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Abstract. We study the notion of trace-convexity for functions and respectively, for subsets of
a compact topological space. This notion generalizes both classical convexity of vector spaces,
as well as Choquet convexity for compact metric spaces and provides an alternative description
for the convexification for sets and functions. We show that the class of upper semicontinu-
ous convex-trace functions attaining their maximum at exactly one Choquet-boundary point is
residual and we obtain several enhanced versions of the maximum principle, including a multi-
maximum principle for families of convex-trace functions, which generalize both the classical
Bauer’s theorem as well as its abstract version in the Choquet theory. We illustrate our notions
and results with concrete examples of three different types.
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1 Introduction.

The classical Krein-Milman theorem ([15]) states that every nonempty convex compact subset K
of a locally convex vector space E can be represented as the closed convex hull of its extreme
points, that is, K = co (Ext(K)). The result is based on the Hahn-Banach separation theorem
together with Zorn’s lemma. It asserts in particular the existence of extreme points in every
convex compact set. An alternative way to obtain the same conclusion is based on the Bauer
maximum principle ([4]), which states that for every nonempty convex compact set, every upper
semicontinuous convex function attains its maximum at some extreme point of that set.

A more general version of the Krein-Milman theorem can be obtained via the Choquet
representation theory, in terms of Radon measures onK whose support is contained in the closure
of the extreme points of K. This theory gives rise to an abstract definition of convexity, further
beyond the framework of vector spaces, the so-called Φ-Choquet convexity, whereK is a compact
metric space and Φ is a closed subspace of the Banach space C(K) of real-valued continuous
functions on K. Then, a function f ∈ C(K) is called Φ-Choquet convex (see forthcoming
Definition 5) if for every x ∈ K and probability measure µ on K the following implication holds:

∀ϕ ∈ Φ, ϕ(x) =

∫
K
ϕdµ =⇒ f(x) ≤

∫
K
fdµ.

In particular, a Φ-Choquet convex function f is, by definition, continuous. Moreover, an abstract
version of Bauer’s maximum principle holds true for these functions defined on a compact metric
space, which evokes the so-called Choquet boundary of K.

In this work, we adopt a geometrical approach to define convexity on a compact (not necessa-
rily metric) space K. Considering the canonical injection δΦ : K → Φ∗, given by δΦ(x)(ϕ) =
ϕ(x), for all ϕ ∈ Φ we may identify K with its homeomorphic image δΦ(K), which lies in
particular into a convex w∗-compact subset K(Φ) of Φ∗. (The exact definition of the set K(Φ)
is given in (6).) Under this identification, we call a set (respectively, a function) convex-trace,
if it is the trace on K of a convex subset of K(Φ) (respectively, the restriction on K of a
real-valued convex function on K(Φ)), see Definition 17 (respectively, Definition 8). Notice
that a convex-trace function does not have to be continuous. Nonetheless, for every continuous
function f we may associate a continuous convex-trace function f̂ , which corresponds to a trace-
convexification for f . Moreover, we show that continuous convex-trace functions coincide with
Φ-Choquet convex functions. Therefore trace-convexity can be seen as an alternative geometric
definition for Choquet convexity.

Our approach pinpoints a natural extension for Choquet convexity. Indeed, we can consider
the class of convex-trace functions that are merely upper semicontinuous, which in addition,
is the optimal framework to all results related to the maximum principle. In this work, we
establish enhanced versions of the maximum principe for such functions defined on a compact
(not necessarily metric) space, extending both the classical Bauer’s maximum principle for
convex functions on locally convex spaces and its abstract version in the Choquet theory on
compact metric spaces. Moreover, in the particular case that the compact set K is metrizable,
we obtain a genericity result, whose proof does not require Zorn’s lemma and is based on a
new variational principle established recently in [2, Lemma 3]. This new variational principle
is in the spirit of that of Deville-Godefroy-Zizler in [8] and Deville-Revalski in [9], and at the
same time, complementary to them: it does not require the existence of a bump function (ie. a
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function with a nonempty bounded support) but in turn, it requires the set to be compact and
metrizable. This assumption applies particularly well when Φ is the space of affine continuous
functions or the space of harmonic functions, spaces which do not dispose bump functions.

Let us mention, for completeness, that motivated by Choquet convexity, there exists an-
other abstract notion of convexity, called Φ-convexity, studied in works by Ky Fan [10], M. W.
Grossman [12] and B. D. Khanh [14]. This notion is defined algebraically, based on an abstract
definition of segments, and aims to extend from convex sets to compact spaces both the classes
of convex and of strict quasi-convex functions. Since we are interested in notions extending con-
vexity of functions in a fully compatible way (in the sense that the definition, when applied to
a convex subset of a locally convex space, should yield exactly the class of convex functions and
not more than this), we shall not deal with this notion in this work. On the other hand, Φ-convex
sets (in the theory of Ky Fan) will turn out to be exactly the convex-trace sets (see Remark 26).
The same conclusion can also be derived from [16, Proposition 8.22], where the authors used
an ostensibly different definition of Φ-convexity (thereby named H-convexity), showed that it
eventually corresponds to the property of trace-convexity and established the abstract version of
Krein-Milman theorem that we reproduce here, see [16, Chapter 8]. This latter result is based
on a well-adapted definition of Φ-extreme points, that goes with the spirit of trace-convexity.
These points are in general much less than the Φ-extreme points in the theory of Ky Fan.

Throughout this work, all topological spaces will be assumed Hausdorff. We shall systema-
tically denote by K a nonempty compact space (which might be metrizable or not) and by Φ
a closed subspace of C(K) which separates points and contains the constant functions. The
whole theory can also be developed in a more general setting, starting from a completely regular
space X (and defining K := βX to be the Stone-Čech compactification of X), or considering
an open dense subset X of a given compact space K. Notwithstanding, we shall only adopt
this more general setting when we deal with convex-trace sets, in order to discuss properly some
examples at the end of the manuscript.

The manuscript is organized as follows:

In Section 2, we review concepts related to Choquet convexity in a topological setting (K
is a compact space) and fix terminology and notation. In particular we recall the notions of
representing measure, of Choquet boundary and of Choquet convex function. This part is quite
standard and can be found (under a slightly different notation) in e.g. [5] or [16].

In Section 3 we introduce the central notion of this work, that is, the notion of trace-convexity,
both for functions (Definition 8) and for sets (Definition 17). As consequence of our first main
result (Theorem 11) we show that Choquet convexity can be equivalently restated in terms
of trace convexity for continuous functions (Corollary 13). This restatement allows a natural
extension by considering traces of upper semicontinuous convex functions, see Definition 5. We
also introduce convex-trace sets and a notion of trace convexification for sets and reproduce
an abstract Krein-Milman theorem (Theorem 24), which has been previously established via
a different approach in [16, Corollary 8.19]. As pointed out by one of the referees, the trace-
convexification of a set, under a different terminology, can also be deduced from the results
presented in [16]. In view of this, several of the results of Section 3 should rather be viewed as
an alternative approach to the theory exposed in [16, Chapter 8].

In Section 4 we show that this new setting fits perfectly to the framework of Bauer’s maximum
principle (Theorem 28). Moreover, in the specific case that the compact set is metrizable, an
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enhanced version of the maximum principle (Theorem 35) and a generic maximum principle
(Theorem 37) hold true.

Finally, in Section 5 we provide three typical examples of different nature to illustrate these
notions and the results of this work.

2 Preliminaries and notation.

Let K be a compact topological space and let C(K) be the Banach space of continuous real-
valued functions on K equipped with the sup-norm: ∥f∥∞ := supx∈K |f(x)|, for f ∈ C(K).
Throughout this work, Φ will denote a closed subspace of C(K) satisfying the following two
properties:

(i) Φ separates points in K ;
(that is, for every x, y ∈ K with x ̸= y, there exists ϕ ∈ Φ such that ϕ(x) ̸= ϕ(y))

(ii) Φ contains the constant functions.
(equivalently, the function 1(x) = 1, for all x ∈ K belongs to Φ.)

It is well-known that K admits a canonical injection to C(K)∗ by means of the following Dirac
mapping {

δ : K −→ C(K)∗

δ(x) = δx with δx(f) := f(x), for all f ∈ C(K)
(1)

If we equip C(K)∗ with the σ(C(K)∗, C(K))–topology (that we simply call w∗-topology), then
the above injection is homeomorphic and K is topologically identified to δ(K) := {δx : x ∈ K}
as subset of (C(K)∗, w∗). We also recall (see [19] eg.) that the dual space C(K)∗ is naturally
identified with the Radon measures on K via the duality map

⟨µ, f⟩ =
∫
K
fdµ, for all µ ∈ C(K)∗ and f ∈ C(K). (2)

In particular, δx is the Dirac measure of x and (1) becomes:

δx(f) := ⟨δx, f⟩ = f(x).

Furthermore, the dual norm ||µ||∗ coincides with the total variation of the measure µ.

We denote by M1(K) the set of all Borel probability measures on K. This set is a w∗-
compact convex subset of C(K)∗ and coincides with the weak∗ closed convex hull of the set
δ(K), that is,

M1(K) = {µ ∈ C(K)∗ : ∥µ∥∗ = ⟨µ,1⟩ = 1} = convw
∗
(δ(K)) ⊂ C(K)∗, (3)

where 1(x) = 1, for all x ∈ K.

Definition 1 (Φ-representing measures). Let x ∈ K.We say that µ ∈ M1(K) is a Φ-representing
(probability) measure for x if

ϕ(x) =

∫
K
ϕdµ, for all ϕ ∈ Φ.
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The set of all Φ-representing measures of x is denoted by Mx(Φ). Notice that δx ∈ Mx(Φ),
for every x ∈ K, therefore Mx(Φ) is nonempty. Every Q ∈ Φ∗ (linear continuous functional
on Φ) can be extended, via the Hahn-Banach theorem, to an element of C(K)∗ (linear continuous
functional on C(K)) of the same norm. However this extension is neither unique nor canonical.
Let us consider the following equivalence relation on C(K)∗ :

µ ∼ µ′ ⇐⇒ ⟨µ, ϕ⟩ = ⟨µ′, ϕ⟩, for all ϕ ∈ Φ. (4)

We denote by [µ] the class of equivalence of µ ∈ C(K)∗ under the above binary relation. Since this
relation is compatible with the linear structure of C(K)∗, setting π̂(µ) = [µ], for all µ ∈ C(K)∗,
we obtain a linear bounded surjective map π̂ : (C(K)∗, || · ||∞) −→ (C(K)∗/∼, || · ||∼), where
|| · ||∼ is the quotient norm on C(K)∗/∼, defined as follows:

||[µ]||∼ := inf
{
||µ′||∗ : µ′ ∼ µ

}
.

If C(K)∗ is equipped with its w∗-topology, then we denote by τ the final (quotient) topology on
C(K)∗/∼ under π̂, that is, the finest topology for which the mapping

π̂ : (C(K)∗, w∗) −→ (C(K)∗/∼, τ)

is continuous. Therefore, O ∈ τ if and only if π̂−1(O) is w∗-open in C(K)∗. The following
result shows that the space (C(K)∗/∼, τ) is in fact linearly homeomorphic to Φ∗, if the latter is
considered with its σ(Φ∗,Φ)-topology (which will be also denoted by w∗ if no confusion arises).
Before we proceed, we observe that the linear surjective map{

i∗ : C(K)∗ −→ Φ∗

i∗(µ) = µ|Φ
is (w∗-w∗)-continuous, being the adjoint of the identity map i : (Φ, ∥·∥∞) → (C(K), ∥·∥∞) (which
is a linear isometric injection).

Lemma 2 (Identification of C(K)∗/∼ with (Φ∗, w∗) ). The bijective map{
J : (C(K)∗/∼, τ) −→ (Φ∗, w∗)

J ([µ]) = µ|Φ
is a linear homeomorphism between (C(K)∗/∼, τ) and (Φ∗, w∗). Moreover, we have the identity:

π̂(µ) = J −1 ◦ i∗(µ), for every µ ∈ C(K)∗. (5)

Proof. It is straightforward to see that the mapping J is a linear bijection and (5) holds. Since
i∗ : (C(K)∗, w∗) −→ (Φ∗, w∗) is continuous, and J ◦ π̂ = i∗ it follows from the definition of the
final topology τ that J is (τ ,w∗)-continuous. It remains to prove that J maps τ -closed sets
to w∗-closed sets. To this end, let F be τ -closed in C(K)∗/∼ . In view of Banach-Dieudonné
theorem, it is sufficient to prove that for every R > 0 the set J (F )∩B̄R is w∗-closed in (Φ∗, w∗),
where B̄R = i∗(B̄(0, R)) and B̄(0, R) is the closed ball of C(K)∗ centered at 0 with radius
R > 0. By the Banach-Alaoglou theorem and the continuity of π̂ we deduce that π̂(B̄(0, R))
is τ -compact. It follows that the restriction of J on the (τ -compact) set π̂(B̄(0, R)) is an
homeomorphism between π̂(B̄(0, R)) and the closed ball B̄R = i∗(B̄(0, R)) of Φ∗. This yields
that the set

J (F ) ∩ B̄R = J (F ∩ B̄(0, R))

is w∗-closed in Φ∗ as asserted.
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Restricting the projection mappings π̂ : C(K)∗ −→ C(K)∗/∼ and i∗ : C(K)∗ −→ Φ∗ on the
set of probability measures M1(K) we obtain an affine homeomorphic bijection between (the
τ -compact set) π̂(M1(K)) := M1(K)/∼ and (the w∗-compact set)

i∗(M1(K)) := K(Φ) = {Q ∈ Φ∗ : ∥Q∥ = ⟨Q,1⟩ = 1} ⊂ Φ∗, (6)

where we continue to denote by ⟨·, ·⟩ the duality mapping between Φ∗ and Φ. In particular:

Corollary 3 (Identification of (M1(K)/∼, τ) with (K(Φ), w∗)). The bijective mapping

J : (M1(K)/∼, τ) → (K(Φ), w∗)

defined by J ([µ]) := µ|Φ is an affine homeomorphism and

J ◦ π̂(µ) = i∗(µ) = µ|Φ, for all µ ∈ M1(K).

We also recall the following universal property of the quotient map

π̂ : (M1(K), w∗) → (M1(K)/∼, τ)

� (factorization lemma) If G : (M1(K), w∗) → Z is a continuous map such that µ ∼ ν
implies G(µ) = G(ν) for all µ, ν ∈ M1(K), then there exists a unique continuous map
H : (M1(K)/∼, τ) → Z such that G = H ◦ π̂ (where Z is any topological space).

Combining (1) with (5) we obtain a canonical injection of K into Φ∗ as follows:{
δΦ : K −→ (K(Φ), w∗)

δΦ = i∗ ◦ δ with δΦx := δΦ(x) = i∗(δx).
(7)

Therefore δΦ defines a homeomorphism between K and δΦ(K). In fact, it is often convenient
to identify these spaces: K ≡ δΦ(K). Under the above notation, δΦx (ϕ) = ϕ(x), for all ϕ ∈ Φ.
Similarly to (3), the w∗-compact convex set K(Φ) in Φ∗ coincides with the w∗-closed convex
hull of the set {δΦx : x ∈ K}.

Definition 4 (Choquet boundary). The Φ-Choquet boundary ∂Φ(K) of K (or simply Choquet
boundary, if no confusion arises) is defined as follows:

∂Φ(K) := {x ∈ K : Mx(Φ) = {δx}}.

Denoting by C(K)∗+ the cone of positive Borel measures on K, it follows easily that

x ∈ ∂Φ(K) if and only if [δx] ∩M1(K) = {δx} = [δx] ∩ C(K)∗+ ,

where [δx] denotes the equivalent class of the Dirac measure δx, that is,

µ ∈ [δx] if and only if ⟨µ, ϕ⟩ = ϕ(x), for all ϕ ∈ Φ. (8)

In addition, it is well-known (see [17], [18], eg.) that a point x ∈ K belongs to the Φ-Choquet
boundary of K if and only if the canonical injection δΦ, given in (7), maps this point to an
extreme point of the w∗-compact convex set K(Φ), that is,

∂Φ(K) =
{
x ∈ K : δΦx ∈ ExtK(Φ)

}
. (9)
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2.1 Choquet convexity.

Let us now recall the following definition (eg. [7], [17], [18, Prop. 3.6], [16, Definition 3.8]).

Definition 5 (Choquet convex function). A continuous function f ∈ C(K) is said to be Φ-
Choquet-convex (or simply, Choquet-convex, if no ambiguity arises), if for every x ∈ K it holds:

f(x) ≤
∫
K
fdµ, for all µ ∈ Mx(Φ).

The set of all Choquet-convex functions will be denoted by

ΓΦ(K) := {f : K → R Choquet-convex function} ⊂ C(K).

Notation. For any convex subset S of a locally convex space E, we set

Γ(S) := {f : S → R convex continuous function}.

We also denote by Γ>(S) the set of upper semicontinuous (in short, usc) convex functions, and
by Γ<(S) the set of lower semicontinuous (in short, lsc) convex functions on S.

Remark 6 (Compatibility of Choquet convexity). If K is a convex subset of a locally convex
space E and Φ = Aff(K) is the set of affine continuous functions on K, then δΦ is an affine
homeomorphic bijection between K and K(Φ) and we have:

f ∈ ΓΦ(K) (Choquet convex) if and only if f ∈ Γ(K) (convex continuous).

Before we proceed, let us recall from [17, Key Lemma] the following result.

Lemma 7 (Key Lemma). For every continuous function on K it holds:{∫
K
fdµ : µ ∈ Mx(Φ)

}
=

[
sup

ϕ∈Φ, ϕ≤f
ϕ(x), inf

ϕ∈Φ, ϕ≥f
ϕ(x)

]
.

Therefore, we deduce:

inf
µ∈Mx(Φ)

∫
K
fdµ = sup

ϕ∈Φ, ϕ≤f
ϕ(x) ≤ f(x).

It follows directly from Definition 5 and the above Key Lemma that

f ∈ ΓΦ(K) ⇐⇒ f(x) = inf
µ∈Mx(Φ)

∫
K
fdµ = sup

ϕ∈Φ, ϕ≤f
ϕ(x), for all x ∈ K.

3 Extending Choquet convexity on topological spaces.

Using the notation of the previous section, we fix a compact space K and a closed subspace Φ
of C(K) satisfying conditions (i) and (ii). We also consider the w∗-compact convex subset K(Φ)
of (Φ∗, w∗) defined in (6).
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3.1 Convex-trace functions.

In the spirit of the definition of Choquet boundary, using the identification of the topological
spaceK with δΦ(K) and the classical convexity of functions defined on the affine varietyK(Φ) we
introduce a new notion of convexity for real-valued functions defined onK. The main idea is that
since K(Φ) is an affine variety, we can define therein convex functions (in the classical sense)
and consider their traces on δΦ(K). We therefore obtain the class of convex-trace functions,
which can either be continuous —case in which we recover the class ΓΦ(K) of Choquet convex
functions (Corollary 13)— or more generally upper (or lower) semicontinuous, yielding a natural
extension of Choquet convexity, that can be used to extend results related to the generalized
Bauer’s maximum principle. More precisely, we give the following definition.

Definition 8 (Convex-trace functions). Let K be a compact space and Φ a closed subspace of
C(K) that separates points in K and contains the constant functions. Let further δΦ : K →
(K(Φ), w∗) be the canonical injection given in (7). A function f : K → R is called:

(i) continuous convex-trace with respect to Φ (or simply continuous Φ-convex-trace), denoted
f ∈ TC(K,Φ), if there exists a convex continuous function F : (K(Φ), w∗) → R, that is,
F ∈ Γ(K(Φ)) such that

f = F ◦ δΦ. (10)

(ii) usc (respectively, lsc) convex-trace with respect to Φ, or simply, usc (respectively lsc)
Φ-convex-trace, denoted f ∈ TC>(K,Φ) (respectively, f ∈ TC<(K,Φ)), if there exists
F ∈ Γ>(K(Φ)) (respectively, Γ<(K(Φ))) such that (10) holds.

In other words, identifying K with its canonical image δΦ(K) in Φ∗, a function f is Φ-
convex-trace on K whenever f is the trace of a (usual) convex function on (the affine variety)
K(Φ). Since every ϕ ∈ Φ ⊂ C(K) is obviously a linear w∗-continuous functional on Φ∗, it follows
directly that

Φ ⊂ TC(K,Φ).

Notice that both Choquet convexity (Definition 5) and trace-convexity (Definition 8) depend on
the choice of the closed subspace Φ of C(K). This being said, whenever no confusion arises, we
shall drop Φ and simply talk about usc, lsc or continuous convex-trace functions on K, denoting
their class by TC>(K), TC<(K) and TC(K) respectively.

Remark 9 (Compatibility of trace-convexity). Similarly to Remark 6, if K is a convex subset
of a locally convex space E, then taking Φ = Aff(K), the convex sets K(Φ) and K can be
identified via the affine homeomorphism δΦ, and the notion of trace-convexity coincides with
the classical convexity on K, that is:

TC(K) = Γ(K), TC>(K) = Γ>(K) and TC<(K) = Γ<(K).

Remark 10 (Φ-stability). A set of functions B ⊂ RK is called Φ-stable, if Φ + B ⊂ B. It is
straightforward to see that Φ, C(K) and RK are Φ-stable. It follows easily by Definition 5 that
ΓΦ(K) is Φ-stable. We leave the reader to verify from Definition 8 that the sets of (usc, lsc,
continuous) convex-trace functions TC>(K), TC>(K) and respectively, TC(K) are Φ-stable.
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3.2 Trace-convexification f 7→ f̂ .

Let us fix an arbitrary continuous function f ∈ C(K). For each µ ∈ M1(K), we define the
w∗-open set

Wµ,f := {ν ∈ C(K)∗ : |⟨ν − µ, f⟩| < 1} (11)

and we set

Of := co

 ⋃
µ∈M1(K)

Wµ,f

 ⊇ M1(K), (12)

where co(∪µ∈M1(K)Wµ,f ) denotes the convex hull of the w∗-open set ∪µ∈M1(K)Wµ,f . We have

that Of is w∗-open and convex subset of C(K)∗. We define f̂ as follows:
f̂ : K → R

f̂(x) = inf
µ∈[δx]∩Of

∫
K f dµ.

(13)

It is straightforward to see that

f(x) = ⟨δx, f⟩ ≥ f̂(x), for all x ∈ K.

Moreover, since
∫
K ϕdµ = ϕ(x) for every ϕ ∈ Φ and every µ ∈ [δx], it follows that

ϕ̂ = ϕ for every ϕ ∈ Φ .

We shall now show that f̂ is a convex-trace function and consequently, f̂ can be seen as a
trace-convexification of f on K.

Theorem 11 (f̂ is convex-trace). For every f ∈ C(K) there exists a convex w∗-continuous
function Ff : (K(Φ), w∗) → R such that:

(i). f̂ = Ff ◦ δΦ (therefore, f̂ ∈ TC(K,Φ)) ;

(ii). −(∥f∥∞ + 1) ≤ Ff (Q) ≤ ∥f∥∞, for all Q ∈ K(Φ).

Proof. Let f ∈ C(K), and let Of be the w∗-open convex set defined in (12). We define:

Gf : (Of , w
∗) → R

µ 7→ inf
ν∈[µ]∩Of

∫
K
f dν, (14)

where [µ] is the class of equivalence of the measure µ ∈ Of ⊂ C(K)∗, according to (4). It is easy
to see that:

−∥f∥∞ ∥µ∥∗ − 1 ≤ Gf (µ) ≤
∫
K
f dµ ≤ ∥f∥∞∥µ∥∗, for all µ ∈ Of , (15)

which guarantees that Gf is well-defined (it takes finite values) on Of . Notice also that

(Gf ◦ δ)(x) := Gf (δx) = f̂(x) ≤ f(x), for all x ∈ K.
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Step 1. The function Gf is convex on Of .

To this end, let µ1, µ2 ∈ C(K)∗ and t ∈ (0, 1) and fix any ε > 0. Then there exist νi ∈ [µi]∩Of ,
for i ∈ {1, 2}, such that

⟨νi, f⟩ :=
∫
K

f dν ≤ Gf (µi) + ε.

Since tν1 + (1− t)ν2 ∈ [tµ1 + (1− t)µ2] ∩ Of (recall that Of is a convex set) we obtain

Gf (tµ1+(1− t)µ2) ≤ ⟨tν1+(1− t)ν2, f⟩ = t⟨ν1, f⟩+(1− t)⟨ν2, f⟩ ≤ Gf (µ1)+ (1− t)Gf (µ2)+ ε.

Since ε > 0 is arbitrary, convexity of Gf follows.

Step 2. Gf is locally bounded from above on the w∗-open set Of .

Let µ0 ∈ Of and define the w∗-open set Vµ0,f := {µ ∈ Of : |⟨µ − µ0, f⟩| < 1}. Then for every
µ ∈ Vµ0 we have

Gf (µ) ≤
∫
K

f dµ < ||f ||∞ ||µ0||∗ + 1,

which yields that Gf is bounded from above on Vµ0 .

Step 3. Gf is convex w∗-continuous.

Since Gf is convex, takes finite values on Of and it w∗-locally bounded from above, the assertion
follows directly from [1, Theorem 5.42] applied to the w∗-open subset Of of C(K)∗ (where C(K)∗

equipped with its w∗-topology is considered as a locally convex space).

Step 4. f̂ is continuous convex-trace.

Notice that by its very definition, Gf (µ) = Gf (µ
′), whenever µ ∼ µ′ (with respect to (4)). Since

Gf is w∗-continuous, then its restriction

Gf |M1(K) : (M
1(K), w∗) → R

is also w∗-continuous. Therefore, by the factorization lemma and the topological quotient, there
exists a unique τ -continuous function Hf : (M1(K)/ ∼, τ) → R such that Gf |M1(K) = Hf ◦ π̂. It
is straightforward to see that Hf is convex, since Gf is convex and π̂ is affine. Using Corollary 3,
we deduce that the function Ff : (K(Φ), w∗) → R defined by Ff = Hf ◦ J −1 is convex w∗-
continuous. Thus, we have that Ff ◦ i∗ = Gf |M1(K) on M1(K). Moreover, we deduce from the

definition of f̂ in (13) that:

Ff (δ
Φ
x ) = (Hf ◦ J −1)(δΦx ) = Hf ([δx]) = Gf (δx) = f̂(x), for all x ∈ K.

This shows that f̂ is the trace on K ≡ δΦ(K) of the convex w∗-continuous function Ff as
asserted. The inequality in (ii) follows from the formula (15).

3.3 Trace-convexity vs Choquet convexity.

In this subsection we establish (see forthcoming Corollary 13 (i)⇔(iv)) that the class of Choquet
convex functions coincides with the class of continuous convex-trace functions. This latter class
admits a natural extension to upper semicontinuous functions, which consists of the most natural
framework to state a generalized maximum principle (see Subsection 4.1).
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At this stage let us recall from [3] the Φ-conjugate f× : Φ → R of a proper bounded from
below function f : K → R ∪ {+∞}, which is defined as follows:

f×(ϕ) := sup
x∈K

{ϕ(x)− f(x)}, ϕ ∈ Φ. (16)

The function f×, being defined in a Banach space Φ, admits a usual Fenchel defined by
(f×)∗ : Φ∗ → R ∪ {+∞}

(f×)∗(Q) := sup
ϕ∈Φ

{⟨Q,ϕ⟩ − f×(ϕ)}, for all Q ∈ Φ∗.

Restricting the above onto δΦ(K) yields a function f×× : K → R ∪ {+∞} defined as follows:

f××(x) :=
(
(f×)∗ ◦ δΦ

)
(x) = sup

ϕ∈Φ

{
⟨δΦx , ϕ⟩ − f×(ϕ)

}
= sup

ϕ∈Φ

{
ϕ(x)− f×(ϕ)

}
, for all x ∈ K.

It is easily seen that f×× ≤ f . Moreover, we have ϕ̃(x) := ϕ(x)− f×(ϕ) ≤ f(x), for all x ∈ K.
Since Φ contains the constant functions, we have ϕ̃ ∈ Φ and readily deduce

f××(x) = sup
ϕ∈Φ

{
ϕ(x)− f×(ϕ)

}︸ ︷︷ ︸
:= ϕ̃(x)

(
≤ f(x)

) ≤ sup
ϕ∈Φ, ϕ≤f

ϕ(x).

On the other hand, f×(ϕ) ≤ 0 whenever ϕ ≤ f . Consequently

f××(x) = sup
ϕ∈Φ

{
ϕ(x)− f×(ϕ)

}
≥ sup

ϕ∈Φ, ϕ≤f

{
ϕ(x)− f×(ϕ)

}
≥ sup

ϕ∈Φ, ϕ≤f
ϕ(x).

Combining the above equations, and using Lemma 7 (Key Lemma) we obtain

f××(x) = sup
ϕ∈Φ, ϕ≤f

ϕ(x) = inf
µ∈Mx(Φ)

∫
K
fdµ. (17)

In particular we obtain the following result.

Proposition 12 (Relation between f̂ and f××). For every f ∈ C(K), we have that

f̂(x) ≤ f××(x) = sup
ϕ∈Φ, ϕ≤f

ϕ(x) = inf
µ∈Mx(Φ)

∫
K
fdµ ≤ f(x), for all x ∈ K.

Consequently, f is Choquet convex if and only if f̂ = f and in this case, we have that

f̂(x) = f××(x) = sup
ϕ∈Φ, ϕ≤f

ϕ(x) = inf
µ∈Mx(Φ)

∫
K
fdµ = f(x), for all x ∈ K.

Proof. Since M1(K) ⊂ Of we deduce that Mx(Φ) = [δx] ∩M1(K) ⊂ [δx] ∩ Of for all x ∈ K.
Therefore, it follows readily that:

f̂(x) := inf
µ∈[δx]∩Of

∫
K
fdµ ≤ inf

µ∈Mx(Φ)

∫
K
fdµ ≤ ⟨δx, f⟩ = f(x), for all x ∈ K.

The assertion follows from (17).
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For the second part of the proposition: it follows readily from the above inequalities and Defi-
nition 5 that if f = f̂ , then f is Choquet convex. For the converse, suppose that f is Choquet
convex. Then by Lemma 7 (Key Lemma) and formula (17) we deduce that for every x ∈ K

f(x) ≤ inf
µ∈Mx(Φ)

∫
K
fdµ = sup

ϕ∈Φ, ϕ≤f
ϕ(x) = f××(x) ≤ f(x),

yielding
f(x) = sup

ϕ∈Φ, ϕ≤f
ϕ(x) = f××(x).

Therefore we have:

f̂(x) := inf
µ∈[δx]∩Of

∫
K
fdµ = inf

µ∈[δx]∩Of

∫
K

(
sup

ϕ∈Φ, ϕ≤f
ϕ

)
dµ

≥ inf
µ∈[δx]∩Of

sup
ϕ∈Φ, ϕ≤f

∫
K

ϕdµ ≥ sup
ϕ∈Φ,ϕ≤f

inf
µ∈[δx]∩Of

∫
K
ϕdµ

= sup
ϕ∈Φ, ϕ≤f

ϕ(x) = f××(x).

Thus, f̂ ≥ f×× and so the equalities hold.

The following corollary resumes the above results and provides a characterization of Choquet
convex functions. In particular the class of Choquet convex functions coincides with the class
of (continuous) convex-trace functions. The implication (iv) ⇒ (i) can also be found in [16,
Lemma 4.27].

Corollary 13 (ΓΦ(K) = TC(K)). Let f ∈ C(K).
The following are equivalent:

(i). f is Choquet convex (ie. f ∈ ΓΦ(K)).

(ii). f(x) = sup
ϕ∈Φ, ϕ≤f

ϕ(x) = f××(x), for all x ∈ K.

(iii). f(x) = f̂(x), for all x ∈ K.

(iv). f is continuous convex-trace (i.e f ∈ TC(K)).

Proof. The equivalence of (i), (ii) and (iii) follows from Proposition 12. Implication (iii) ⇒ (iv)
follows from Theorem 11. It remains to prove that (iv) ⇒ (iii). Let f ∈ TC(K). Then there
exists F ∈ Γ(K(Φ)) such that f = F ◦ δΦ. By assigning the value +∞ outside K(Φ) we extend
F to a w∗-lsc convex function F̃ ∈ Γ< (Φ∗). We set

F̃ ∗ : Φ −→ R ∪ {+∞}

F̃ ∗(ϕ) = sup
Q∈Φ∗

{
⟨Q,ϕ⟩ − F̃ (Q)

}
and


F̃ ∗∗ : Φ∗ −→ R ∪ {+∞}

F̃ ∗∗(Q) = sup
ϕ∈Φ

{
⟨Q,ϕ⟩ − F̃ ∗(ϕ)

}
.

Then the classical Fenchel-duality yields that F̃ = F̃ ∗∗. On the other hand, since f = F ◦ δΦ,
we deduce readily from (16) that

f×(ϕ) := sup
x∈K

{ϕ(x)− f(x)} = sup
x∈K

{
⟨δΦx , ϕ⟩ − F̃ (δΦx )

}
≤ sup

Q∈Φ∗

{
⟨Q,ϕ⟩ − F̃ (Q)

}
= F̃ ∗(ϕ),

12



for all ϕ ∈ Φ, and consequently

f(x) ≥ f××(x) := (f×)∗(δΦx ) ≥ F̃ ∗∗(δΦx ) = F̃ (δΦx ) = f(x), for all x ∈ K,

yielding that equality holds. Therefore, f = f×× = f̂ .

Remark 14. (i). Since the function f̂ is convex-trace for every f ∈ C(K) (cf. Theorem 11),

Corollary 13 yields that
̂̂
f = f̂ . Consequently, f̂ is Choquet convex for every f ∈ C(K).

(ii). A careful reader might observe that the definition of f̂ depends on the way the neighbor-
hood Of is defined. Indeed, taking any α > 0 and defining

Wµ,f,α := {ν ∈ C(K)∗ : |⟨ν − µ, f⟩| < α} and Of,α := co

 ⋃
µ∈M1(K)

Wµ,f,α


we obtain

f̂α(x) = inf
µ∈[δx]∩Of,α

∫
K

f dµ , for x ∈ K.

Then for 0 < ε < 1 < M we readily obtain

f̂M (x) ≤ f̂(x) ≤ f̂ ε(x) ≤ f××(x) ≤ f(x), for x ∈ K,

with equality if and only if f ∈ ΓΦ(K). Consequently, the trace-convexification of a continuous
function f is generally not unique, and not equal to its Choquet-convexification f×× (this latter
is always the biggest possible convexification). Notice that if f is already Choquet-convex, then
all of the above convexifications coincide with f .

In the following result, we prove that a supremum of Choquet convex functions is a lsc
convex-trace function.

Proposition 15. Let {fi}i∈I ⊂ ΓΦ(K) be a nonempty family of uniformly bounded Choquet-
convex functions on a compact space K. Then the (bounded) function f := supi∈I fi is lower
semicontinuous convex-trace on K.

Proof. Let us assume that ∥fi∥∞ ≤ M for all i ∈ I. Then by Corollary 13 and Theorem 11(ii),
for each i ∈ I, there exists a convex w∗-continuous function Fi : K(Φ) → R such that fi = Fi◦δΦ
and −(M + 1) ≤ Fi(Q) ≤ M , for all Q ∈ K(Φ). Set F := supi∈I Fi. Then F is w∗-lsc convex
function. On the other hand, for every x ∈ K, we have

F (δΦx ) = sup
i∈i

Fi(δ
Φ
x ) = sup

i∈I
fi(x) = f(x),

which, in view of Definition 8(ii), yields that f ∈ TC<(K). Finally, notice that both functions
F and f take their values on [−(M + 1),M ], therefore they are real-valued.
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3.4 Convex-trace sets.

In this subsection we define the notion of trace-convexity for subsets of a compact topological
space. This notion inevitably relates tightly to the definition of trace-convexity of functions
and, as we shall see, it coincides with the notion of Φ-convexity given by Ky Fan (see [10], [14]
or [2]). In fact, the theory can be naturally developed in a more general framework, that of a
completely regular (Hausdorff) topological space. We recall that such spaces admit the so-called
Stone-Čech compactification. (We refer to [13] for definition and properties of these spaces.)

More precisely, throughout this section we assume that X is a completely regular topological
space, which is dense to some compact set K. If the compact set K is not explicitely given, then
we can always consider K = βX (the Stone-Čech compactification of X).

Let further Φ be a closed subspace of C(K) containing the constant functions and separating
points in X. If K = βX, then C(K) ≡ Cb(X) (Banach space of all continuous bounded real-
valued functions on X). We also recall from (6) the definition of the set K(Φ) ⊂ Φ∗ and from (7)
the definition of the canonical injection δΦ : K → K(Φ).

Remark 16 (Other cases). The forthcoming definition of Φ-trace-convexity as well as all results
of this section remain true if X is in particular compact. In this case we have X = βX = K
and we can simply replace X by K in all statements. Another interesting special case is when
the set X is open (and dense) into some given compact set K, see Subsection 5.2 (cf. X = D is
the open complex disk).

We are ready to give the following definition (see also [16, Proposition 8.22]).

Definition 17 (Convex-trace sets). A closed set C ⊂ X is called convex-trace with respect
to Φ, if there exists a closed convex subset Ĉ of (K(Φ), w∗) such that

δΦ(C) = δΦ(X) ∩ Ĉ. (18)

The set of all convex-trace subsets of X will be denoted by PTC(X).

In other words,

C ∈ PTC(X) ⇐⇒ C = X ∩
(
δΦ
)−1

(Ĉ), for some w∗-closed convex set Ĉ ⊂ K(Φ) (19)

Remark 18. Notice that the set Ĉ in (18) and (19) can be taken to be the w∗-closed convex
hull of δΦ(C) in K(Φ). Notice further that X satisfies trivially (18), therefore it is convex-trace.

3.4.1 Trace-convexification of a set

Based on the equivalence given in (19) we obtain an alternative characterization of trace-
convexity. In what follows, we denote by [g ≤ r] := {x ∈ X : g(x) ≤ r} the sublevel set
of the function g ∈ RX at r > 0.

Proposition 19 (Characterization of convex-trace sets). Let C be a closed subset of X.
The following assertions are equivalent:

(i). C ∈ PTC(X) ;
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(ii). There exists a family {ϕi}i∈I ⊂ Φ which is uniformly bounded on K and a bounded sequence
{λi}i∈I ⊂ R such that

C =
⋂
i∈I

{x ∈ X : ϕi(x) ≤ λi}. (20)

(iii). There exists f ∈ TC<(K) (lsc, convex-trace) such that

C = {x ∈ X : f(x) ≤ 0}. (21)

Proof. (i)⇒(ii). Let C ∈ PTC(X). Then there exists a w∗-closed convex subset Ĉ of K(Φ) ⊂ Φ∗

such that (19) holds. By the Hahn-Banach separation theorem (in the locally convex space
(Φ∗, w∗)) we deduce that Ĉ is the intersection of closed half-spacesHi := {Q ∈ Φ∗ : ⟨Q,ϕi⟩ ≤ λi},
i ∈ I. Each half-space is defined by a linear functional ϕi. Since K(Φ) is || · ||Φ∗-bounded in Φ∗,
we may take ||ϕi||Φ = ||ϕi||∞ = 1 for all i ∈ I and deduce that {λi}i∈I ⊂ (−M,M), for some
M > 0. Then we deduce from (19) that

C = X ∩
(
δΦ
)−1

(Ĉ) = X
⋂⋂

i∈I

(
δΦ
)−1

(Hi) =
⋂
i∈I

{x ∈ X : ϕi(x) ≤ λi}.

(ii)⇒(iii). Let us assume that (20) holds for some uniformly bounded family {ϕi}i∈I . Since
Φ contains the constant functions, we can replace ϕi by ϕi − λi (cf. Remark 10) and observe
that [ϕ ≤ λi] = [ϕ − λi ≤ 0]. Then we set g = supi∈I(ϕi − λi). It follows readily that⋂

i∈I{x ∈ X : ϕi(x) ≤ λi} = [g ≤ 0], while by Proposition 15, we deduce that g ∈ TC<(βX).

(iii)⇒(i). Let us now assume that (21) holds and let F ∈ Γ<(K(Φ)) (lsc convex) such that

f = F ◦ δΦ. Then C = X ∩
(
δΦ
)−1

(Ĉ) where Ĉ = [F ≤ 0] is obviously closed and convex in
K(Φ), and the result follows from (19).

Using (20) of the above proposition, we can easily deduce the following corollary.

Corollary 20 (Separation theorem). Let C be a nonempty subset of X.
The following assertions are equivalent:

(i). C ∈ PTC(X) (i.e. C is (closed) convex-trace in X) ;

(ii). For every x̄ ∈ K⧹C, then there exists ϕ ∈ Φ such that

sup
x∈C

ϕ(x) < ϕ(x̄). (22)

Given a nonempty subset S ⊂ X and a closed subspace Φ of C(K) as above, we define the
Φ-trace convexification coΦ(S) of S as follows:

coΦ(S) =
⋂
S⊂C

{C : C ∈ PTC(X)}

The following result follows easily from the definitions (see also Definition 8.15 and Proposi-
tion 8.22 in [16].)
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Proposition 21 (Characterization of convexification). Let S ⊂ X and consider the usual closed
convexification of δΦ(S) in K(Φ), that is,

cow
∗
(δΦ(S)) =

⋂
δΦ(S)⊂Ĉ

{
Ĉ : Ĉ ⊂ K(Φ) w∗-closed and convex

}
.

Then
coΦ(S) = X ∩

(
δΦ
)−1

(cow
∗
(δΦ(S)).

3.4.2 Abstract Krein-Milman theorem and relation with Ky Fan convexity

If X = K is compact, property (ii) of Proposition 19 corresponds to the definition of Φ-convexity
given by Ky Fan [10]. Therefore Proposition 19 shows that:

– A set C ⊂ K is Φ-convex-trace if and only if it is Φ-convex in the sense of Ky Fan.

Before we proceed, let us recall the classical Krein-Milman theorem in a locally convex
space E. For x, y ∈ E, we define the open segment (x, y) := {tx + (1 − t)y : t ∈ (0, 1)} ⊂ E.
We first recall the definition of an extreme point.

Definition 22 (Extreme point). Let S be a nonempty subset of a locally convex space E. We
say that p̄ ∈ S is an extreme point of S if whenever p̄ ∈ (p1, p2), with p1, p2 ∈ C, it holds
p1 = p2 = p̄. We denote by Ext(S) the set of all extreme points of S.

Recall that the Krein-Milman theorem asserts that if C is a convex compact subset of a locally
convex space, then C is the closed convex hull of its extreme points, that is, C = co(Ext(C)).
A more precise version asserts that for any nonempty subset A of C it holds:

co(A) = co(Ext(Ā)).

The Krein-Milman theorem has a partial converse known as Milman’s theorem (see [18] eg.)
which states that if A is a subset of C and the closed convex hull of A is all of C, then every
extreme point of C belongs to the closure of A, that is,

(A ⊂ C; C = co(A)) =⇒ Ext(C) ⊂ A.

We shall now see that the above results can be naturally stated for Φ-convex-trace subsets of
a completely regular topological space X. To this end, let us start with the following definition
which extends the notion of an extreme point in this topological setting.

Definition 23 (Φ-extreme point). Let X be completely regular topological space and S ⊂ X.
A point x ∈ S is called Φ-extreme in S if δΦx = δΦ(x) is an extreme point of cow

∗
(δΦ(S)). We

denote by ExtΦ(S) the set of all Φ-extreme points of S.

We now show that the Krein-Milman theorem holds true in our abstract setting. An alternative
proof of the same result can be found in [16, Chapter 8].

Theorem 24 (Abstract Krein-Milman theorem). Let S ⊂ X be a compact set. Then,

coΦ(S) = coΦ(ExtΦ(S)).

Therefore, if C ⊂ X is compact and Φ-convex-trace, then C = coΦ(ExtΦ(C)).

In other words, a compact Φ-convex-trace set is the Φ-convex hull of its Φ-extreme points.
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Proof. Applying the Krein-Milman theorem in the locally convex space (Φ∗, w∗) for the convex
compact set C := cow

∗
(δΦ(S)) ⊂ K(Φ) we have that

cow
∗
(δΦ(S)) = cow

∗
(Ext(cow

∗
(δΦ(S))).

On the other hand, by the partial converse of the Krein-Milman theorem (Milman’s theorem),
setting A = δΦ(S) we deduce that

Ext(cow
∗
(δΦ(S)) ⊂ δΦ(S)

w∗

= δΦ(S).

It follows from the definition of Φ-extreme points that

Ext(cow
∗
(δΦ(S)) = δΦ(ExtΦ(S)).

Using Proposition 21, the Krein-Milman theorem and the above equality, we have

coΦ(S) = X ∩
(
δΦ
)−1

(cow
∗
(δΦ(S)))

= X ∩
(
δΦ
)−1

(cow
∗
(Ext(cow

∗
(δΦ(S)))))

= X ∩
(
δΦ
)−1

(cow
∗
(δΦ(ExtΦ(S))))

= coΦ(ExtΦ(S)).

This gives the first part of the theorem. For the second part, if C is assumed compact and
Φ-convex trace, then C = coΦ(C) and the conclusion follows from the first part.

The next result can be found also in [16, Corollary 8.19]

Corollary 25. Let K be a compact Hausdorff topological space and Φ be a closed subspace
of C(K) containing the constant functions and separating points in K. Then, we have

K = coΦ(∂Φ(K)).

Proof. Comparing Definition 23 with (9) we easily see that x ∈ ExtΦ(K) if and only if x ∈ ∂Φ(K).
In other words, the Φ-extreme points of K and the elements of the Choquet boundary of K
are the same. On the other hand, the set K is trivially Φ-trace convex, since K(Φ) is convex
compact and δΦ(K) = δΦ(K) ∩K(Φ). The conlusion is straightforward from Theorem 24.

Remark 26 (Comparison with the Ky Fan theory). According to the Ky Fan theory ([10],
[14]), given y, z ∈ K, the Φ-segment [y, z]Φ is defined to be the set of all x ∈ K such that for
any ϕ ∈ Φ the following implication holds:

ϕ(x) ≤ min{ϕ(y), ϕ(z)} =⇒ ϕ(x) = ϕ(x) = ϕ(y). (23)

Then a point x ∈ K is called Φ-extreme (in the sense of Ky Fan) for the compact set K if
whenever x ∈ [y, z]Φ for y, z ∈ K, it holds x = y = z. We now prove the following claim.

Claim. Every Φ-extreme point of K (cf. Definition 23) is Φ-extreme in the sense of Ky Fan.

Proof of the Claim. Indeed, by (9) we have x ∈ ExtΦ(K) ⇔ δΦx ∈ Ext(K(Φ)) (recall that
K(Φ) = cow

∗
(δΦ(K))). Let us assume, towards a contradiction, that x ∈ ExtΦ(K) and x ∈

[y, z]Φ for some y, z ∈ K with y ̸= x. Then if z = x, since Φ separates points in K we get

17



ϕ(x) = ϕ(z) < ϕ(y) for some ϕ ∈ Φ, contradicting (23). If now both y, z are different than x,
then in view of (9) δΦx is extreme in K(Φ) and consequently δΦx /∈ [δΦy , δ

Φ
z ] (the usual segment in

the w∗-compact convex set K(Φ) ⊂ Φ∗). By Hahn-Banach theorem (for the σ(Φ∗,Φ)-topology
of Φ∗) we deduce that for some ϕ ∈ Φ,

min{ϕ(y), ϕ(z)} = min{⟨δΦy , ϕ⟩, ⟨δΦz , ϕ⟩} ≥ min
Q∈[δΦy .δΦz ]

⟨Q,ϕ⟩ > ⟨δΦx , ϕ⟩ = ϕ(x),

which again contradicts (23). This completes the proof of the claim.

The converse of the claim is not true in general, since Φ-extreme points in the sense of Ky Fan
may be numerous. To see this, take for instance X = D to be the unit disk of the complex plane
and Φ be the class of harmonic functions of the open disk, which are continuous on the closed
disk D̄ (see Subsection 5.2). Then we easily see that all Φ-segments are trivial (singletons) and
consequently all points of D̄ are extreme (whereas the Choquet boundary of D coincides with
the usual topological boundary).

Therefore, Theorem 24 is an enhanced version of the Ky Fan result in [10] (see also [14]).

4 Maximum principles for convex-trace functions.

In this section we establish a general version of maximum principle, that goes beyond Choquet
convexity, and is adapted to the setting of Definition 8. In particular:

In Subsection 4.1 we establish a maximum principle for upper semicontinuous convex-trace
functions on a compact topological space (Theorem 28), generalizing the maximum principle
obtained in [17, Section 3.2] in a twofold aspect: the function f is not necessarily continuous,
and the compact K is not assumed to be metrizable.

In Subsection 4.2 we consider the metrizable case and establish enhanced versions of the
maximum principle evoking a family of functions as well as a genericity result.

4.1 Maximum principle in topological spaces.

We recall from Corollary 13 that the class of Choquet convex functions coincides with the
class of continuous convex-trace functions, while our results are formulated in TC>(K) (upper
semicontinuous convex-trace functions). Our results are based on the classical Bauer maximum
principle.

Before we proceed, let us introduce the following notation: for a nonempty set C and a
function f : C → R, we denote by

Cmax(f) := {x̄ ∈ C : f(x̄) = max
x∈C

f(x)} ,

the set of maximizers of f on C. We also denote by Cmin(f) := Cmax(−f) the set of minimizers
of f on C. Under this notation we have the following result:

Proposition 27 (Maximizing a convex function on K(Φ)). Let K be a compact space. Let
F : (K(Φ), w∗) → R be an upper semicontinuous convex function. Then, we have that

max
Q∈K(Φ)

F (Q) = max
x∈K

(F ◦ δΦ)(x),

and consequently,
δΦ(Kmax(F ◦ δΦ)) ⊂ [K(Φ)]max(F ).
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Proof. Using the classical Bauer theorem, we have that

max
Q∈K(Φ)

F (Q) = max
Q∈Ext(K(Φ))

F (Q).

Since Ext(K(Φ)) = δΦ(∂Φ(K)) ⊂ δΦ(K), it follows that

max
Q∈K(Φ)

F (Q) ≤ max
x∈K

(F ◦ δΦ)(x).

On the other hand, since δΦ(K) ⊂ K(Φ), the above inequality is in fact an equality. Therefore
we have that δΦ(Kmax(f)) ⊂ [K(Φ)]max(F ) as asserted.

We now establish the following result, which extends [17, Maximum principle (page 241)]
from the class of Choquet convex functions (which coincides with TC(K)) to the class of usc
convex-trace functions TC>(K).

Theorem 28 (Bauer maximum principle for usc convex-trace functions). Let K be a compact
space and f : K → R be an usc convex-trace function. Then, there exists x̄ ∈ ∂Φ(K) such that
f(x̄) = maxx∈K f(x).

Proof. By definition, there exists an upper semicontinuous convex function F : (K(Φ), w∗) → R
such that f = F ◦ δΦ. Applying the classical Bauer theorem to F , there exists Q̂ ∈ Ext(K(Φ))
such that

max
Q∈K(Φ)

F (Q) = F (Q̂).

Since Ext(K(Φ)) = δΦ(∂Φ(K)), there exists x̄ ∈ ∂Φ(K) such that Q̂ = δΦx̄ . It follows that

max
Q∈K(Φ)

F (Q) = f(x̄).

Since δΦ(K) ⊂ K(Φ), the inequality maxQ∈K(Φ) F (Q) ≥ maxx∈K f(x) holds trivially.
The proof is complete.

Theorem 28 yields directly the following result.

Corollary 29. Let K be a compact space and f : K → R be an upper semicontinuous convex-
trace function. If f(x) ≤ 0 for all x ∈ ∂Φ(K), then f(x) ≤ 0, for all x ∈ K.

Recalling from (13) the definition of f̂ , and combining Theorem 28 with Theorem 11, we
obtain the following corollary.

Corollary 30. Let K be a compact space and f ∈ C(K). Then, there exists x̄ ∈ ∂Φ(K) such
that f̂(x̄) = maxx∈K f̂(x).
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4.2 The maximum principle for compact metric space.

In this subsection we focus on the case where the compact space K is metrizable, which in
fact, is the usual setting for the notion of Choquet convexity, and the framework considered
in [17]. In this case, making use of the metric structure of K and of the metrizability of the
w∗-topology of K(Φ), and using an adequate version of variational principle, we are going to
establish extensions of the Bauer maximum principle in two directions:

– We shall deal with the class TC>(K) of upper semicontinuous convex-trace functions (this
class contains strictly the class of Choquet convex functions).

– We establish a multi-maximum result evoking a family of functions (Theorem 35), as well
as an abstract generic result (Theorem 37).

Let us start by recalling from [2, Lemma 3] the following version of variational principle that
we shall use in the sequel.

Lemma 31 (Variational Principle). Let (K, d) be a compact metric space and (Φ, ∥.∥Φ) be a
Banach space such that Φ ⊂ C(K), Φ separates points in K and for some α > 0 it holds:

α ∥ϕ∥Φ ≥ ∥ϕ∥∞, for all ϕ ∈ Φ.

Let f : (K, d) → R ∪ {+∞} be a proper lower semicontinuous function. Then, the set

N(f) =
{
ϕ ∈ Φ : Kmin(f − ϕ) is not a singleton

}
is of first Baire category in Φ.

Before we proceed, let us recall the following definition.

Definition 32 (w∗-exposed points). Let E be a locally convex space and S a nonempty w∗-closed
subset of the dual space E. We say that p̄ ∈ S is w∗-exposed in S, and denote p̄ ∈ w∗-Exp(S),
if there exists x ∈ X such that

⟨p̄, x⟩ > ⟨p, x⟩, for all p ∈ S \ {p̄}.

It is straightforward from Definition 22 and Definition 32 that every w∗-exposed point is
extreme, that is w∗-Exp(S) ⊂ Ext(S). This inclusion might in general be strict.

The classical Krein-Milman theorem ensures the existence of extreme points for convex compact
sets. However, in absence of convexity, we cannot in general conclude that Ext(S) ̸= ∅. Still,
the conclusion holds true if E is a Banach space and S ⊂ E is compact for either the norm or
the weak topology. But if E = X∗ is a dual Banach space and S is w∗-compact, the conclusion
could fail. This being said, using Lemma 31 we deduce an important instance of w∗-compact
sets with extreme points by establishing the existence of w∗-exposed points.

Lemma 33 (existence of extreme points). Let Φ be a Banach space and S ⊂ Φ∗ be w∗-compact
and metrizable. Then w∗-Exp(S) ̸= ∅ and consequently Ext(S) ̸= ∅.
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Proof. Every ϕ ∈ Φ can be seen as a continuous function on the compact metric space (S,w∗).
Set: α := maxp∈S ∥p∥+ 1. Then

∥ϕ∥Φ = sup
p∈Φ∗

|⟨ p

||p||
, ϕ⟩| ≥ sup

p∈S
|⟨ p

||p||
, ϕ⟩| ≥ 1

α
sup
p∈S

|⟨p, ϕ⟩| = 1

α
∥ϕ∥∞,

where the last inequality is based on the linearity of ϕ. Since obviously Φ separates points in S,
we can apply Lemma 31 to the function f ≡ 0 to deduce that for a generic ϕ ∈ Φ, −ϕ attains
a unique minimum on S at some point p̄ ∈ S. This yields that p̄ ∈ w∗-Exp(S) ⊂ Ext(S).
Therefore, both w∗-Exp(S) and Ext(S) are nonempty.

4.2.1 A multi-maximum principle.

Let us first establish the following result, which has an independent interest.

Lemma 34 (Common extreme maximizer). Let Φ be a Banach space and C ⊂ Φ∗ be convex
w∗-compact and metrizable. Let {Fi}i∈I be a nonempty family of real-valued w∗-usc, convex
functions on (C,w∗) with a common maximizer, that is,

Cmax(I) :=
⋂
i∈I

Cmax(Fi) ̸= ∅.

Then
w∗-Exp(Cmax(I)) ̸= ∅ and Ext(Cmax(I)) ⊂ Ext(C).

In particular, there exists p̄ ∈ Ext(C) such that

Fi(p̄) = max
p∈C

Fi(p), for all i ∈ I.

Proof. Since Fi : (C,w
∗) −→ R is usc, the set Cmax(Fi) is nonempty and w∗-compact in Φ∗. By

hypothesis,

Cmax(I) =
⋂
i∈I

Cmax(Fi) ̸= ∅.

Since S = Cmax(I) is nonempty w∗-compact and metrizable in Φ∗, applying Lemma 33 we
deduce that

w∗-Exp(S) ̸= ∅.
It remains to show that Ext(S) ⊂ Ext(C). To this end, let p̄ ∈ Ext(S) and assume, towards a
contradiction, that there exists p1, p2 ∈ C \ {p̄} such that p̄ ∈ (p1, p2). Since p̄ ∈ Ext(S), we
may assume with no loss of generality that p1 ∈ C \ S. Therefore, there exists i0 ∈ I such that
p1 ̸∈ Cmax(Fi0). It follows that

Fi0(p1) < max
p∈C

Fi0(p) = Fi0(p̄) and Fi0(p2) ≤ max
p∈C

fi0(p) = Fi0(p̄),

which contradicts the fact that Fi0 is convex. Thus, w∗-Exp(S) ⊂ Ext(S) ⊂ Ext(C) and the
conclusion follows.

We are now ready to establish the following result which is a generalized version of Bauer’s
maximum principle. Roughly speaking, whenever a family of usc convex-trace functions on K
has at least one common maximizer, then a common maximizer can be found among the points
of the Choquet boundary of K.
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Theorem 35. Let K be a compact metric space and Φ a closed subspace of C(K) that separates
points in K and contains the constant functions. Let further {fi}i∈I ⊂ TC>(K,Φ) be such that

Kmax(I) :=
⋂
i∈I

Kmax(fi) ̸= ∅. (24)

Then, there exists x̄ ∈ ∂Φ(K) (Choquet boundary of K) such that

fi(x̄) = max
x∈K

fi(x), for every i ∈ I.

Proof. Since K is compact metric space, C(K) is separable and so is its closed subspace Φ. It
follows that the convex w∗-compact subset K(Φ) of Φ∗ is metrizable. By Definition 8, for each
i ∈ I there exists an usc convex function Fi : (K(Φ), w∗) → R such that fi = Fi ◦ δΦ. Set
C := (K(Φ), w∗). By Proposition 27, δΦ(Kmax(I)) ⊂

⋂
i∈I Cmax(Fi), therefore by (24)

C(I) :=
⋂
i∈I

Cmax(Fi) ̸= ∅.

Then Lemma 34 yields the existence of a common maximizer

Q̄ ∈ Ext(K(Φ)) = δΦ(∂Φ(K))

for all usc convex functions Fi, i ∈ I. Therefore, there exists x̄ ∈ ∂Φ(K) such that Q̄ = δΦx̄ .
Since

max
x∈K

fi(x) ≤ max
Q∈K(Φ)

Fi(Q) = Fi(δ
Φ
x̄ ) = fi(x̄), for all i ∈ I,

we conclude that x̄ ∈
⋂

i∈I Kmax(fi). Therefore we conclude that x̄ ∈ ∂Φ(K) is a common
maximizer of all functions fi, i ∈ I.

We obtain the following characterization of the Choquet boundary of a compact metric space.

Corollary 36 (Characterization of the Choquet boundary). Let K be a compact metric space
and Φ as in Theorem 35. Then

x̄ ∈ ∂Φ(K) ⇐⇒ {x̄} =
⋂{

Kmax(f) : x̄ ∈ Kmax(f), f ∈ TC>(K)
}
.

Proof. Let us first assume that⋂{
Kmax(f) : x̄ ∈ Kmax(f), f ∈ TC>(K)

}
= {x̄}. (25)

Then setting
F :=

{
f ∈ TC>(K) : x̄ ∈ Kmax(f)

}
we have

⋂
f∈F Kmax(f) ̸= ∅. Therefore, by Theorem 35,

⋂
f∈F Kmax(f) ∩ ∂Φ(K) ̸= ∅ and

consequently, x̄ ∈ ∂Φ(K).

Conversely, let x̄ ∈ ∂Φ(K), that is, δx̄ ∈ Ext(K(Φ)). We define the function Fx̄ : (K(Φ), w∗) → R
by Fx̄(δx̄) = 1 and Fx̄(Q) = 0 on K(Φ) \ {δx̄}. Clearly Fx̄ is convex and upper semicontinuous
on (K(Φ), w∗). It follows that fx̄ := Fx̄ ◦ δΦ ∈ TC>(K) and Kmax(fx̄) = {x̄}, which readily
yields (25).
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4.2.2 Generic maximum principle.

In this section we shall establish a generic version of the maximum principle. Similarly to
Subsection 4.2.1, we consider a compact metric space (K, d) and we assume that Φ is a closed
subspace of C(K) that separates points in K and contains the constant functions. In this setting,
the Banach space C(K) (and a fortiori Φ) is separable and the convex set K(Φ) ⊂ Φ∗ is w∗-
compact metrizable. We shall denote by dΦ a metric on K(Φ) compatible with its w∗-topology.
Then (K(Φ), dΦ) is also a compact metric space.

For any nonempty set X we denote by RX the space of all real-valued functions on X and
by ρ∞ the (complete) metric;

ρ∞(f, g) := sup
x∈X

|f(x)− g(x)|
1 + |f(x)− g(x)|

, for all f, g ∈ RX . (26)

In what follows, we set

Φ̂ := {ϕ̂ ∈ Φ∗∗ : ϕ ∈ Φ}, where ϕ̂(Q) = ⟨Q,ϕ⟩, for all Q ∈ Φ∗.

Recalling terminology from Definition 8, and dropping dependence on Φ in the notation of
convex-trace functions, we have:

Φ ⊂ ΓΦ(K) = TC(K) ⊂ TC>(K) and Φ̂ ⊂ Γ(K(Φ)) ⊂ Γ>(K(Φ)).

We also recall from Remark 10 that a subset B of TC>(K) is called Φ-stable, if Φ + B ⊂ B.
Examples of Φ-stable subsets of TC>(K) are Φ itself, the class of Choquet convex functions
ΓΦ(K) = TC(K) and the set of usc convex-trace functions TC>(K).

Let us finally notice that Theorem 35 (applied to a family of one element) yields that if a function
f ∈ TC>(K) has a unique maximizer, then this maximizer belongs to the Choquet boundary
of K. We are now ready to state the main result of this section.

Theorem 37 (Genericity of unique maximizer). Let (K, d) be a compact metric space and Φ
be a closed subspace of C(K) which separates the points of K. Let B be a Φ-stable subset of
TC>(K). Then, the set

G := {f ∈ B : Kmax(f) is a singleton }
is a Gδ dense subset in (B, ρ∞).

Proof. Let us denote by ρ∞ the metric of uniform convergence on both RK(Φ) and RK . Since
uniform limits maintain upper semicontinuity and convexity, it follows that the metric space
(Γ>(K(Φ)), ρ∞) is complete (as a closed subspace of (RK(Φ), ρ∞)). A standard argument now
shows that (TC>(K), ρ∞) is closed in (RK , ρ∞) and consequently, it is also complete.

We now consider the following canonical map S : (Γ>(K(Φ)), ρ∞) −→ (TC>(K), ρ∞) defined
by S(F̂ ) = F̂ ◦ δΦ. It is easily seen that S is surjective and 1-Lipschitz. Moreover, it is easy
to see that there exists A ⊂ Γ>(K(Φ)) such that B = S(A) and Φ̂ + A ⊂ A (that is, A is a
Φ̂-stable subset of Γ>(K(Φ))).

Claim. The set D :=
{
F̂ ∈ A : F̂ has unique maximum on K(Φ)

}
is Gδ dense in (A, ρ∞).

Proof of the Claim. For n ≥ 1, we set:

Ûn :=

{
F̂ ∈ A; ∃Qn ∈ K(Φ) with F̂ (Qn) > sup

Q∈K(Φ): dΦ(Q,Qn)≥ 1
n

F̂ (Q)

}
.
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It is easy to see that Ûn is an open subset of (A, ρ∞) for all n ≥ 1, and D :=
⋂

n≥1 Ûn. Thanks

to Lemma 31 (applied to the compact metric space (K(Φ), dΦ) and the subspace (Φ̂, ∥ · ∥∞) of
C(K(Φ))), for every 0 < ε < 1 and F̂ ∈ A, there exists a function ϕ ∈ Φ such that ρ∞(ϕ̂, 0) < ε
and −F̂ − ϕ̂ attains a unique minimum on K(Φ). Let us denote by Q0 ∈ K(Φ) this unique
minimizer. Then we deduce that Ĝ := F̂ + ϕ̂ ∈

⋂
n≥1 Ûn (we take Qn = Q0, for all n ≥ 1) and

ρ∞(Ĝ, F̂ ) < ε. Thus the Gδ-set D is dense in (A, ρ∞) and the claim follows.

From the classical Bauer theorem, the unique maximizer of every usc convex function F̂ ∈
D ⊂ Γ> (K(Φ)) is necessarily an extreme point of K(Φ). Then by Proposition 27 we deduce
that for every F̂ ∈ D, the usc convex-trace function S(F̂ ) = F̂ ◦ δΦ has a unique maximum on
K, which is necessarily attained at a point in the Choquet boundary ∂Φ(K). Since

D ⊂
{
F̂ ∈ A : Kmax

(
S(F̂ )

)
singleton

}
,

we obtain readily that S(D) ⊂ G. Since S is a Lipschitz surjective map and D is dense in
(A, ρ∞), we deduce that G is dense in (B, ρ∞). Moreover G is a Gδ subset of (TC>(K), ρ∞) since
it can be written as G =

⋂
n≥1 Un, where

Un :=

{
f ∈ B; ∃xn ∈ K f(xn) > sup

x∈K: d(x,xn)≥ 1
n

f(x)

}
,

is open in (B, ρ∞) for each n ≥ 1. This completes the proof.

It follows from the above result, by taking B = TC>(K), that a generic upper semicontinuous
convex-trace function on K attains a unique maximum (necessarily at a point of the Choquet
boundary). By taking B = ΓΦ(K), we obtain the same conclusion for a generic Choquet-convex
function. Both results are new and together with Theorem 35 provide generalized version of the
classical Bauer maximum principle.

5 Examples.

In this section we provide three examples-schemes to illustrate this theory. In the first example
(Subsection 5.1) we show how the Choquet boundary of the closed interval [0, 1] may change
depending on the choice of Φ. In particular, every closed subset of [0, 1] that contains the
extreme points {0, 1} can be identified to the Choquet boundary of [0, 1] under an adequate
choice of the space Φ ⊂ C([0, 1]). In the second example (Subsection 5.2) we deal with the unit
disk of the complex plane. Then the class of convex-trace functions consists of the subharmonic
functions, if Φ is taken to be the harmonic functions. We describe the convex-traces subsets of
the disk using Runge’s approximation theorem as well as the maximum principle for harmonic
functions. Finally, in Subsection 5.3 we illustrate trace-convexity for subsets of the set of natural
numbers N (with its discrete topology).

5.1 Choquet boundaries of [0, 1].

Let us first notice that in view of Definition 23 and relation (9), the set ExtΦ(K) of Φ-extreme
points of K coincides with the Φ-Choquet boundary of K (see also the proof of Corollary 25).
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We shall now describe the Φ-Choquet boundary of the closed interval K = [0, 1], under
various choices of closed subspaces Φ ⊂ C([0, 1]).

(i). Let us first consider the case Φ = Aff([0, 1]). In this case we have (cf. Remark 6)

∂Φ([0, 1]) = ∂([0, 1]) = {0, 1} and ΓΦ([0, 1]) = Γ([0, 1]),

that is, the Choquet boundary coincides with the usual boundary and the class of Choquet
functions coincides with the class of convex continuous functions on [0, 1].

(ii). Let ∆ ⊂ [0, 1] be the usual Cantor set. Then [0, 1] \ ∆ =
⋃

n≥1(an, bn) with {an}n,
{bn}n ⊂ ∆. Then defining

Φ∆ :=
{
ϕ ∈ C([0, 1] : ϕ|[an,bn] affine, for all n ≥ 1

}
,

we obtain that the Cantor set ∆ becomes the Φ∆-Choquet boundary of [0, 1], that is,

∂Φ∆
([0, 1]) = ∆.

Indeed, if x ∈ [0, 1] \ ∆, then there exists n0 ≥ 1 such that x ∈ (an0 , bn0) and consequently
x = tan0 + (1− t)bn0 , for some t ∈ (0, 1). We set

µ := tδan0
+ (1− t)δbn0

∈ M1([0, 1]).

Since every ϕ ∈ Φ∆ is affine on [an, bn] we obtain

⟨µ.ϕ⟩ = tϕ(an0) + (1− t)ϕ(bn0) = ϕ(x) = ⟨δx.ϕ⟩,

yielding µ ∼ δx and consequently x /∈ ∂Φ∆
([0, 1]). On the other hand, if x ∈ ∆, then x is the

unique maximum of the function ϕ ∈ Φ∆ defined by ϕ(t) = −|t − x|, t ∈ [0, 1]. Therefore,
x ∈ ∂Φ∆

([0, 1]).

Remark. The above proof works in the same way for any closed subset F of [0, 1] that contains
the extreme points {0, 1}. Therefore, any such closed subset is the Φ-Choquet boundary of [0, 1]
under an adequate choice of Φ.

(iii). Let us now take Φ = C[0, 1]. Then every point of [0, 1] belongs to the Choquet-boundary
(i.e. ∂Φ([0, 1]) = [0, 1]) and every continuous function is Φ-Choquet convex.

5.2 Harmonic functions on the disk.

In this subsection we shall deal with harmonic functions on the unit disk. For prerequisites in
complex analysis, as well as for notions and results that will be evoked in this section we refer
the reader to [11].

Let D := {z ∈ C : |z| < 1} denote the open disk of the complex plane and K = D̄ its closure.
We set:

Φ = {u : D̄ → R continuous, u|D harmonic}.

In this case, the class of Choquet-convex functions ΓΦ(K) = TC(K) coincides with the continu-
ous subharmonic functions on D, while TC>(K) corresponds to the class of upper semicontinuous
subharmonique functions.
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Let us now recall that subharmonique functions satisfy the maximum principle, that is, the
maximum of any subharmonic function u over any set is attained at the boundary of the set.
Combining this with Corollary 36 we deduce that the Choquet boundary ∂ΦD̄ of D̄ is contained
in ∂D̄ := {z ∈ C : |z| = 1}. On the other hand, any z̄ ∈ ∂D is the unique maximizer of some
ϕ ∈ Φ (to see this, it suffices to take any h ∈ C(∂D̄) with strict maximum at z̄ and obtain ϕ as
the unique solution of the Laplace equation ∆u = 0 on D with u|∂D̄ = h. Therefore, in view of
Theorem 35 (applied to one function) we deduce:

∂ΦD̄ = ∂D = {z ∈ C : |z| = 1}.

We shall now describe the convex-trace subsets of D. We shall need the following lemma.

Lemma 38. Let U be a nonempty open simply connected subset of D such that Ū ⊂D. Then
the (closed) set Ū is convex-trace in D.

Proof. We shall use the characterization of trace-convexity given in Corollary 20. To this end,
let x̄ ∈ D̄⧹Ū . We distinguish two cases.

Case 1. x̄ ∈ ∂D.
In this case, using the same standard argument that we evoked before, we deduce that x̄ is

the unique maximizer of some ϕ ∈ Φ and consequently supx∈Ū ϕ(x) < ϕ(x̄).

Case 2. x̄ ∈ D⧹Ū .
In this case, there exists r > 0 such that B̄(x̄, r) ⊂ D and B̄(x̄, r)∩ Ū = ∅. Then B̄(x̄, r)∪ Ū

is a compact simply connected subset of D. Let V1,V2 be disjoint open simply connected subsets
of D such that B̄(x̄, r) ⊂ V1 and Ū ⊂ V2. Then the function

φ(z) =

{
0, if z ∈ V1

1, if z ∈ V2

is (trivially) holomorphic on V1 ∪V2. Applying Runge’s approximation theorem we deduce that
there exists a complex polynomial f(z) such that

||f − φ||∞ := sup
z∈B̄(x̄,r)∪Ū

|f(z)− φ(z)| < 1

3
.

Taking u = Re(f) we deduce easily that u ∈ Φ (harmonic) and ρ∞(u, φ) < 1/3. It follows that
supx∈Ū u(x) < 1/3 and u(x̄) > 2/3. Therefore (22) holds and Ū ∈ PTC(D).

We shall now provide a nice description of convex-trace sets of D.

Proposition 39 (convex-trace sets of the complex disk). Let C be a nonempty, compact subset
of D with finitely many connected components. Then

C ∈ PTC(X) ⇐⇒ C is simply connected

Proof. Let C ̸= ∅ be compact in D. We shall first show that “being simply connected” is a
necessary condition for trace-convexity. Indeed, assume towards a contradiction that D⧹C is
not path connected and let x̄ ∈ D⧹C be a point that cannot be joined to the boundary ∂D via
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a continuous path lying in D⧹C. Then x̄ is surrounded by a curve lying in C and (22) fails for
all ϕ ∈ Φ in view of the maximum principle for harmonic functions.

Let us now assume that C is simply connected and let x̄ ∈ D̄⧹C. Similarly to the proof of
Lemma 38 (Case 1) we may assume that x̄ ∈ D. Since C is compact and is contained in D, there
exists r > 0 sufficiently small, such that the r-enlargement Cr := C + B(0, r) is open, simply
connected and its closure C̄r := C + B̄(0, r) remains in D. Shrinking further r if necessary, we
may assume that B(x̄, r) ⊂ D and B(x̄, r) ∩ Cr = ∅. Notice that (the open set) Cr has finitely
many components and that each connected component is open and simply connected. We denote
by {Vi}ki=1 the connected components of Cr and we define φ : Cr ∪ B(x̄, r) → C by φ|Vi ≡ i
for i ∈ {1, . . . , k} and φ|B(x̄,r) ≡ k + 1. Then φ is trivially a holomorphic functions on Cε for
any ε ∈ (0, r). Then by Runge’s approximation theorem we deduce the existence of a complex
polynomial f ∈ H(D) with

||f − φ||∞ = sup
z∈B̄(x̄,ε)∪Cε

|f(z)− φ(z)| < 1

3
.

Taking u = Re(f) ∈ Φ we conclude that

sup
x∈C

u(x) < k +
1

3
and u(x̄) > k +

2

3

which yields the result.

5.3 Trace-convexity for subsets of N.

Let X = N be the set of natural numbers, viewed as a completely regular topological space with
its discrete topology. Let further K = βN. Then

Cb(N) = C(βN) = ℓ∞(N) =
{
y = {yn}n : sup

n≥1
|yn| := ||y||∞ < +∞

}
.

Let 1 denote the constant sequence with all coordinates equal to 1, and b = {bn}n with bn = 1/n
for all n ∈ N. We take

Φ = span{1, b} (2-dimensional subset of ℓ∞(N)).

Then Φ obviously contains the constant functions (constant sequences). It also separates points
in N since the sequence b is injective. Notice that Φ can be isometrically identified to R2 by
identifying c = (c1, c2) to the (bounded) sequence ĉ =

(
c1 +

c2
n

)
n≥1

and by equipping R2 with
the following norm:

||c||Φ := ||ĉ||∞ = max{|c1|, |c1 + c2|}.

The positive cone of Φ (cone of positive sequences of Φ) corresponds to the cone

Φ+ =
{
c = (c1, c2) ∈ R2 : c1 ≥ 0, c1 + c2 ≥ 0

}
⊂ (R2, ||.||Φ),

with polar cone

Φ∗
+ :=

{
Q = (Q1, Q2) ∈ R2 : Q1 ≥ Q2 ≥ 0

}
⊂ (R2, ||.||Φ∗)
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where

||Q||Φ∗ =

{
max{|Q1|, |Q2|}, if Q1Q2 > 0

|Q1|+ |Q2|, if Q1Q2 < 0.

Then (6) yields:

K(Φ) = Φ∗
+ ∩ {Q ∈ Φ∗ : ||Q||Φ∗ = 1} = {Q ∈ Φ∗

+ : ⟨Q,1⟩ = 1} = { (1, 1 + t) : t ∈ [0, 1]} .

Thus, ExtK(Φ) = {(1, 0), (1, 1)}. According to (7), the canonical injection δΦ : N → K(Φ) gives
for k ∈ N :

δΦ(k) = k̂ with k̂(ĉ) = ĉ(k) = c1 +
c2
k

=

〈
(1,

1

k
), (c1, c2)

〉
.

Therefore δΦ(N) = {(1, 1/k) : k ≥ 1} ⊂ K(Φ) and the Φ-Choquet boundary of N is ∂ΦN =
{1,∞} where ∞ ∈ βX is the ultrafilter generated by the sets An = {k : k ≥ n}. It follows
directly from Definition 17 that a subset A ⊂ N is convex-trace if and only if it is an interval
with respect to the order of N, that is, if it is of the form

{k : n1 ≤ k ≤ n2}, {k : k ≤ n2} or {k : k ≥ n1}

for some n1, n2 ∈ N. Finally, a function (sequence) y = {yn}n≥1 ∈ ℓ∞ is Choquet convex
(according to Corollary 13 and Definition 8) if and only if yn = f(1/n) for some convex function
t 7→ f(t) defined on [0, 1] ≈ K(Φ).

Let us finally mention that different interesting notions of trace-convexity can be obtained
by taking b = (bn)n to be (injective and) non-monotone (for instance, bn = 1+ (−1)n/n, for all
n ≥ 1) or by completely different choices of Φ (of dimension either 2 or more). The interesting
reader might see how these choices modify the Choquet boundary of N in relation with the
results of Section 4.2.

Acknowledgement. Part of this work has been conducted within the FP2M federation (CNRS
FR 2036) and during a research visit of the second author to the SAMM Laboratory of the Uni-
versity Paris Sorbonne-Panthéon (February 2020). This author thanks his hosts for hospitality.
The authors thank one of the referees who pointed out that several results of Section 3 can be
obtained from the approach of [16].

References

[1] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis. A hitchhiker’s guide
(3rd ed.). (Springer, 2006).

[2] M. Bachir, On the Krein-Milman-Ky Fan theorem for convex compact metrizable sets,
Illinois J. Math. 62 (2018), 1–24.

[3] M. Bachir A nonconvexe analogue to Fenchel duality, J. Funct. Anal. 181 (2001), 300–312.

[4] H. Bauer, Minimalstellen von Funktionen und Extremalpunkte II, Arch der Math. 11
(1960), 200–205.

28



[5] J. Bliedtner, W. Hansen, Potential theory, An analytic and probabilistic approach to
balayage, Universitext (Springer, 1986).

[6] B. Cascales, J. Orihuela, On Compactness in Locally Convex Spaces, Math. Z. 195
(1987), 365–381.

[7] G. Choquet, P.-A. Meyer, Existence et unicité des representations intégrals dans les
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