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Abstract We introduce a notion of cyclic submonotonicity for multivalued operators
from a Banach space X to its dual. We show that if the Clarke subdifferential of a
locally Lipschitz function is strictly submonotone on an open subset U of X, then it is
also maximal cyclically submonotone on U, and, conversely, that every maximal cyclically
submonotone operator on U is the Clarke subdifferential of a locally Lipschitz function,
which is unique up to a constant if U is connected. In finite dimensions these functions
are exactly the lower-C! functions considered by Spingarn and Rockafellar.
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1 Introduction

We deal with the integration of a multivalued operator considered as the inverse pro-
cess of taking the subdifferential of a function. This important question has been tackled
by several authors: see for instance [20] (for the Fenchel-Moreau subdifferential of a con-
vex function), [12], [19], [17] (for the Clarke subdifferential in finite dimensions), [4], [26]
(for the Clarke subdifferential in infinite dimensions), [1] for the moderate subdifferential
of Michel-Penot in finite dimensions) and [25], [27] (for various subdifferentials of a lower
semicontinuous function). The first mentioned result concerns the case of monotone op-
erators: in [20] Rockafellar shows that any cyclically monotone operator 7' is included
in the subdifferential of a lower semicontinuous convex function, with equality if T is
maximal cyclically monotone. Janin [12] introduces a concept of cyclic submonotonicity
in finite dimensional Euclidean spaces and uses it to integrate (in the preceding sense)
locally bounded operators satisfying that condition into locally Lipschitz functions. In a
different, context, a concept of cyclicity has also been used by Qi in [19], where the author
characterizes operators that coincide with a subdifferential of some locally Lipschitz func-
tion, using the Lebesgue measure and (implicitly) the Rademacher theorem. Elaborating
these ideas, Borwein and Moors [3] introduce and study the class S.(X) of essentially
smooth (locally Lipschitz) functions, that is functions f whose Clarke subdifferential ¢ f
is single-valued in the complement of a Haar null set. One of the main features of this class
stems from the fact that for every f € S.(X), the problem of finding a locally Lipschitz
function g such that g C 9“ f has a unique solution modulo a constant (i.e. ¢ = f+c).
In [4], Borwein, Moors & Shao extend the results of Qi ([19]) to separable Banach spaces,

! The research of the first author was supported by the TMR grant ERBFMBI CT 983381.
2A major part of this work was accomplished while the second author was visiting the University of
Pau under the NATO grant CB/JB SC105 N° 44/96165.



using line integrals and Christensen’s generalization of the Rademacher theorem (via Haar
null sets). Their result is further improved by Wang [26], who characterizes the class of
integrable locally bounded operators in separable Banach spaces. These operators are
called in [19] and [26] “cyclically normal”.

In another line of research, Spingarn [24] showed that in finite dimensions, lower C"
functions (i.e. functions arising as maxima of compactly indexed families of C' functions)
are characterized by the fact that their Clarke subdifferentials are strictly submonotone
operators with non-empty values. This last notion was extended in infinite dimensions
by Georgiev in [10], [11] (see definition of strict directional submonotonicity in Section 2).
Functions with such subdifferentials (hereby called subsmooth) are always regular (in the
sense of Clarke [6]) and semi-smooth (in the sense of Mifflin [14]), see [24] and [11]. In
particular, subsmooth functions have “small” (namely minimal w*-cusco) Clarke subdif-
ferentials. Let us recall that, in general, Lipschitz functions have “generically” very large
Clarke subdifferentials ([26]). In finite dimensions, as the notions of strict monotonicity
and strict directional submonotonicity coincide [11], a function f is subsmooth if, and
only if, it is lower C.

Our main results rely on a notion of cyclic submonotonicity introduced here; in finite
dimensions it coincides with the definition of Janin [12]. Using this concept we show that
if U is an open subset of a Banach space X, then

e the subdifferential of every subsmooth function (defined on U) is maximal cyclically
submonotone (on U).

e if U is connected and f, g are subsmooth functions on U such that ¢ f = 9%¢, then
f = g+ c for some constant ¢ € R.

e every maximal cyclically submonotone operator on U is the subdifferential of a
subsmooth function defined on U (unique up to a constant if U is connected).

A specific feature of our approach is that it does not depend on results from measure
theory and is valid beyond the class of separable spaces.

Notation Let us now fix our notation. We denote by (X, ||.||) a Banach space, by S
its unit sphere and by (X*,||.||) its dual space. We also denote by B,(z) (resp. B,[z])
the open (resp. closed) ball with center x and radius r and by B}(x) (resp. Bj[z]) the
same objects in X*. Let 2% be the set of all subsets of X*, R (resp. N) be the set of all
real (resp. non negative integer) numbers. For any £ € N we set Ny := {1,2,...,k}. For
any =,y in X we denote by [z,y] :== {z; = tx + (1 — t)y, 0 < t < 1} the closed segment
with endpoints z,y. For any subset K of X and any § > 0, we consider the - (open)
neighborhood Bjs(K) of K defined by Bs(K) :={zx € X : Jy € K, ||z — y|| < 6}. We also
set diam(K) := sup{||x — y|| : ,y € K} for the diameter of the set K. We denote by
cone(K) the cone generated by K, i.e. cone(K) :={Ax: X >0, x € K}. For any subset
A of X* we denote by co” (A) the w*-closed convex hull of A. Finally, throughout the
paper we shall assume that all functions f are locally Lipschitz and we shall denote by
dom(f) their domain.



2 Preliminaries

Given a multivalued operator 7' : X =% X*, we denote by dom(7') the set {x € X :
T(x) # 0} and by Gr(T) := {(x,2*) € X x X*: 2* € T(2)} (or simply T if no confusion
may arise) the graph of T. We also define the operators ¢o® (T') by

" (T)(x) =" (T()) (1)
forallz € X and T : X — 2% by

;) in X, Harhiin X*: 2f € T(xy)

€T (z) (2)
r = lim x;, r* = w*-lim 7}

where {z;}; and {z7}; denote respectively nets in X and in X*. Note that Gr(T) =
Gi\l'llxw*
r(7) .

The operator T': X = X* is said to be locally bounded at x € X if there exist M > 0
and a neighborhood B, (x) of x such that v € B,(z) and v* € T'(u) imply |[u*|| < M.
Then T is called locally bounded on a subset U of X, if T" is locally bounded at all z € U.
(Note that U is not necessarily a subset of dom(T')).

Furthermore, the operator T' is said to be w*-upper-semicontinuous at x € X, if for
every w*-open set W D T'(z) there exists an open ball B, (z) of x such that T'(u) C W for
every u € B,(x). Let us note that if T" is locally bounded on U, then T (given by relation

(2)) is w*-upper-semicontinuous at every x € dom(7) N U.

w*-cusco mappings A multivalued mapping T : X = X* is said to be w*-cusco
on U ([2], [5] e.g.), if it is w*-upper semicontinuous with nonempty w*-compact convex
values on U. A w*-cusco mapping on U that does not strictly contain any other w*-cusco
mapping with domain in U is called a minimal w*-cusco on U.

Given an operator S, we can consider w*-cusco mappings T' that are minimal under
the property of containing S. In the important case of the following proposition, one
can give a complete description of the minimal (in fact least) element of the family of
w*-cusco mappings containing S.

Proposition 1 Let S be a densely defined locally bounded operator on an open subset U
of X with values in X*. Then the family of w*-cusco mappings containing S has a least
element T given by the formula

T(x) =" () {S@@) : 2’ € B-(x) ndom(S)}" . (3)

e>0

Proof In [2, Proposition 1.3] (see also [15, Proposition 1.2]), the following formula for
the operator T is given:

T(x)=()e@" {S(z') : ' € B.(x) N dom(S)}.

e>0



In order to justify (3), let us set

R(z) == ({5@) : « € B.(x) N dom(S)}"

e>0

Since S is locally bounded on U, it is easily seen that R(z) = S(x) (given by relation
(2)) and that R is the smallest w*-upper-semicontinuous multivalued mapping containing
S. Thus R(x) C T(z) and ¢o¥ (R(x)) C T(x) for each x € U. Since 0% (R(x)) is w*-
cusco (see [5, Proposition 2.7] e.g.) and T is the minimal w*-cusco containing S, we get
@ (R) =T. O

The preceding proposition has an interesting (and immediate) consequence upon the
representation of the Clarke subdifferential in certain Banach spaces. We recall that the
Clarke generalized derivative of a locally Lipschitz function f at a point 2 € dom(f) is
defined for all u € X as follows

fly+tu) — f(y)

f%(z;u) = limsup

(5t~ (@,0%) t
and the Clarke subdifferential of f at x € dom(f) by
0°f(z) = {a* € X*: (2", u) < f°(w,u),Yu € X}. (4)

For all z € dom(f) we have 9° f(x) # 0.

Let us also recall the definitions of other usual subdifferentials that will occur in the
sequel:

the Fréchet subdifferential 0" f(x)
0" flz):=={a" € X" : f(y) > f(x) + (", y — 2) + oy — 7), ¥y € X}

where 0 : X — R is some real valued function satisfying lim,, ﬁ = 0;
the Hadamard subdifferential 0" f (z)

flattn) = F@) oy
)Tl |

oM f(z)={z* € X*: (z",u) < liminf

(w,t)—(u,01)
Let us note that if f is locally Lipschitz, then for all u € X
df(,u) = liming LEHO =@y St = [ (@)

(w,t)—(u,0F) t t\OF t

= f’(x,u), (5)

so that the Hadamard derivative coincides with the Gateaux derivative of f when they
exist.

Let us now recall that in every Asplund space, the Clarke subdifferential 9 f of a
locally Lipschitz function f is given by the following formula of Preiss ([18, Remark 2.3]):

0°f(x) = ()@ {D" f(a') : ' € B.(x) N dom(D" f)} (6)

e>0



while if X has a Gateaux smooth renorming:

0 f(x) = (@@ {D" f(2') : 2’ € B.(x) ndom(D" f)} (7)

e>0

where DY f(z) (resp. D f(x)) denotes the Fréchet (resp. Hadamard) derivative of f at
x and dom(DF f) (resp. dom(DH f)) is the domain of D f (resp. DX f).

Since 9° f is a w*-cusco mapping ([3]), combining Proposition 1 with formulas (6) and
(7), we obtain in view of [18, Theorem 2.4] the following corollary.

Corollary 2 For every (locally Lipschitz) function f on X we have
(1) if X is an Asplund space then

o°f(x) = @” ({DFf(@) : 2’ € B.(x) ndom(DF)}" ; 8)

e>0

(11) if X has an equivalent Gateauz differentiable norm then

0% f(x) =" ({D7 (') : &' € B.(x) N dom(D7 )} . 9)

e>0

Submonotone and strictly submonotone mappings In 1981, J. Spingarn [24]
introduced the notion of a strictly submonotone mapping in a finite dimensional space. His
definition is naturally extended in infinite dimensions as follows: a multivalued mapping
T:X = X* issaid to be strictly submonotone (in short s-submonotone) at x € X provided
that for any € > 0 there exists 0 > 0 such that

<1‘T - 1‘;, Ty — 1‘2>
||171 - $2||

—€ (10)

whenever x; € Bs(x), zf € T(x;), i = 1,2 and x; # .

The operator T:X = X is called submonotone at x, if (10) holds under the additional
assumption xs = z. (Note that T is submonotone at every ¢ dom(7’) and s-submonotone
at every = ¢ dom(7T).)

Appropriate directional versions of these notions have been introduced in [10] (see also
[11] and [16]): an operator T : X = X* is called directionally strictly submonotone® (in
short ds-submonotone) at x, if for every e € Sx and £ > 0, there exists 6 > 0 such that

<37T B Jf;,l‘l - x2>

—€ 11
] (1

whenever z; € Bs(z), xf € T(x;), i = 1,2, x1 # 29 and [|72=E2 —¢|| < 4.

ller—z2|]
The operator T': X = X* is called directionally submonotone (in short d-submonotone)
at x, if (11) holds under the additional assumption zo = x.

3 “strictly submonotone” according to the terminology of [10], [11].
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It is easily seen that if (11) holds uniformly for all directions e € Sy, then T is s-
submonotone at x. Similarly, if (11) holds uniformly for x5 = z, then T" is submonotone
at x. If X = R", the compactness of the unit sphere in R" entails that an operator
T is ds-submonotone (resp. d-submonotone) if, and only if, it is s-submonotone (resp.
submonotone).

Given a nonempty subset U of X, we say that T is s-submonotone (resp. submonotone,
ds-submonotone, d-submonotone) on U, if T' has the corresponding property at every
rxel.

Let us recall from [11, Theorem 2.4] that every ds-submonotone operator 7' on X is
locally bounded on int dom(T"). The definition of ds-submonotonicity (relation (11)) is
reminiscent of monotonicity and can be considered as a limiting variant of it. It can also
be considered as a mild continuity condition, since any continuous function g : U — X*
can be seen as a (single-valued) s-submonotone operator on U. Thus, every monotone
operator is s-submonotone, while the converse is not true. The class of s-submonotone
operators is stable under addition and is relatively large.

3 A sufficient condition for integration

In this section we give sufficient conditions for integrating multivalued operators. We
first need some terminology. Given a segment [z,y], a finite sequence {x;}¥ | of [z,y] is
called a subdivision of the segment [x,y], if ©1 = z, r;, = y and

k—1
> Nz —aill = llz =yl (12)
i=1

A polygonal path [wy]/"; is an union of consecutive segments; it is said to be closed if
Wy, = wy. A finite sequence {z;}!, is called a subdivision of the path [ws]i,, if there
exists an increasing sequence 1 = k; < kg < ... < k,, = n such that for 1 < h <m — 1,
{x,}f:,g; is a subdivision of the segment [wy,, wp,11].

The following definition is a reformulation in infinite dimensions of a property intro-

duced by Janin ([12]) for the class of bounded operators defined on compact subsets of
R™.

Definition 3 An operator T : X = X* is called radially cyclically submonotone on a
subset U of its domain, if for any closed polygonal path [wy|; C U and any e > 0, there
exists 6 > 0, such that for any subdivision {x;}!_, of [wy], satisfying ||z;41 — xi]| < §
(fori=1,2,...,n) and any z € T(z;) one has:

—_

(@7, Tip1 — 13) < €. (13)

=1

The proof of the following result borrows ideas from [12], mainly on steps 1 and 4.
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Theorem 4 Let T : X = X* be locally bounded and radially cyclically submonotone on
an open subset U of dom(T'). Suppose that T is d-submonotone, or more generally, that
for any x € U, z* € T'(x), u € X one has

liminf  sup (y* —a2",u) > 0. (14)
=0t e (gtu)

Then there exists a locally Lipschitz function f: U — R such that T C 0" f on U. If, in
addition, T is submonotone, then T C 0F f on U.

Proof

Case 1: Let us first suppose that U is connected. Then let V' be the set of (z,y) €
U x U such that [z,y] C U. Given (z,y) € V and o > 0, let us denote by S, (z,y) the set of
subdivisions {z;}?_; of the segment [z, y] such that z := z, x, := y and ||z;31 — ;|| < o,
fori=1,2,...n—1.

We consider the function g(-,-) : V' — R U {400} given by:

g(r,y) = inf sup{Z@;f,xm—m: {xi}?lesm,y),xreT(m}. (15)

o>0 -
=1

Since T is locally bounded, a compactness argument shows that for any (x,y) € V there
exists k£ > 0 and p > 0 such that for all («',y') € B,(x) x B,(y), we have (2',y') € V and

l9(z", )| < Kll2" =] (16)

Let us now fix some z in U and define f : U — R U {+o0o} as follows:

m—1
= sup {Z 9(Wh, Wi } (17)

h=1

where the supremum is taken over all m > 2 and all polygonal paths [w ], with wy 1= xg
and w,, := x such that [wp, wp1] C U, for all h =1,2,...,m — 1. (Note that this family
of paths is non-empty as U is open and connected.)

Step 1: The domain of f is nonempty.

We shall show in particular that f(zo) = 0. Since f(xy) > g(xo, zo) = 0, it suffices to show
that f(zo) < 0. To this end, let us suppose that f(zy) > 0 and take any 0 < ¢ < f(xo).

By (17) we infer that for some closed polygonal path [wy]"; (with w; = w,, = xy) we
m—1
have Y g(wp, wpy1) > €. Then according to (15), for any 6 > 0 we can find a subdivision
h=1
{z;}7, of the path [w]}_, (where 21 = x,, = xy) and {z}}?, in X* such that =} € T'(x;),
1

|wiz1 — x;]| < d forall i > 1 and i (x}, xip1 — x;) > £. Since T is radially cyclically
i=1

submonotone, we get a contradiction.



Step 2: f(y) = f(z) + g(z,y), V(z,y) € V.
Take any r < f(z) and choose a polygonal path [wy,|}", in U with wy = xy and w,, =z

m—1
such that > g(wp, wpi1) > r. Set w1 = y. It follows from (17) that
h=1

F@W) =Y g(wn, whgr) > 7+ g(Wim, Wii1) =7 + g(2,y).
h=1

Since r < f(z) is arbitrarily close to f(z), the proof is complete.

Step 3: f(Z) < 400, for all T € U and f is locally Lipschitz on U.

Take any 7 € U and choose a polygonal path [wp]}"; in U with wy =z and w,,, = xy. It
follows from Step 2 that for y = ¢ and for x = w,,_; we have

0= f(xo) > flwm-1) + g(Wm-1, Zo)

which shows that f(w,, 1) is finite. Taking now y = w,, ; and x = w,, » we conclude
that f(wy,_o) is finite. Proceeding like this, we finally conclude that f(z) = f(w;) < +o0.
Now to show that f is locally Lipschitz, given £ € U we take v = y = x and p > 0 such
that for any 2',y' € B,(Z) we have (2/,y') € V and the estimate in (16). It follows from
Step 2 that

| f() = f(@)| < max{—g(z",y), —g(y',2")}

which yields that f is locally Lipschitz on U.
Step 4:
T(x) Co"f(r) VoeU (18)

Fix x € U and z* € T'(z). Let r > 0 be such that B,(z) C U. For every u € Sx, we have
by Step 2 that

fx +tu) — f(x)
t

g(z, x + tu)

> , for all t € ]0, r[.
Since f is locally Lipschitz, it suffices to show that for any u € Sx, € > 0 there exists

6 > 0 such that
t
of g(z,z + tu)
0<t<§ t

> (x*,u) —e. (19)

(From (14), we can associate to any ¢ > 0 some 0 > 0 (depending on u) such that for all
s € ]0,0[ we can find y* € T'(x + su) satisfying

(y*,uy > (z*,u) —¢. (20)

Fix 0 < t < d. Given o > 0 and any subdivision {t;}?_; of [0, ¢] such that sup,(t;11—t;) < o
we can find «f € T'(z + t;u) such that

(xf,u) > (", u) — e.
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Setting x; := = + t;u, we observe that {z;}"_, € S,(z,z + tu) and

n—1 n—1
Z(ﬂcfa Tip1 — i) = Z(ﬂﬁf, (tiy1 — ti)u)
i=1 i=1

n—1

> ((z*,u) — ¢) Z(tm —t;) = (z*, u)t — et

=1

Since o > 0 can be taken arbitrarily small, we obtain
g(x,x +tu) > (z*, tu) — te

and relation (19) follows for ¢ introduced above.

Note that assuming in addition that 7" is submonotone, the above ¢ (in Step 4) does
not depend on the direction u € Sy, hence (19) yields z* € 8" f(z).

Case 2: (general case) Let U be an arbitrary non-empty open set. Then U can
be written as a disjoint union of open connected sets U;. Applying the result of Case
1 for each 7 we obtain a locally Lipschitz function f; on U; with T'(z) C 0" f(z) (resp.
T(z) C d¥ f(x), if T is submonotone), for all z € U;. Define f : U — Rby f(z) = fiw)(2),
where i(x) is the unique index such that 2 € Uy). It follows that f is locally Lipschitz
and T C OH f (resp. T C O f). O

4 Cyclic submonotonicity

In Theorem 4 we obtained a sufficient condition ensuring that an operator 7" is included
in the subdifferential 9 f of a (locally Lipschitz) function f. In this section we reinforce
Definition 3 - by using a notion of approximate subdivisions of closed polygonal paths -
to ensure the coincidence of T with the subdifferential 3¢ f. This leads to a notion of
cyclic submonotonicity, which turns out (in Section 5) to be a necessary and sufficient
condition for the integration process described in Theorem 4. Its relation with radial
cyclic submonotonicity is given in Proposition 17.

Let us first give the definition of a d-subdivision of a closed polygonal path.

Definition 5 Given § > 0 and a closed polygonal path [wy]" |, we say that {z;}?_, is a
d-subdivision of [wp|i~,, if T, = x1 and

(i) {zitim, € Bs([walizy)

(i) ||xiz1 — || <9, fori e N, 4

(1ii) there exists a finite sequence {kp}}"; with 1 = ki < ko < ... < ky, := n such that
for 1 < h <m—1 we have:
Tit1 — Xi Wht1 — Wh

i =2l [lwper — ]

kh§i<kh+1:>||” | < o.



We are now ready to give the following definition.

Definition 6 An operator T is called cyclically submonotone, if for any closed polygonal
path [wp|i, and any € > 0, there exists 6 > 0, such that for all 6-subdivisions {x;}I | of
[wp], and all x} € T(x;) one has

n—1 n—1

D (ef i —ai) Se ) e —aill (21)

i=1 i=1

If U is an open subset of X, an operator T is said to be cyclically submonotone on U
if (21) holds for closed polygonal paths and d-subdivisions in U. Furthermore, a cyclically
submonotone operator 1" on U is called mazimal cyclically submonotone on U, if there is
no cyclically submonotone operator S # 7" such that T'(z) C S(z) for all x € U.

Let us note that, as follows from (12), the length of a subdivision of a path is always
equal to the length of the initial path. On the contrary, the definition of a d-subdivision
is more general, since no direct constraint on its length is imposed. This flexibility in
Definition 5 enables us to show that - unlike the case of radial cyclic submonotonicity -
every cyclically submonotone operator is also ds-submonotone.

Proposition 7 Every cyclically submonotone operator on U is ds-submonotone on U.
Consequently, if U C int dom(T") then T is also locally bounded on U.

Proof Let zp € U, ¢ > 0 and e € Sx. Since U is open, there exists A > 0 such that
[xo, 20 + Ae] C U. Let m = 3, wy = g = ws and wy = xy + Ae. For € > 0 and for the
path [w;]3_, take 6 > 0 as in Definition 6, and set §' = §/2. Then if z,, 2 € By /(z0) are
such that z; # x5 and || T — e|| < &', we can easily check that for x3 = xy, {x;}3_, is
a d-subdivision of the path [wp]3_,. So relation (21) yields (11) and T is ds-submonotone
at xo. Since x( is arbitrary in U, it follows that 7" is ds-submonotone on U. The last

assertion follows from [11, Theorem 2.4]. O

Remarks
1. Every cyclically submonotone operator is radially cyclically submonotone on every
open subset U of its domain. Indeed, if (21) is true and {x;}!, is a subdivision of

n—1 n—1
[wp]fy in U, then Y ||wit — 24| = D [|wisr — wil|. It follows that (21) yields (13) for
i=1 i=1

n—1
g = 5(_21 |wigr — wil]) "
1=

2. It is obvious that every cyclically monotone operator is cyclically submonotone. On
the other hand, an operator can even be strongly monotone, without being cyclically
submonotone, as illustrates the example (also used in [9] for a similar purpose) of the
operator T : R? — R?, with

x y
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3. Cyclic submonotonicity is a separably determined property, i.e. an operator 17" : X =
X* is cyclically submonotone on U if, and only if, for every separable closed subspace Y of
X, the operator T' |y: Y = Y* (defined for all y1,y2 € Y by (T |y (v1),92) :== (T (1), y2))
is cyclically submonotone on U NY'.

We now show that if 7" is locally bounded and cyclically submonotone (resp. ds-
submonotone) on U, then so does the w*-cusco generated by T'. Let us recall that if U is
an open subset of dom(7T), the local boundedness assumption on 7" becomes superfluous,
since it follows from its ds-submonotonicity (see Proposition 7).

Proposition 8 IfT is locally bounded and cyclically submonotone (resp. ds-submonotone)
on U, then the operators T and @“ (T) are also cyclically submonotone (resp. ds-
submonotone) on U. In particular, the w*-cusco generated by T is cyclically submonotone
(resp. ds-submonotone) on U.

Proof It is easily seen from (21) that co® (7)) is cyclically submonotone. In order to prove
that T is cyclically submonotone, let us consider a closed polygonal path [wy]", C U
and € > 0. Let us take 0 > 0 guaranteed by Definition 6 for the operator T" and let us
consider any d-subdivision {x;}?, in U and a7 € T(x;). Then there exist nets (2;(A))xea
and (z7(\))aea such that xf(A) € T(x;(N)), (x;(N)) LN z; and (zF (X)) RN xf. Since
{z;}7_, is a finite sequence, there exists Ay € A such that {z;(\)}_, is a d-subdivision for
all A = A¢ (where = is the preorder relation of A). It follows from (21) that

n

D@V, zin () —z(\) < e Z i1 (A) = z:(A)]-

i=1
Taking limits in both sides we obtain

n

n
S i —w) <€ wi — aill.

This shows that T is cyclically submonotone, hence so does the operator e®" (T). Since
now 7' is locally bounded on U, we have

*

T(z) == ({T(2') : 2 € Be(z) N dom(T)}"

e>0

for all z € U. Using Proposition 1 we conclude that ¢o*" (T') is the minimal w*-cusco oper-
ator containing 7T'. This finishes the proof. The assertions concerning ds-submonotonicity
can be proved likewise. O

The following proposition reveals an important feature of cyclic submonotonicity.
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Proposition 9 Let U be an open subset of dom(T) and T be a cyclically submonotone
operator on U. The following statements are equivalent:

(i) T is w*-cusco on U.
(ii) T is minimal w*-cusco on U.
(1i1) T is mazimal ds-submonotone on U.

(iv) T is mazimal cyclically submonotone on U.

Proof Implication (ii) = (i) is obvious. Assume now that (7) holds. Using Proposition
7 we conclude that T is ds-submonotone on U. Since T is w*-cusco, from [11, Lemma
3.2] it follows that 7" is maximal submonotone on U. Hence (i) = (iii).

(i7i) = (iv) : Let S be a cyclically submonotone operator whose graph contains the graph
of T. Then S is ds-submonotone (see Proposition 7), hence it coincides with 7.

(iv) = (4i) : Since T is locally bounded on U C intdom(7T), Proposition 8 guarantees that
T is w*-cusco. Assume that there exists S C T such that S is w*-cusco. Obviously S will
also be cyclically submonotone. Since (i) = (iv), S is maximal cyclically submonotone,
whence S =1T. U

Remark 10 We recall from [23] that if X is Asplund (resp. X has a Gateauz differen-
tiable norm), then every minimal w*-cusco operator is single-valued and (||.|| = ||.||) upper
semicontinuous (resp. (||.|| —w*) upper semicontinuous) at every point of a G5 dense set.

Corollary 11 Let T be a cyclically submonotone operator on an open subset U. Then
co®" (T) is maximal cyclically submonotone on U.

Proof Since T is locally bounded, the operator S := ¢* (T) is w*-cusco. By Proposition
8, S is also cyclically monotone. The conclusion follows from Proposition 9. 0

Let further Z be a closed subspace of X and define the multivalued operator S : 7 =

Z* as follows
S(z) ={z* € Z* : 9z* € T(2) such that z* = z* |z} (22)

(where x* |; denotes the restriction of the functional z* to Z).

Lemma 12 (i) If T is locally bounded and w*-cusco on an open subset U, then S is
o(Z*, Z)-cusco on U N Z, where o(Z*, Z) denotes the w*-topology on Z*.

(ii) If T is mazimal cyclically submonotone on U, then S is mazimal cyclically sub-
monotone on U N Z.

Proof Assertion (i) follows easily since S has a 0(Z*, Z)-closed graph on U N Z. To show
(ii), let us observe (from Definition 6) that if 7" is cyclically submonotone on U, then S
is cyclically submonotone on U N Z. By Propositions 7 and 9 we have that 7" is locally
bounded and w*-cusco. It follows by (i) that S is o(Z*, Z)-cusco on U N Z, so the proof
finishes by a new application of Proposition 9(i) — (iv). O
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5 Main results

Throughout this section U will always denote a non-empty open subset of X. Let us
give the following definition.

Definition 13 A (locally Lipschitz) function f : U — R is called subsmooth if 0 f is
ds-submonotone on U.

Every subsmooth function f is regular (see [24], [11, Theorem 4.1]), a locally Lipschitz
function f being called regular ([6]) if f'(z,d) = f°(z,d), for all d € X. It follows that

o°f =0"f. (23)

In the particular case where X has some regularity, subsmoothness is characterized as
follows.

Proposition 14 Let X be an Asplund space (resp. X has a Gateaux differentiable
renorming). Then a locally Lipschitz function f : U — R is subsmooth if, and only
if, OF f (resp. 01 f) is ds-submonotone on U.

Proof The “necessity” part is obvious. To show the “sufficiency” part, let T = 9" f (resp.
OM f). Since f is locally Lipschitz and T is included in 0¢f, it follows that T is locally
bounded. Using Corollary 2 and Proposition 8 we obtain that 9 f is ds-submonotone,
hence that f is subsmooth. (Note that this implies that dom (9% f) = U). O

It follows from Definition 13 and the comments after the definition of ds-submonotonicity
(in Section 2) that every convex or continuously differentiable (i.e. C') function is sub-
smooth. One of the main results in [24] is the following characterization of subsmooth
functions in finite dimensions: a (locally Lipschitz) function f on U C R is subsmooth
if, and only if, it is lower C', a function f being called lower C! if for each xy € U,
there exist a neighborhood V' of xj, a compact set S and a jointly continuous function
g:V xS — Rsuch that for allz € V, f(z) = max g(x,s) and D,g (exists and) is jointly

continuous. In the last section we give some typical examples of subsmooth functions in
infinite dimensions.

We now state the main results of the paper.

THEOREM A For a locally Lipschitz function f: U — R the following are equivalent:
(i) f is subsmooth
(ii) O€ f is mazimal cyclically submonotone on U.

THEOREM B Let U be an open connected subset of X and fi, fo be two subsmooth
(or more generally reqular) functions on U such that 0 fi = 9 f,. Then f1 = fo+c for
some c € R.

THEOREM C If T : X = X* is a multivalued operator and U an open subset of
dom(T), then T is mazimal cyclically submonotone on U if, and only if, T = 0°f = 0" f

13



for some subsmooth function f : U — R, which is unique (up to a constant) on every
connected subset of U. If, in addition, T is submonotone, then T = O f.

Proof of Theorem A The implication (ii) = (i) is clear in view of Proposition 7 and
Definition 13.

For the implication (i) = (ii), set T := 9 f. Since T is w*-cusco, in view of Propo-
sition 9 (i) = (iv), it clearly suffices to show that T is cyclically submonotone. To this
end, consider any closed polygonal path [wy]7"; C U and any € > 0. Set C' = [wy]"; and

Wh41 — W

ep = ————
" Nwngr — wal]

for h e N1 :={1,2,...,m — 1}.
Since T is ds-submonotone, it follows that for every x € C' and h € N,,,_; there exists

a(x, h) > 0 such that
<:U){ — x;: T2 — :U1>

<e 24
1 — o] (24)

whenever x; # xo with ||z; — z|| < a(z,h), 2} € T(x;) (i =1,2) and
Ty — Ty
o=
Set f(z) = }fg%n a(z, h) and note that (24) holds for all z; # x5 such that z; € By (x) (i =
1,2) and 2=22 E U Bz (en).

llz1 —a|

—epl| < afx, h).

Let 6 > 0 be a Lebesgue number of the open covering (Bg(s) (x))wec of the compact
set C, i.e.
Yw e C,dx € C: B5(w) C Bﬁ(x)(:b‘) (25)

Let us consider any d-subdivision {z;}; of C' = [wy]}";. Since f is locally Lipschitz,
using Lebourg’s Mean Value theorem ([13]) on every segment [z;, z;11] (for i € N, 1), we
infer the existence of z; € |x;, x;41[ and 2 € T(2;) such that

f(@iva) = fxi) = (2, Tigr — @) (26)

Adding the above equalities, we have

n—1
> (2w — @) =0
i=1
which yields
n—1 n—1
Z T, Tip1 — Ti) = Z(mf — 27, Tiy1 — Tj). (27)
=1 i=1
Since {x;}7 | is a 0- subd1v1s1on of C, it follows from (24) and (25) that for every i € N,_;
%  Litl — Ty % « R T
Ti = 2 =T, =2, ) <€
P Al P

14



which, combined with (27), yields

—_

n—1

(0], wi — ) =& Y e — i)

1 =1

n—

i

This finishes the proof. O
Before proceeding to the proof of Theorem B, we shall need the following easy result.

Lemma 15 Let f : U — R be a locally Lipschitz function, let Z be a closed linear subspace
of X and consider the function g : Z NU — R defined by

9(z) = f(2) forall z€ UN Z. (28)

IfS: 7 = Z* is as in (22) for T = 0" f, then we have:
(i) S(z) C 0" g(2) forallz e UN Z.
(i1) If for some xo € UN Z, 0" f(xy) = 9 f(w0), then S(x) = 0" g(x0) = 0%g(wo).

Proof (i) Let z € UN Z and z* € S(z). Then z* = z* | for some z* € 9% f(z). Since f
is locally Lipschitz, by (5) we conclude that ¢'(z,u) = f'(z;u) > (z*,u), for all u € Z. It
follows that 2* € 97 g(z).

(ii) Suppose now that for some xg € U N Z, 9% f(xy) = 0% f(x9). By (i) we have
S(zo) C 0" g(xg) C 0%g(x0). Let us show that 9% g(zy) C S(wo). Indeed, let 25 € 09g(xg).
Then we have from (4) that

(20, u) < ¢°(xo;u) < f(xo;u), forallu € Z.

Using the Hahn Banach theorem, we conclude the existence of some x* € X* such that
¥ |z= 2* and (x*,.) < f(zo;.), so that a* € 9°f(xy) = 0¥ f(xy). It follows that
z* € S(xo). O

Proof of Theorem B Suppose that f;, fo are two subsmooth functions on U such that
oY fi = 0°f,. Without loss of generality we suppose that 0 € U. For any x € X let us
set Z = span[z], g; = f; |z (the restriction of f; to Z, i = 1,2) and T = 9% f;. By (23)
we have
T=0"f=0"h=0"%=0"f,
and by Lemma 15(ii)
aH91 = 3091 = 3092 = 3H92- (29)

Since Z is a one-dimensional space (in fact separable would suffice), it follows from [3,
Theorem 5.12] (see also [5, Section 4.2]) that the regular functions g, g, are essentially
smooth.

Case 1: Suppose that U is convex.
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Then the set U N Z is connected, so relation (29) yields g; = g» + ¢ for some ¢ € R
(see [5, Proposition 4.12] or [3, Proposition 5.9]). Since g; = f; |z, we obtain

fi(z) = falw) = ¢ = f1(0) = £2(0).

Since x is arbitrarily chosen, we obtain f; = fo +con U.

Case 2: (general) Since U is open and X is locally convex, from case 1 we conclude
that f; — fo is locally constant on U. Since now U is connected, it follows that f; — fo is
constant on U. The proof is complete. 0

Let us now proceed to the proof of Theorem C. We shall need the following lemma.

Lemma 16 Let f: U — R be locally Lipschitz, xo € X and Y be a separable subspace of
X. Then there exists a separable subspace Z of X containing Y and xy such that for the
function g : ZNU — R given by g = f |unz (as in (28)) we have

9°(xo;u) = fo(zo;u) for allu € Z (30)
and consequently
0%g(xo) = {27 € Z* 1 2" = 2% | 4,27 € 07 f(20)}- (31)

Proof Let Yy = span[Y] x| be the closed linear space generated by Y and {z,} and let
Dy be a countable dense subset of Yj. Then for every d € Dy, there exist {z,},>1 in X
and {t,},>1 in |0, 1] such that (z,) — o, (t,) — 07 and

f(xn + tnd) - f(xn) + l
tn n

S (o3 d) < (32)
Set Ag(d) = {z, : n € N} and Ay = (Jyep, Ao(d). Consider the separable space Y; =
span[Yy, Do], let Dy be a countable dense subset of V) and define (using (32)) A;(d) for
all d in Dy as above and A; = U, p, A(d). Proceeding like this, we obtain an increasing
sequence of closed separable subspaces Y;, of X and a sequence (D,,) of countable subsets
such that D,, is dense in Y,,. Set

z=Jv.

and g = f |z . Then for any u € Z and ¢ > 0 there exists n € N and d € D,, such that
||lu—d|| < e. Using (32) we conclude easily that g°(zo;d) = f°(x¢;d). Since the functions
u— g°(zo;u) and u — f°(xo;u) are Lipschitz, (30) follows. Relation (31) is now an easy
consequence of (30) and of the Hahn-Banach theorem. O

Proof of Theorem C The sufficiency part following from Theorem A, we only have to
show the necessity part.

To this end, let us suppose that 7" is maximal cyclically submonotone on U. In
particular, T" is a locally bounded ds-submonotone and radially cyclically submonotone
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operator on U (see Proposition 7 and Remark 1). It follows by Theorem 4 that for all
x e U, T(z) C 0% f(x), where f is given by (17). Let us show that T'(x) = 0¢ f(z) for all
relU.

Suppose that the contrary holds. Then for some z, € X and zf € 0f¢(zy) we have
xy ¢ T(z9). By Corollary 9, T'(xy) is a non-empty w*-closed convex set, hence there exists
u € X such that

(xg,u) > sup (z*,u). (33)
€T (z0)

Set Y = span[zy, u], and consider the separable subspace Z of X given by Lemma 16 and
g=flz.Let S:Z = Z*" be as in (22), i.e. for every z € UNZ

S(z)={z"€Z": 2" =a" |z for some z* € T(2)}.
Then by Lemma 12 S is o(Z*, Z)-cusco on U N Z and by Lemma 15(i)
S Cofy.

Since S has non-empty values on U N Z, the above relation yields that S(z) = {D"g(z)}
for all points x for which the Hadamard derivative D g(z) exists. Since Z is a separable
Banach space, it admits a Gateaux smooth renorming. It follows that the Clarke subd-
ifferential 9“¢g is given by (7) and is the smallest o(Z*, Z)-cusco mapping whose graph
contains the graph of the Hadamard derivative D g. Since S is 0(Z*, Z)-cusco, it follows
that Gr(9%g) C Gr(9), for all x € U. Since Gr(07g) C Gr(0%g), we conclude that

S=0"g=0% onUNLZ.
In particular S(x) = 0“g(xp), and using the conclusion of Lemma 16
S(mo) ={2" € Z*: 2" =a" |z, 2" € 37 f(x0)}.
Let 25 == x5 |z€ S(xo) = 0%g(xy). Since u € Z, it follows that
(29, u) = (25, u) < ¢°(x0;u) = f*(z0; u).
This yields a contradiction to (33) since

¢°(zog;u) =  sup  (2%,u) = sup (z",u)= sup (2", u).
2*€0%g(xo) z*€S(zo) z*€T(z0)

Hence we have shown that 7 = 9°f on U. It follows from Definition 13 that f is
subsmooth and by Theorem B that it is unique (modulo a constant) in every connected
subset of U.

If moreover T is submonotone, then using again Theorem 4 we infer that T'(z) C
OF f(x), for all x € U. Hence Gr(T') C Gr(d0F f) C Gr(9°f) and T = 9° f (on U) whence
T=0"f=0% onU. O

An inspection of the above proof yields the following result.
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Proposition 17 Suppose that T is a locally bounded w*-cusco operator on an open subset
U of X. Then T is (maximal) cyclically submonotone on U if, and only if, T is radially
cyclically submonotone and ds-submonotone on U.

Proof If T is cyclically submonotone, then from Proposition 7 and Remark 1 it follows
that T is radially cyclically submonotone and ds-submonotone on U. Conversely, if 1" is
radially cyclically submonotone and ds-submonotone on U, then by Theorem 4 we infer
that T'C 0% f on U for some locally Lipschitz function f.

Since now T is locally bounded and w*-cusco on U, by Lemma 12(i), for every closed
subspace Z of X, the operator S given in (22) is 0(Z*, Z)-cusco on U N Z. Thus, repeating
the arguments of the above proof, we obtain that 7' = 9 f on U and that f is subsmooth.
It follows from Theorem A that 7" is (maximal) cyclically submonotone on U. O

6 Examples of subsmooth functions

Apart from the classes of convex continuous or C''-functions (or of sums of such func-
tions), typical examples of subsmooth functions are also certain types of marginal func-
tions, as for instance the class of lower C'! functions introduced in [24] (and also considered
in [21] and [16]). Let us note that subdifferentiability properties of marginal functions
have been studied by many authors, see for instance [3], [7], [8] and [11].

In the sequel let A be an arbitrary non-empty set and U an open subset of X. We
consider the marginal function f : U — R defined for every x € U by

flx) = sup 9(x, a), (34)

where g : U x A — R is such that ¢(-,«) is a regular locally Lipschitz function and
f(z) < +oo for every z € U. Let us further assume that

(i) for every xy € U, there exists ¢ > 0 such that the set

J{0%9(x,0) s a € A,z € Bs(x0), g, @) > f(xo) — 6}
is norm bounded.

(ii) for every x € X and e € Sx there exists € > 0 such that for every v > 0 there exists
o > 0 such that

['(y.ase) = f'(x,a;€) <
whenever || z —y ||[< § and g(z,a) > f(z) — .

(iii) for every zy € U, e € Sy and € > 0, there exists ¢ > 0 such that

g/(x,a; 6) . g(ZL‘ +te7at) - g(x,a) <e (35)

for all x € Bjs(xy), all t € |0, [ and all @ € A with g(z,a) > f(zq) — 0.
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The following result is an easy consequence of results established in [11].

Theorem 18 If [ is a marginal function (relation (34)) satisfying conditions (i)-(iii),
then f is subsmooth on U and 0 f = 0° f is mazimal cyclically submonotone on U.

Proof By [11, Theorem 5.4 (a)], f is locally Lipschitz, and by [11, Lemma 5.3] and [11,
Theorem 5.2 (d)], f is regular, therefore 0 f = 9°f. Now again by [11, Theorem 5.4
(a)], d° f is ds-submonotone in U, i.e. f is subsmooth. Theorem A finishes the proof. [J

Remarks

1. It is easily seen that the above class of functions contains the class of lower C'! functions.
Combining this with Theorem 18 and Spingarn’s characterization of lower C' functions
([24, Theorem 3.9]) we conclude that in finite dimensions a function f is lower C'! if, and
only if, f is given by (34) and satisfies conditions (i)-(iii).

2. If in addition to the assumptions of Theorem 18 the choice of ¢ in (35) does not
depend on e, then by [11, Theorem 5.4 (b)] we conclude that 9 f is submonotone, and
by Theorem C, that 0 f = 9° f.

Let now A be an arbitrary nonempty subset of the Banach space X. Let us define the
distance function by
da(z) == inf ||z — || (r € X).
aEA

The following proposition provides another typical example of subsmooth function.

Proposition 19 Suppose that the norm of X is uniformly Gdteaux (resp. wuniformly
Fréchet) differentiable. For any nonempty closed set A of X let us consider the function

f(z) = —da(x).

(i) Then f is subsmooth, hence regular, on X \ A.
(ii) O f = O f (resp. 0 f = O f) is mazimal cyclically submonotone and 0%d4(.) is
minimal w*-cusco on X \ A.

Proof The assertions follow from [11, Th. 5.6 (a),(b)], Theorem A and Remark 2. O

Let us now consider another important class of examples of subsmooth functions.
We shall say that a function f : U — R is amenable (][22, Definition 10.23]) if for any
xo € U there exist an open neighborhood V' of zy, a Banach space Y, a continuously
differentiable function F' : V — Y and a proper lower semicontinuous convex function
g:Y = RU {+o00} such that

f(z)=g(F(x)) forallz e V (36)

and
R (dom g — (o)) + F'(a0) (X) = Y. (37)
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For the sake of simplicity, and since in this paper we limit our study to locally Lipschitz
functions, we further consider the subclass A(U) of amenable functions f such that in
the decomposition (36) we have F(V) C int dom(g). Obviously every function in A(U) is
locally Lipschitz and condition (37) is satisfied.

Proposition 20 If f € A(U), then 0°f is s-submonotone (hence in particular f is
subsmooth).

Proof Let f be in A(U). With no loss of generality we may assume that V' = U so
that f = g o F' with g and F as in (36). Since g is regular on F'(U) (as it is convex and
continuous on int dom(g)), applying [6, Theorem 2.3.10] we conclude that f is also regular,

that is 0° f = 0 f. Set now T = 0° f = 0" f. We shall show that 7T is s-submonotone.

To this end, let zg € U, x1,29 € U and zf € 0f(x;), i = 1,2. Then there exist
yr € 0g(F(z;)) (i = 1,2) such that z} = y} o F'(x;), where F'(z) denotes the Fréchet
derivative of F' at x. It follows that

(¥ — @5, 21 — x9) = (Y1, F'(x1) (21 — 22)) — (3, F'(22) (21 — 22)). (38)

Since F'is continuously differentiable, there exist 6 > 0 and a function r : U x U —» Y
such that
F(v) — F(u) = F'(u)(v — u) + r(u,v) (39)

for all u,v € B;(xy) and
lim ATl (40)
wvo [lu— v
uwF#v
Combining (38) with (39) we obtain thanks to the monotonicity of Jg that

(x] — w3, 11 — x2) > (Y1, 7(21,22)) + (Y3, (72, 71))

which yields, when x; # x4, that

Ty —xh, 1 — T . Tz, . T(xe,@
<1 2_1 2>2<y1,(1_2)>+<2,(2_1).
21 — o] [l — 22| 21 — o]
The result now follows from (40) and the local boundedness of dg near F'(z). O

Remark Since every strictly Gateaux differentiable function F': U — Y is locally Lips-
chitz ([6, Proposition 2.2.1]), a slight modification of the above proof suffices to establish
that 0° f is ds-submonotone on U, whenever F is strictly Gateaux differentiable and ¢ is
locally Lipschitz with 9°g s-submonotone on an open set containing F(U).
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