies w0(0) = u(0) (existence of w0 is ensured by Proposition 3.16).
In view of Remark 3.19, we know that w0 is bounded.
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Le cas dépendant du temps, C. R. Acad. Sci. Paris Sér. A–B, 282 (1976), A1197–A1198.

[15] R. Chill, A. Haraux, and M. A. Jendoubi, Applications of the  Lojasiewicz–Simon gradient
inequality to gradient-like evolution equations, Anal. Appl. (Singap.), 7 (2009), pp. 351–
372.

[16] M. G. Crandall and P. L. Lions, Condition d’unicité pour les solutions généralisées des
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