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1. INTRODUCTION AND PRELIMINARY RESULTS

A compactification for a topological space X is a pair (Y, ), where Y is a compact space
and 7 : X — Y is a continuous injection such that i(X) C Y is dense and i is a homeo-
morphism from X to i(X). If the injection ¢ is canonical or implicitly known, we simply
say that the compact space Y is a compactification of the space X.

Classical instances of compactification are the Alexandroff (one-point) compactification X,
(for locally compact spaces) and the Stone-Cech compactification 5X (for completely reg-
ular spaces), corresponding to the two extreme cases in terms of size.

Gromov [15] proposed a new compactification scheme in case that (X, d) is a metric space.
This is based on the identification of each point z of the space with the distance function
d(-, z) to it (modulo constant functions), providing a natural injection of X to a quotient
of the space of continuous real functions on X (endowed with the compact-open topol-
ogy). Gromov called horofunction extension of X the closure X" of the image of X there
(see more details in Subsection . For applications of the horofunction extension and
related constructions in more abstract settings, we refer to [II, 12, 25| 26].

In general, the horofunction extension of a metric space (X, d) is not a (topological) com-
pactification of X, since the aforementioned injection of the space does not necessarily
yield a homeomorphism over its image. In this work we use the following terminology:

Definition 1.1 (Gromov-compactification). We say that a metric space (X, d) is Gromov-
compactifiable if the horofunction extension X" isa (topological) compactification for X.

There are several known examples of Gromov-compactifiable spaces, as for instance proper
geodesic spaces [3] or Hilbert spaces [24] and [17], as well as sufficient criteria on the
space ensuring this property [II]. However, a complete characterization of Gromov-
compactifiability was still up-to-date unavailable. The current work aims to fulfill this

gap.

Our main contributions are:

e A necessary and sufficient condition for a metric space (X,d) to be Gromov-
compactifiable (Theorem [2.1]).

e (characterization for normed spaces) A normed space (X, |-||) is not Gromov-
compactifiable if and only if the Hausdorff distance of the sphere of any finite
dimensional subspace of X to the sphere of X is equal to 2 (Theorem [3.2](a) < (¢)).

e ({'-criterium) A normed space is Gromov-compactifiable under any renorming if
and only if it does not contain an isomorphic copy of ¢! (Theorem .

e Every Banach space can be renormed to become Gromov-compactifiable (Corol-
lary [3.11). In particular, Gromov-compactifiability is not invariant under bi-
Lipschitz homeomorphisms.
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The paper is organized as follows: in the rest of this section we review the State-
of-the-art and provide motivation for this study. Section [2| contains our main results
in metric spaces. In Subsection we establish a general characterization of Gromov-
compactifiability of metric spaces. Some applications are also given for specific types of
spaces, in particular, for locally compact or proper metric spaces. In Subsection we
compare the horofunction extension of a locally compact space with the so-called metric
compactification, introduced by Rieffel in [23]. Section [3| is devoted to study Gromov-
compactifiability in the setting of normed spaces. In Subsection we obtain a geometric
characterization, in terms of the Hausdorff distance between spheres. In Subsection
we obtain a connection with the so-called octahedrality of the norm, a property intro-
duced in [I3]. Furthermore, we characterize stability of Gromov-compactifiability under
renormings, in terms of non-containment of an isomorphic copy of ¢!. In Subsection
we give a variety of examples and applications, in particular to Lipschitz-free spaces and
1-Wasserstein spaces.

1.1. Original definition of the horofunction extension. The notion of horofunction
extension of a metric space (X,d) goes back to Gromov in [I5] (see also [3]) and was
defined as follows. For each z € X, consider the distance function d, := d(-, z). It is not
difficult to see that the mapping
t: X = C(X)

defined by ¢(z) := d, is a topological embedding of X into the space C'(X) of continuous
real functions on X, endowed with the compact-open topology. We introduce the equiva-
lence relation in C'(X) given by f ~ g if, and only if, f — ¢ is constant. Denote by C (X)
the corresponding quotient space and by 7 : C'(X) — C (X) the natural quotient map.
It is easy to check that i ;=m0 : X — a(X ) is one-to-one. Therefore, we have that
X —C (X) is a continuous injection. Now we define the horofunction extension X" of
X as the closure of i(X) in a(X), and we call X" \ X the horofunction boundary of X.
The elements of X" \ X will be called horofunctions on X. In the literature, the elements

of X" are also called metric functionals on X (see e.g.[20] and references therein.)

On the other hand, if we fix an arbitrary point o € X and we consider the closed
subspace C,,(X) of C(X) formed by all continuous real functions on X vanishing at x,
we see that C'(X) is naturally isomorphic to Cy, (X) by means of the mapping that sends
the equivalence class [f] € C(X) to the function f — f(zo) € Cyy(X). Composing with

this isomorphism, we obtain the continuous injection
ey : X = Cpp(X)
given by
tag(2)(+) = d(+, 2) = d(z0, 2).

It is then clear that the horofunction extension X of X can be canonically identified
with the closure of ¢,,(X) in C,(X), which in particular does not depend on the chosen
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base point zy. Note that, for each z € X, the function
T = g (2)(z) = d(x, 2) — d(xo, 2)
is 1-Lipschitz and satisfies that
—d(z9, ) < 1gy(2)(x) < d(z,20)

for every € X. This yields that the family of functions {¢,,(2)(:)}.cx is equicontinuous
and pointwise relatively compact in C(X) and consequently, from Arzela-Ascoli theorem,
we deduce that the horofunction extension X of X is a compact space.

The following subsection provides an alternative way to obtain the same conclusion.

1.2. Construction using 1-Lipschitz functions. Let (X,d) be a metric space and
consider a fixed base point 2o € X. We follow here the construction of [16]. Denote by
Lipglm (X) the space of all 1-Lipschitz real-valued functions on X vanishing at xy. Notice
that for every f € Lip) (X) we have:

—d(zg, ) < f(z) < d(z,x0), for all z € X.
Therefore, identifying f by its values (f(x)).cx we readily obtain:
Lip;,(X) C [][~d(zo,2),d(z, z9)] € RX
zeX

Notice that by Tychonoff theorem the above product is a compact space. Endowing
Lipglm (X)) with the pointwise topology inherited from the Cartesian product R¥, we con-
clude easily that LipglcO (X) is closed. As a consequence, Lipglc0 (X) is in fact a compact
subspace of R¥. On the other hand, it is easily seen that the compact-open topology of
Lip} ,(X) coincides with its pointwise topology and Lip} ,(X) is closed in Oy, (X).

Now for each z € X, let us denote by brevity
ha(e) = ey (2) () = d(-, 2) — d(o, 2).
Then h, € Lip, (X). It follows easily that the mapping
h: X — Lip, (X) C R¥
h(z) :=h,

is well-defined and is a continuous injection. In this way we have that the horofunction

(1.1)

extension X of X coincides with the pointwise closure of h(X) in Lip} ,(X), and it is
therefore a compact set. As observed by the referee, this conclusion can also be obtained
by noticing that Lipglc0 (X) is the closed unit ball of a dual space (the space of real-
valued Lipschitz functions on X vanishing at xg equipped with the Lipschitz norm).
In bounded sets of this dual space, the weak*-topology coincides with the topology of
pointwise convergence.

Proposition 1.2 (Horofunction extension vs dense subsets). Let (X, d) be a metric space.
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(i). If Z is a dense subspace of X, then VART homeomorphic to X"
(ii). If X is separable, then X" is metrizable.

Proof. (i). Let Z be dense in X and fix g € Z. It is clear that the natural restriction
map

r: Lip} (X) — Lip, (Z)
is a homeomorphism when we consider, respectively, the topology of pointwise convergence

on X and the topology of pointwise convergence on Z. We consider, as before, the
mapping h given by ([1.1)) and its restriction to Z:

h,:Z — Lip, (Z) C R”.
Since Z is dense in X, we have that the closures of h(Z) and h(X) in Lip, (X) coincide.
On the other hand, since r is a homeomorphism, the closure of hy,(Z) in Lip, (Z) is
r(h(Z)). Thus the mapping r is a homeomorphism between X" and Z".

(ii). If X is separable, choose a countable dense subspace Z. Then we have
h: X — Lip, (X) =~ Lip, (Z) C R”

Since Z is countable, the space RZ (equipped with the Cartesian topology) is metrizable.
The proof is complete. n

Remark 1.3 (Completion). It follows from the above proposition that the horofunction
extension of any metric space coincides with the horofunction extension of its completion.

1.3. Injection versus embedding. Let (X, d) be a metric space. We already saw that
the horofunction extension X " is a compact space and the injection h : X — h(X) C x"
is continuous. Nevertheless X is not, in general, a compactification of X: indeed, this
would require h : X — h(X) C X" to be a topological embedding, that is, h to be a
homeomorphism from X to h(X). This is not always the case, even if the space X is
proper (that is, every closed bounded subset of X is compact). To illustrate this, we give
the following example:

Example 1.4. Consider the Banach space ¢! (N) endowed with its usual norm, given by
2] = Do, |zkl, for every sequence x = (z) € ¢*(N). For n = 0, set zop = 0, and for each
n > 1, set z, = ne,, where {e,} denotes the unit vector basis of ¢}(N). Now, for n > 0,

consider the closed segment S, := [2,, z,+1], and define the ¢!-ray by
(1.2) X:=Js.
n>0

with the metric inherited from the ¢'-norm.

Notice that for any = € S,,, we have x = (1 — t)ne, + t(n + 1)e, ;1 for some 0 < ¢t < 1,
yielding ||z]| > n. As a consequence, denoting by B}, the closed ball in ¢}(N) centered
at 0 with radius & € N, we deduce that X N B}, is contained in Sy U --- U S, which is
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s
ne, -

FIGURE 1. Representation of the space (inside ¢').

compact. Therefore X is a proper metric space.
Let us now choose xy = 0 as a base point and consider the corresponding mapping
{ h: X — RX
zer ha() o= =2 = |lz]]
for every z € X. In order to see that h is not a topological embedding, we consider
the sequence (z,)n,>0 C X, where z, = ne,,. It is clear that (z,),>0 does not converge to

2o = 0 in X. Nevertheless from the following claim we have that the sequence of functions
(h.,) converges pointwise on X to the function hy = || - ||.

Claim. Let (a,) be a sequence in X such that (||a,||) — oo. Then the sequence (h,, )
converges pointwise on ¢!(N) to the function hy = || - ||.

Proof of the claim. Indeed, let us denote by coo(N) the space of eventually null sequences,
that is, T € cyo(N) if and only if Z has finite nonzero terms. Since coo(N) is dense in ¢!(N),
fixing z € (*(N) and £ > 0, we can find z = (Z;) € coo(N) such that ||z — z| < e. Let
k € N be such that z; = 0 for all ¢ > k and let ny € N be such that a,, ¢ S;U---U Sy, for
every n > ng (this is possible since (a,) C X and ||a,| — o0). It follows that for n > ny,
the sequences a,, and = have disjoint supports. Therefore

17 = anll = [|Z]| + [|an]|-
Then
ha, (¥)=ho(x) = ||z —an||—|lan||—[|z]] < |z—Z[+]|Z—an|—[lan||-|lz| < e+]|Z]—|z] < 2
and

ha, (€) = ho(z) = |z = anll = lan[| = |2 = [|7 = anll = llz = Z[| = [lan]| = [l2]| = —2e.
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Let us finally describe the horofunction extension of the metric space X given in ((1.2)).
From Proposition ﬂ we have that X is metrizable, so every function f € X" is the
pointwise limit of a sequence in h(X). Let (a,) be a sequence in X such that h,,, converges
to f. If (ay) is bounded, it admits a subsequence (a,,) convergent to some a € X. Then
(ha,,) (and thus (hq,)) converges to hq, so f = h,. Otherwise, if (a,) is not bounded, it
admits a subsequence (a,,) such that (||a,,||) converges to oo, so by the previous claim
we have that (h,,) converges to hg. This shows that X" = h(X) (as a set) and the
horofunction boundary X" \ h(X) is empty. Let us finally notice that X is homeomorphic
to the ray [0, +o00) and X" is homeomorphic to the circle S'.

Remark 1.5. Using the previous claim and a similar argument, we can see that also for
the space X = (*(N), the injection h : X — R is not a topological embedding. Therefore,
the Banach space (*(N) is not Gromov-compactifiable. We shall see in Section @ that
1 (N) represents a prototype of pathology for normed spaces.

It is well-known that every finite dimensional normed space is Gromov-compactifiable.
Indeed, from [I1, Lemma 2.2] we have

Proposition 1.6. Let X be a proper metric space such that every ball s path-connected.
Then, h : X — RX is a topological embedding.

In Section [3, we shall see that the horofunction extension is a compactification for all
reflexive Banach spaces (thus for all £, spaces, with 1 < p < oo). For a description of
horofunctions of Hilbert space and ¢, spaces, we refer to Gutiérrez [17, [16].

We shall now give a topological description of the horofunction extension of the sphere
of a Hilbert space. Notice that, thanks to the Kadets-Klee property, the topology on the
sphere inherited from (the norm-topology of) the Hilbert space coincides with the weak
topology.

Example 1.7. Let H be a real infinite-dimensional Hilbert space and let us denote by
X = Sy its unit sphere. Then the horofunction extension X" isa compactification of Sy,
homeomorphically equivalent to the closed unit ball By, endowed with the weak topology.

Proof. Fix a base point zy € Sy and let z € By. Since the unit sphere Sy, is dense in
By for the weak topology, there exists a net (zy) C Sy weakly convergent to z. Then for
each x € Sy the net

ho(2) = |z — 2l = llzo =2l = v2—2(z,20) — V2~ 2w, 2)

lzxll=llzl=llzoll=1

converges to the function

V() =2 —2(x,2) — /2 — 2(x0, 2),
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yielding that 1, is a horofunction of S3. Therefore the map

{ Y ¢ (By, weak) — x"
2= 9(2) () = 1:() = V2 -2(,2) — /2 - 2(z0,2)

is well-defined. It is clear that ¢ is continuous and ), coincides with h, whenever z € Sy.

(1.3)

Claim 1: The function 1 is injective.

Proof of Claim 1. Suppose that ¥(z) = (%), where 2,2’ € By. Then for each x € Sy,
V2 =2z, 2) — /2 = 2z, 2) = /2 — 2z, 2") — /2 — 2(x0, ')
and choosing = € {z, 2'}+ we deduce that \/2 — 2(x¢, z) = /2 — 2(w0, 2’} and conclude

that for every x € Sy,
V2—2(x,2) =2 —2(x, 2).

Therefore
(z,2) = (z,2),
for every x € Sy. As a consequence, we obtain that z = 2/.
Claim 2: The function 1 is surjective.

Proof of Claim 2. Consider an element f € X", Then there is a net (2)) C Su such that
the net (h,, ) converges to f pointwise on Sy. By the weak compactness of the closed ball,
there is a subnet (z}) weakly convergent to some point z € By. Then (h,) converges
pointwise on Sy to f and also to ., so f = 1,.

Since (B, weak) is compact, it follows from a standard argument that 1) is a home-
omorphism. Since 9|g, = h, it follows that Sy = ¥~'(h(S%)) and the horofunction
extension X of Sy is a compactification (homeomorphic to (By, weak)). This completes
the proof. [

In the light of the previous examples, a natural question appears: characterize the
metric spaces (X, d) for which the horofunction extension X is a compactification of X,
that is, what we have called in Definition [I.I] Gromov-compactifiability.

2. MAIN RESULTS IN METRIC SPACES

In this section we establish a characterization of the case when the horofunction exten-
sion is a compactification, in the general setting of metric spaces. Some applications are
given for specific types of metric spaces. In particular, simplified characterizations are
obtained for the cases of locally compact or proper metric spaces, extending previously
known results. Finally, we compare the horofunction extension of a locally compact space
with the Rieffel metric compactification of the space, introduced in [23].
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2.1. A general characterization and first consequences. We start with a general
purely metric characterization of metric spaces X which are Gromov-compactifiable.

Theorem 2.1 (Characterization of Gromov-compactifiability in metric spaces). Let (X, d)
be a metric space. The following conditions are equivalent:

(a) The horofunction extension X" isa compactification of X.

(b) For every point x € X and every r > 0, there exist some n,. > 0 and a compact
set K, C X such that, for each z € X \ B(z,r) there exists w € K, with

d(w, z) < d(w,z) +d(z,z) — .

Proof. Let us fix o € X to be a base point for X. Therefore, for every z € X we have
h,(-) :=d(-, z) — d(zo, 2).

(b) = (a). We proceed towards a contradiction, that is, we assume that (b) holds true
but the (continuous injective) function h : X — h(X) C X" is not bicontinuous, that is,
h~! is not continuous. Therefore, there exist a net (z))xea C X and z € X such that

(h.,) — h, uniformly in compact sets, but (z)) 4 .
Therefore, there is 7 > 0 such that the set
Ao :={reA: d(zy,z) >r}

is a cofinal of A. Thus, (2))ea, is a subnet of (2))rea. Fix 7, > 0 and the compact set
K, given by statement (b). Consider now the set

Aliz{)\EAgi Z)\¢Kr}

Claim: Ay is a cofinal of Ay and therefore, (2))aea, is a subnet of (z))xea.

Proof of the claim: Indeed, otherwise the set I'y := Ay \ A; is a cofinal of Ay. Since
(zx)rer, C K, by compactness there is a subnet (z3)ger, convergent to some point z € K.

Note that z # x. Since the mapping h : X — X" is continuous, we have that

h, =limh,, = lim h,, = h,
AEA BETs

Since h is injective, we get a contradiction. This completes the proof of the claim.

For any A € Ay, let wy € K, be the point given by statement (b) associated to zy, i.e.
d(wy, zy) < d(wy,z) + d(x, zy) —n,, for all A € Ay.

Since (h.,)ren, converges to h, uniformly on compact sets, it converges uniformly on
K, U{z}. So, we have that

hy(z) — hy, () = —d(zo, ) — d(z, 2)) + d(x0, 20) =: @y — 0.
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However,
ho(wy) — hey (wy) = d(wy, ) — d(zo, ) — d(wy, 2\) + d(zo, 22)
= ay +d(z, z\) + d(wy, ) — d(wy, z))
> oy +n. —n- > 0.
This contradicts the fact that (h., )aea, converges to h, uniformly on K, U {z}.

(a) = (b). If X is compact, the result follows trivially by choosing, given r > 0, n, = r,
K, = X and w = z. If X is not compact, we proceed by a contrapositive argument,
that is, we assume that (b) does not hold and we prove that 2! is not continuous. Since
X is not compact, then it is not pseudocompact and there exists a continuous function
f: X — R such that f(x) > 0 for all z € X and infx f =0 (see e.g. [§]). Let us define

K :={K C X : K nonempty compact}
and the partial order < on K given by the set inclusion:
forall Ky, Ko e K, K, <K, K, CK,.
Consider now the net (nx)xex C R defined by
i c=min{f(z): z € K} >0, for all K € K.

Since infx f = 0, it follows that (nx)gex converges to 0. Choose z € X and r > 0 for
which the statement (b) does not hold. Then for each compact set K € K there is some
2k € X \ B(z,r) satisfying

d(w, zx) > d(w,x) + d(x, zx) — ng, for all w € K.

We show that (h., )xex converges to h, uniformly on compact sets, but (zx)xex does
not converge to x. The second part is clear from the fact that d(z,zx) > r > 0 for all
K € K. Now fix Ly € K. Then, for any L € K such that L D Lo U {x¢} we have that

\h., (x) — he(2)| = |d(z, 21) — d(x0, 21) — d(z, ) + d(z0, )|
= d(xg,x) + d(x, z) — d(xg, 21.) =: ar < ny.

Observe that the above inequality follows from the fact that xq € L. Now, for any w € Ly,
we have that

|h,, (W) — hp(w)| = |d(w, z1,) — d(zo, 21) — d(w, x) + d(z0g, T)|
= |d(w, zp) — d(w,z) + o — d(z, z1)|
< d(w,x)+d(z,zr) — d(w, z) + ap < 2np.
Therefore, we have shown that for any L > Ly U {zo},
sup{|hz(w) — h,, (w)| : we Ly} < 2n, — 0.

Since Ly is an arbitrary compact subset of X, we have that (h,, )kxex converges to h,
uniformly on compact sets. Therefore, h=! : h(X) — X is not continuous. [ |
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As usual, the Lipschitz property allows us to replace compact sets by finite sets.

Remark 2.2. Statements (a) and (b) of Theorem [2.1]are also equivalent to the following:

(c) For every z € X and r > 0, there exist 7, > 0 and a finite set K, C X such that
for every z € X \ B(x,r) there exists w € K, satisfying

d(w, z) < d(w,z) +d(z,z) — .

Indeed, (¢) = (b) follows readily (since every finite set is compact). Assume now that
(b) holds, fix z € X, r > 0 and let n > 0 and K C X given by statement (b). Since K
is compact, there exists a finite set A C K which is an n/3-net of K. For any w € K,
take a,, € A such that d(w,a,) < /3. Let z € X \ B(z,r). Then there is w € K such
that d(w, z) < d(w,x) 4+ d(z, z) — n. Therefore d(ay, z) < d(ay,z) + d(z,z) — g Setting
ny = 4 and K, = A, we see that (c) holds true.

A very interesting consequence of the above characterization is the following result, which
provides a completely new insight to the situation observed in Example [1.7]

Corollary 2.3 (Gromov-compactifiability of the sphere of any normed space). Let (M, d)
be a bounded metric space such that for every x € M we have:

(2.1) sup d(y,x) = diam(M) := sup d(y, 2).
yeM y,2€M

Then M 1is Gromov-compactifiable.

In particular, the unit sphere Sx of any normed space X (equipped with the distance
inherited by the norm) is always Gromov-compactifiable.

Proof. Assume that the metric space (M, d) is bounded and satisfies ([2.1]). We shall show
that condition (b) of Theorem [2.1]is fulfilled.

To this end, let x € M and r > 0. If » > diam(M), the conclusion of (b) is vacuously
satisfied. Therefore, we may assume that r < diam(M). Then we fix n = r/2 and choose

y € M such that

d(y,z) > diam(M) — g

We set K = {y} and observe that for any € M \ B(z,r) we have
Ay, 7) +d(@,2) = (diam(M) = 5) +7 = d(y, =) +n.

The second part of the statement is straightforward, since for the metric space M = Sx
(unit sphere of a normed space X) and for any x € Sy, we can take y := —x € Sx and
observe that

d(x,—z) =2 = diam(Sy).
The proof is complete. n
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Let us notice that there are simple examples of bounded metric spaces which are not
Gromov-compactifiable. For example, consider M = {e,, : n € N} U{0} as a subspace of
(*(N). Here, it is easily seen that the sequence (h,,) converges to hy pointwise on M.

In what follows, we study special classes of metric spaces that allow to simplify the state-
ment of Theorem (necessary and sufficient condition for Gromov-compactifiability).
Let us start with the following consequence for proper metric spaces, which improves the
sufficient condition given in [11, Lemma 2.2].

Corollary 2.4 (Simplified characterization for proper spaces). Let (X,d) be a proper
metric space. The following are equivalent:
(a) The horofunction extension X" isa compactification of X.
(b)) For every point x € X, there exist constants n > 0 and R > 0 such that, for each
z € X \ B(z, R), there exists some w € B(z, R) such that

dw,z) < d(w,x) +d(z,z) —n.

Proof. First note that condition (0') above implies condition (b) of Theorem Indeed,
if for every x € X we have constants n > 0 and R > 0 satisfying (b') it is clear that
condition (b) is fulfilled if for each 7 > 0 we choose 7, := 1 and K, := B(x, R).

Conversely, choose any r > 0, e.g. r = 1, then get n, and K, from condition (b) of
Theorem [2.1] Now take R > r so that B(z, R) contains K,. Then (b') follows at once.

We now obtain some sufficient conditions in the setting of locally compact metric spaces.
As in the previous case, the first one is a direct consequence of Theorem

Corollary 2.5 (Locally compact spaces). Let (X, d) be a locally compact metric space.
Suppose that for every point x € X, there exist constants n > 0 and R > 0 such that the
ball B(z, R) is compact, and for each = € X \ B(x, R), there exists some w € B(z, R)
such that

d(w, z) < d(w,z) +d(z,z) — .
Then the horofunction extension X" isa compactification of X.
The following corollary is a generalization of Proposition [1.6|

Corollary 2.6. Let (X,d) be a locally compact metric space such that every ball in X is

: . =h . . :
connected. Then the horofunction extension X is a compactification of X.

Proof. 1t suffices to show that the condition of Corollary [2.7]is fulfilled. Given z € X,
we can choose any R > 0 such that B(z, R) is compact, and n = %. Indeed, for each
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z € X\ B(z,R), set R = d(x,2z) > R and consider the closed ball B(z, R'). Since this
ball is connected, the set

F = {y € B(z,R) : d(y,z) = g}
is nonempty. Choosing w € F' we obtain that d(w, z) < R' and
d(z,z) +d(w,z) —d(w,z) > R + g — R = g
The proof is complete. |

In the previous result, local compactness is an important assumption. Indeed, in Re-
mark we saw that for the space X = ¢}(N), the horofunction extension X" is not a
compactification of X, although ¢!(N) is a geodesic space.

In fact, without local compactness, we cannot ensure a positive result even for metric
trees. Recall that a metric space (X, d) is said to be a metric tree or R-tree if it satisfies
the following two conditions:

(i). for every z,y € X, there exists a unique geodesic segment [z, y] joining them, and

(ii). If [y, 2] N [z, 2] = {z} then [y,z] U [z, 2] = [y, z].

Example 2.7 (Non-locally compact metric tree). In the Banach space ¢*(N) consider the
union of segments

X = G [0, ney,].
n=1

The space X, endowed with the metric inherited from ¢*(N), is a metric tree. Evoking
again the claim of Example u we deduce that X" is not a compactification of X.

Let us finish this subsection with the following application to ultrametric spaces. Recall
that a metric space (X, d) is called ultrametric if, for every z,y,z € X,

d(x,z) < max{d(z,y),d(y, z)}.

Corollary 2.8 (Ultrametric spaces are Gromov-compactifiable). Let (X, d) be an ultra-

metric space. Then the horofunction extension X" isa compactification of X.

Proof. Let us check that Theorem (b) holds true. Let x € X and r > 0. Assume that
X\ B(z,r) # 0 and set K = {w}, where d(z,w) > r. We show that the choice n, = r
satisfies (b) of Theorem . Indeed, for any z € X \ B(x,r), we have that

d(z,w) < max{d(z,z),d(z,w)} < d(z,z) + d(z,w) — r.

The proof is complete. n
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2.2. Alternative constructions. We recall the classical construction of extensions of a
metric (or topological) space X by using a family of continuous bounded functions on X
(see, e.g. Chandler [4]). In our case, let (X, d) be a metric space, and let £ be a family of
continuous bounded real functions on X, which separates the points of X. Consider the
injection
ec: X — RE

defined by

ec(z) = (f(z))feﬁ -
The the associated extension Hy(X) of X is defined as the closure of ez (X) in R, when
this space is endowed with the product topology. It is easily seen that e, is a continuous
injection and H,(X) is compact. Note that

ec(X) g[gg)f(f@)fgf@)]
Furthermore, it is well-known that e, is a topological embedding if, and only if, the
family £ weakly separates points and closed sets of X. This means (see, e.g. [5]) that for
every zo € X and every closed set F' in X with zg ¢ F, there exist fi,..., f,, € £ such

that 0 ¢ g(F'), where g : X — R is defined by
9(2) = max |fi(z) = fr(20)|

1<k<m

In this case, Hp(X) is a compactification of X and, for each f € L, the natural projec-
tion 7y provides a continuous extension of f to H.(X). In fact, H.(X) can be character-
ized as the smallest compactification of X where every function in £ can be continuously
extended (see [4]). Here, we consider the usual ordering in the family of compactifications
of X. That is, for two compactifications a3 X and asX of X, we say that a1 X < apX
whenever there exists a continuous map ¢ : s X — a1 X leaving X pointwise fixed. We
also say that ay X and as X are equivalent if a; X < as X and aps X < a; X. This implies
the existence of a homeomorphism ¢ : a; X — a3 X leaving X pointwise fixed.

Now fix a base point o € X and, for each x € X, consider the function 6, : X — R
defined as
0.(2) :=d(z,z) — d(zo, 2).
Note that 6, is a bounded 2-Lipschitz function on X and, for every x,z € X:
0.(2) = h,(x).
Further, consider the family
(2.2) Ly:={0, : z € X}.

Then we have the following.

Proposition 2.9. Let (X,d) be a metric space. Then
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(). The horofunction extension X" coincides with the extension He (X).

(ii). The horofunction extension X" is a compactification of X if, and only if, the
family Ly weakly separates points and closed sets of X.

Proof. Note that, for every z € X we can identify:
ec,(2) = (9x<z))xeX = (hZ(x))xeX = h.

From this, part (i) follows at once. On the other hand, as we have mentioned, e, is a
topological embedding if, and only if, the family £ weakly separates points and closed
sets of X, so (ii) follows. |

The Rieffel construction. In the case that (X, d) is a locally compact metric space, Rieffel

defines the metric compactification X7 of X (see Definition 4.1. in [23]) as the maximal
ideal space of the uniformly closed algebra of (bounded) functions on X generated by the
union of the family Ly (given in (2.2)), the family of constant functions, and the family
Co(X) of all continuous functions on X vanishing at infinity. Recall that f € Cy(X)
if, and only if, for every € > 0 there is a compact set K such that |f(z)| < € whenever
x ¢ K. It is clear that this metric compactification can also be obtained following our
previous scheme, and in fact X'=H £,(X), where

ﬁd = L@ U COO(X)

Note that X is always a compactification of X, so in general it can be different from X"
(see Example [1.4)). Nevertheless, we always have the natural projection map

7 X0 =H(X) » X' C Hep(X)

which is continuous, closed and surjective, and satisfies 7w(z) = h, for every z € X. If
X' is a compactification of X, the above map 7 gives that X" < X" with the usual
ordering. Furthermore, in this case each function in £, extends continuously to Yh, since
every function in C(X) can be continuously extended to every compactification of X, by
assigning the value 0 outside X. Therefore, from the minimality of H., (X) with respect
to this property, we obtain that X < X"

Summarizing, we obtain:
Proposition 2.10. Let (X,d) be a locally compact metric space.

(). The horofunction extension X" isa quotient of the metric compactification X7
. : . =h . _ _ —d  ~h
(ii). If the horofunction extension X is a compactification of X, then X = X .

As an illustrative example, consider X to be the ¢!-ray defined in Example . Here, X
is a locally compact metric space homeomorphic to [0, +00) whose one-point compactifi-
cation is [0, 4+o00]. In addition, if we fix o = 0, we obtain from the Claim in Example
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that, for every x € X:
i 6.(2) = lim (o = 2] = 1) = el
This implies that 6, extends continuously to the one-point compactification of X. There-
fore X" coincides with this compactification, that is, X' = [0, +00]. On the other hand,
as we have seen in Example , we have that X \ X is empty and X' = S!, where the
natural quotient map
X = [0, +o0] > X'=§!
identifies 0 with the point at infinity.

Open question. It would be interesting to know if every non-Gromov-compactifiable metric
space (X, d) admits a minimal compactification with the property that every function in
the family L4 can be continuously extended there. If (X d) is locally compact, the answer

. . . . . . ~=d . .
is positive, since the metric compactification X considered above has this property.

3. MAIN RESULTS IN NORMED SPACES

In this section we establish a characterization of Gromov-compactifiability in the setting
of normed spaces. Here, the richer structure of the space allows for a more geometric
characterization, in terms of the Hausdorff distance between spheres. Furthermore, we
obtain a connection with the so-called octahedrality of the norm, a property introduced in
[13] and well studied in the realm of Banach space geometry. This allows us to characterize
the stability of Gromov-compactifiability under renormings, in terms of non-containment
of an isomorphic copy of £*. We finish with some applications to Lipschitz-free spaces and
1-Wasserstein spaces.

3.1. A simplified characterization for normed spaces. We now provide several ap-
plications of Theorem for (infinite dimensional) normed spaces. We start with the
a general characterization. In what follows, dy (A, B) stands for the Hausdorff-Pompeiu
distance between two subsets A and B of a metric space (X, d), that is,

dy(A, B) := max {sup d(xz,B), supd(z, A) } ,

z€A zeB
where d(x,C) = 1g£ d(z,y), for any x € X and C' C X.
y

Notice that in the special case that A C B we have:
dy(A, B) = sup d(z, A).

z€B

In what follows, we shall need the following lemma. The proof follows easily from the
triangle inequality.

Lemma 3.1. Let X be a normed space. For any two vectors u,v € X and t > 1 it holds:

[ull = llo = ull < tlull = flv = tu]|.
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The main result of this subsection reads as follows.

Theorem 3.2 (Characterization of Gromov-compactifiability in normed spaces). For a
normed space (X, ||-||) the following statements are equivalent:

(a) The horofunction extension X" isa compactification of X.
(b) There exist n >0, M > 0 and a finite dimensional subspace F' C X such that for
every z € X \ B(0,1), there is w € MBp := B(0, M) N F with
Iz — wll < flz]] + [Jwl] — 7.
(¢) For some finite dimensional subspace F' C X we have:

dH(SF, Sx) <2
where S and Sx denote the unit spheres of F' and X respectively.

Proof. Let us first notice that if X is finite dimensional, then all assertions are true.
Indeed, Proposition yields that X"is a compactification of X, (b) follows easily by
taking FF'= X, r =n=1and w = z/||z|| and (c) follows trivially by choosing F' = X.

Let us now assume that X is infinite dimensional. We prove the following chain of
implications: (a) = (b) = (¢) = (a).

(a) = (b): It follows directly from Theorem 2.1 and Remark [2.2] (c). Indeed, for 0 € X
and 7 = 1, let K C X be finite and n > 0 such that for any z € X \ B(0, 1), there is w € K
such that ||w — z|| < ||w|| + ||z|| = 1. Set F' = span(K) and M := max{||w|| : w e K}.

(b) = (c): Let n > 0, M > 0 and F finite dimensional subspace of X be given by

statement (b). Without loss of generality, we may assume that M > 1. Fix z € Sx. Since
|Z]l = 1 we have z := Mz € X \ B(0,1) and there exists w € M B such that

n < 2] + lwll = [z = wll.
Note that w # 0. Applying Lemma |3.1| for t = M /||w]||, we obtain that
lwll = ll2 = wll < [[fwl] = ||z = tw]| = M — [z = M(w/|Jw])]|-
Summing up both last inequalities, we have:

n<2M — Hz — M(w/||w||)|| and consequently <2- H5 - (w/HwH)H :

A
M
Since w/||w|| € S and above holds true for every z € Sy, we deduce that

dH(SF,Sx) < 2—% < 2.

(c) = (a): Since the distance (d(xy1,x2) = ||x; — 22||) in a normed space is invariant
under translations, we only need to check the statement (b) of Theorem for x = 0.
Let F' C X be given by statement (c), that is, n < 2 — dy(SF, Sx) for some n > 0 and
let us denote by K the closed unit ball By of F, which is a compact set. The implication
readily follows from the next claim.
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Claim: For any r > 0, the statement (b) of Theorem [2.1]is satisfied for = = 0 by taking
n, =rnand K, =rk.

Proof of the claim. Fix r > 0. Observe that, for every z € X \ B(0,7), we have
r~1z € X\ B(0,1). Since t := (1/r)||z|]| > 1, applying Lemma for u = z/||z|| and
v =w € Sp we obtain:

[GA=DN =1/ = w]| < [[(/r)z]| = [|(1/r)z = w].

By hypothesis (c), for some w € Sr we have:

[/l —wl| < 2=n = ||/l + llw] —n.
Summing up both last inequalities and then multiplying both sides of the resulting in-
equality by r, we obtain
Iz = rwll < [[z]] + [[rw]] — .

Since rw € rK = K, and rn = n, > 0, the result follows. [ |

3.2. Gromov-compactifiability under renormings. In this subsection we obtain con-
crete applications of Theorem [3.2]in connection with the geometry and structure of Banach
spaces. Let us recall that a Banach space (X, ||-||) is said to be octahedral (see [0, 13]
e.g.) if, for every n > 0 and every finite-dimensional subspace F' of X, there exists a point
z € Sx such that

|z —w| > (1 —=n)(1+|w|), for all we F.

In order to connect this property with the conditions of Theorem [3.2] the following chara-
cterization of octahedrality, given in [I8, Proposition 2.2], will be useful.

Proposition 3.3 (Characterization of octahedrality). The following assertions are equiv-
alent for a Banach space (X, ||-]|):

(). (X, ]|-]|) s octahedral.

(ii). For everyn > 0 and every finite set of points wy, ..., w, € Sx, there exists z € Sx
such that

|z —wi|| >2—mn, foraliec{l,...,n}.

Using the above result, we can obtain a further geometric characterization of Gromov-
compactifiablity for Banach spaces.

Theorem 3.4 (Characterization by non-octahedrality). The following assertions are
equivalent for a Banach space (X, ||]):

(i). The horofunction extension X" isa compactification of X.

(ii). (X, ||-]]) s not octahedral.
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Proof. Let us assume that (ii) fails, that is, the space (X, ||-]|) is octahedral and let us
consider a finite-dimensional subspace F' of X. Then for every n > 0, there exists a point
% = z, € Sx such that

|z —w|| > (1 —n)(1 + |Jw|]), for every w € F.
Taking w € Sp we deduce that ||z, — w|| > 2(1 —n) = 2 — 2n and consequently
dist(z,, Sp) > 2 — 2n, yielding dy(SF, Sx) > 2. Therefore, condition (c¢) of Theorem (3.2
fails, so the horofunction extension X" is not a compactification of X.
Conversely, assume that condition (¢) of Theorem fails. Then for each finite-
dimensional subspace F' of X we have that dy(Sp,Sx) > 2. Let further n > 0 and
a finite set of points wy,...,w, € Sx. Setting F' := span{wy, ..., w,} we deduce that

there exists some z € Sx such that dist(z, F') > 2 —n. This yields that ||z — w;|| > 2 —1n
for all i € {1,...,n}, so from Proposition [3.3| we conclude that (X, ||-||) is octahedral. W

In what follows, we are interested in the behavior of the horofunction extension of a
normed space under renormings. To this end, let us introduce the following definition.

Definition 3.5 (Stable Gromov-compactification). A Banach space (X, ||-||) is said to
be stably Gromov-compactifiable if for every equivalent norm ||| of ||-||, the horofunction

———h
extension (X, ||-||) s a compactification of (X, |-||)-

We shall also need the following result of Godefroy [13] (see also [0, Theorem II1.2.5])
regarding the space ¢! := (!(N). We mention for completeness that this result was gener-
alized in [2] for the spaces ¢*(k).

Theorem 3.6 (Godefroy’s characterization of spaces containing ¢'). The following as-
sertions are equivalent for a Banach space (X, ||-||):
(). X contains an isomorphic copy of ¢*.

(ii). X admits an equivalent octahedral norm.

Combining Theorem [3.4] with Theorem [3.6 we obtain readily the following characteri-
zation of Gromov-compactifiability under any renorming.

Theorem 3.7 (Gromov-compactifiability under renorming). Let (X, ||-||) be a Banach
space. The following are equivalent:
(i). X does not contain an isomorphic copy of £*.

(i)). X is stably Gromov-compactifiable.

3.3. Further applications and an /!-criterium. In this section we illustrate our pre-
vious results in normed spaces. Theorem recovers (and improves) previous results on
Gromov-compactifiability for finite normed spaces and for Hilbert spaces mentioned in
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the introduction. These results are now reinforced, since they hold for any renorming.
The same conclusion also applies for the classical ¢P-spaces (or more generally LP(2, u)),
for all p € (1,4+00). This is a consequence of the following result.

Corollary 3.8 (Asplund spaces are Gromov-compactifiable). Asplund spaces (therefore,
in particular, reflexive Banach spaces) are stably Gromov-compactifiable.

Proof. Recall that every reflexive Banach space is Asplund ([9, Corollary 11.10] e.g.).
Moreover, if a Banach space X contains an isomorphic copy of ¢!, then it contains in
particular a separable subspace with a non-separable dual and consequently, X cannot be
Asplund (21, Chapter 5] e.g.). We deduce from Theorem [3.7| that every Asplund space
is stably Gromov-compactifiable. [ |

In the introduction we have seen that the horofunction extension of ¢! is not a topo-
logical compactification. In the following result we show that this property also holds for
all infinite dimensional L!-spaces. All these spaces are non-Gromov-compactifiable.

Proposition 3.9 (Examples of non-Gromov-compactifiable spaces). Let {(X., ||-|l4) }yer
be an infinite family of normed spaces. Denote by (X, |[|-[|) the normed space (3, X,)r,
i.e., the {1-sum of the spaces (X),

X = {(xv)w = HX’Y [y = Z 24y < OO} :

vyel vyer

Then, the horofunction extension X" is not a compactification of X. In particular, any
infinite dimensional L* (2, 1) space is not Gromov-compactifiable.

Proof. Let us verify that the space X does not verify the statement (c¢) of Theorem [3.2]
For each v € T', consider e, € X, be a unit vector. Let F' C X be any finite dimensional
subspace. Since Bp is compact, it easily follows that there is a sequence (a,,), C [0, 00)
and a sequence (), C I' such that lim,,_,., 0, = 0 and that

Br C [[Bx,.(0,00) x  [] {0}
n=1 ~e\{yn: neN}

For each n € N, consider z, := e,,. Notice that for any n € N and any w € Sp, we
have

oo
20 = wl| = llen, = wy, I+ > llws |

vyel
Y#EYn

> 2 =2|w,, || > 2—20,.
Since above inequality holds true for any w € Sg, we have shown that

dH(SF, Sx) Z 2 — 2011-
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Since n can be taken arbitrarily large, the statement of (¢) in Theorem |3.2|is not satisfied.

Let further (Q, A, 1) be a measure space such that L'(2, u) is infinite dimensional.
Then, there is an infinite countable partition of €2, {€2;}; C A, such that p(€2;) > 0 for all
i € N. The conclusion follows from the following fact:

=1

0, u

LY(Q, i) is isometrically isomorphic to (Z LY, uz)> :
yat

where p; == p
Let us now extract the following criterium from Theorem [3.7]

o . . ==h .
e ({'-criterium) If the horofunction extension X of a Banach space X is not a
compactification, then X contains an isomorphic copy of ¢*.

We shall now show that the converse of the above criterium does not hold, namely, there
are Gromov-compactifiable spaces that contain ¢!. Notice that this shows in particular
that Gromov-compactifiability is not invariant under renormings.

To this end, let (Y, ||-||y) and (Z,||-||z) be two normed spaces. We denote by Y &, Z
the p-sum of Y and Z, where p € [1,4o00]. That is, the normed space X :=Y @, Z is the
direct sum of Y and Z equipped with the norm

1
lzll = lly + 2l := ([l + [[=l1Z)7, for all z € X,
if p € [1,400) and ||z|| := max { ||ylly, ||z]|z}, if p = +0.
Proposition 3.10. Let Y, Z be normed spaces. Then:

(). For every p € (1,400) the space X =Y &, Z is Gromov-compactifiable.

(i)). The space X =Y @1 Z is Gromov-compactifiable if and only if both spaces Y and Z
are Gromov-compactifiable.

(iii). If Y 1is finite dimensional, then the space X =Y o Z is Gromov-compactifiable.
(iv). For every T' # 0, the spaces £>°(T") and co(T) are Gromov-compactifiable.

Proof. (i). It follows directly from Theorem and [I8] Proposition 4.7].
(ii). It follows directly from Theorem [3.4] and [22, Proposition 3.7

(iii). We now consider the case p = +00 and Y is finite dimensional. We shall show that
the statement (¢) of Theorem holds for F' =Y. As before, fix z € Sx and we write
r = xy + xz. Therefore, ||z] = max{|xy|,|zz|}. If zy = 0, set y € Y as any unit
vector. If zy # 0, set y = xy /||zy||. Observe that, in any case, we have that

lz = yll = max{[lzy —yl, lozll} = max{l — [[zy |, [Jez]]} < 1.

Since z is arbitrary, we deduce that dg(Sp, Sx) = 1.
(iv). If I' is a finite set, then ¢>°(T") is finite dimensional. Then, Proposition implies
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that it is Gromov-compactifiable. On the other hand, if I' is an infinite set, it follows
easily that ¢>°(I") and ¢y(I") are isometrically isomorphic to R @, £°(I") and R &4, ¢o(T)
respectively, and consequently (iii) applies. [ |

Notice that the above result is sharp in the following sense: the horofunction extension
X" of the space X := (' @, (' is not a compactification of X. Indeed, we consider
the (unbounded) sequence z, = (ne,,ne,) € X and proceed in a similar way as in
Example to show that the corresponding sequence {h., (-)}, converges pointwise to
ho(+). The details of this example are left to the reader.

Notwithstanding, Proposition yields the following striking result:

Corollary 3.11 (Gromov-compactifiability after renorming). For every normed space
(X, |||l) there ezists an equivalent norm ||-|| on X such that, the horofunction extension
(X, ||||||)h is a compactification of (X, ||-|)-

Proof. Let (X,]|-||) be a normed space. If dim(X) < oo, the result follows from Propo-
sition [L.6] If dim(X) = oo, let Y be a closed hyperplane of X and # € X \ Y. Then,
X =Y @®Ruz. Since X is linearly isomorphic to Y @4 Ra, Proposition [3.10] (iii) finishes
the proof. [ |

Notice that the above corollary applies in particular to ¢!. Similarly to any normed space,
this highly pathological space becomes Gromov-compactifiable under suitable renormings.
Before we proceed, let us recall the following terminology:

Definition 3.12. A property (P) on Banach spaces is called a 3-space property (in short,
3-SP) if, for any Banach space X and any closed subspace Y C X the following holds:

If two of the spaces X, Y and XY satisfy (P), then the third space also satisfies (P).

Corollary 3.13. The property of being Gromov-compactifiable is not stable neither under
bi- Lipschitz homeomorphism nor subsets and it is not a 3-SP.

Proof. The first assertion follows directly from Corollary [3.11} For the second assertion,
it suffices to consider the space X = R, (! (so that ¢* C X) and apply Proposition m
Finally, to show that the property of being Gromov-compactifiable is not a 3-SP, consider
Y =R @, {0}. Then X/Y = {0} &, ¢*. Therefore, X and Y are Gromov-compactifiable,
but the space X/Y, being isometric to £}, is not. [ |

Let us now elaborate on the statement of Theorem (¢). In the following example
we show that the subspace F', evoked in the aforementioned statement, cannot be taken
one-dimensional and needs to be of dimension at least 2. The question of whether the
dimension of F' needs to be arbitrarily large remains open.
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Example 3.14 (Dimension of F'in Theorem (¢)). Consider the space X = ¢ @, (.
Thanks to Proposition [3.10], X is Gromov-compactifiable, that is, the horofunction ex-
tension X is a compactification of X (and consequently, (¢) of Theorem [3.2] holds).

We shall show that, for every one-dimensional subspace F' C X we have
du(Sp, Sx) = 2,

yielding that the subspace F' given by Theorem [3.2] (¢) satisfies in this case dim F' > 2.

Indeed, let w € X be a unit vector and set F' = Rw. Let w! € £1 x {0} and w? € {0} x /!
be such that w = w! + w?. Then,

L= [[w]* = [lw'[* + [l

For sake of brevity, set a := ||w'|| and b := ||w?||. Denote by (e,) and (f,) the canonical
bases of ¢! for the first and second coordinate of X respectively. Then, for any n € N,
T, = ae, + bf, € X is a unit vector. Recalling that Sr = {w, —w}, we compute

& wl|* = [laen £ w'|[* + [|bfn £ w?|*

2 2
o0 o0
= | latwp |+ fwil | + | bxwl]+ ) wfl
k=0 k=0
k#n k#n

= (la £ wy| = [wy| + a)* + (|b £ wy| — |wy] +0)?
Taking supremum on n € N, we deduce

sup min { ||z, — w|?, ||z, + w|*} > (2a)* + (2b)* =4
neN
and we conclude that dy(Sr, Sx) = 2.

Let us start with the following result.

Corollary 3.15 (Isometric embedding). Fvery metric space (X,d) can be isometrically
embedded in a Gromov-compactifiable space.

Proof. Tt is well-known ([19, Theorem 1.6]) that every metric space (X,d) can be iso-
metrically embedded into the Banach space ¢*°(X) of all bounded real functions on X
(equipped with the sup-norm) by means of the so-called Kuratowski-embedding. Namely,
fixing a base point zo € X, the map = — 0,(-), x € X, where

0, ={d(z,z) — d(xg, 2) }.ex € £°(X)

is an isometry from X to ¢*°(X). By Proposition [3.10] (iv) we deduce that ¢>(X) is
Gromov-compactifiable and the conclusion follows. [ |
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We shall now discuss two classical paradigms of canonical embeddings of a metric
space X. The first one is the embedding to the so-called Lipschitz-free space F,,(X)
(also known as Arens-Fells space or Transportation cost space). Let us provide a quick
construction of F, (X). (For a more detailed construction and classical properties we refer
to [14].) Fix zy € X a base point and consider the Banach space Lip, (X) of real-valued
Lipschitz functions that vanish at xg, equipped with the norm of the Lipschitz constant.
Let 6 : X — Lip, (X)* be the evaluation map defined by

(0(x), f) = f(=), forallz € X, f € Lip,, .
It is known that ¢ is a (non-linear) isometry and that
(3.1) 16(x)|| = d(z,zp), forall xze X.

The Lipschitz-free space F,,(X) is then defined as the closed linear span of §(X) in
Lipy(X)* (equipped with the restriction of the underlying norm), that is

Fuo(X) :=5pan{d(z): z € X }.

It turns out that F,,(X)* = Lip, (X). Furthermore, the isometric structure of 7, (X)
is independent of the chosen base point xy. This space is usually denoted by F(X) :=
Fio(X), and its norm by || - ||#. In this framework, Theorem (characterization of
Gromov-compactifiability via non-octahedrality), clearly relates to the complete study

about octahedrality in Lipschitz-free spaces that has been recently carried out by Prochazka
and Rueda-Zoca in [22].

The second paradigm is the Wasserstein spaces, which are classes of (probability) spaces
that are associated with a given metric space X and relate to the Optimal Transport
theory, see [10] for details. In particular, the 1-Wasserstein space (P!'(X),W;) of X,
which consists of the Radon probability measures on X with finite first moment, offers
another canonical isometrical embedding. The 1-Wasserstein distance of two elements
(measures) p, v € PY(X) is given by the formula (see [7, Theorem 4.1])

Wlw,u):sup{ [ t@nto) - [ i) £ e Lipe), Lip<f>g1}.

In view of [7, Theorem 6.1], the set of probabilities with finite support (that is, convex
combination of Dirac measures) is dense in P'(X). Therefore, P!(X) is isometrically
isomorphic to conv’ ) (§(X)) € F(X).

We are now ready to state the following result, which asserts that (in contrast to
Corollary [3.13)) the property of being Gromov-compactifiable is inherited to X from either
its Lipschitz-free space F(X) or its 1-Wasserstein space P'(X). In what follows, allowing
a slight abuse of notation, for every z € X, we shall denote by d(z) both the element of
(the vector space) F(X) and the Dirac measure in P'(X).
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Proposition 3.16. Let (X,d) be a metric space. Then
(). X is Gromov-compactifiable when F(X) is Gromov-compactifiable.

(ii). X is Gromov-compactifiable when PY(X) is Gromov-compactifiable.

Proof. If X is a finite metric space, then F(X) is finite dimensional and P!(X) is a
polytope. In this case, the result follows easily from Proposition [1.6]

Let us now assume that the cardinality of X is infinite and, towards a contradiction,
that X is not Gromov-compactifiable. Then by Theorem [2.1] (b), there exist zy € X and

r > 0 such that for any compact set K C X and any n > 0, there exists z := 2k, €
X \ B(z,r) such that

d(z,w) > d(z,x0) + d(xg,w) —n, for all w € K.
In particular, for 0 < < r and every finite set A C X, we set
(3.2) 2= Zag.
Moreover, for any choice (\y,)wea, We set

ma =Y _ Ay d(w) (€ span(5(X)) C Foy(X).)

weA

Claim. There exists a 1-Lipschitz function f : X — R such that

(3.3) f(xo) =0, (ma, f) = =[lmall7 and  f(2) = d(z,z0) —1.
Proof of the claim. Since F,,(X)* = Lip,,(X), there exists a 1-Lipschitz function
g : X — R with g(zg) = 0 such that (mu, g) = —|/mal|#. Denote by g; the restriction of

g to AU{zo} C X and consider the extension of g; to AU {xo, 2} as follows:
g2t AU{zp,2} = R with galaufze} =1 and go(2) = d(x0,2) — 1
It is easy to check that g is 1-Lipschitz, since for every w € A we have:
192(2) = g2(w)] < g2(2)[ + [g2(w)]| < d(xo, 2) — 0+ d(w, o) < d(z, w).
We define f as any McShane extension of g, to X and the claim is proved.

Thanks to [7, Theorem 4.1], for the particular case where > _, A, =1 and A\, > 0, we
deduce

(3.4) (ma, f) = =W (6(20), ma) and f(z) = Wi(d(x0),6(2)) — n.

(i). We shall use as base point the above point xy € X and prove that the Lipschitz-
free space F,,(X) is not Gromov-compactifiable. Indeed, we are going to show that
condition (c¢) of Theorem [3.2|fails. To this end, let ' be a finite dimensional subspace of
Fio(X) and 0 < n < r. Let further (u)i_, be a finite n-net of the (compact) unit sphere
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Sp = F'N Sz, (x) of F. By density of the subspace span (6(X)) in J,(X), there exists
(my)p_; C span(d6(X)), with ||mg||# = 1, such that

e — mel| 7 < m, for k€ {1,...,n}.

For every k € {1,...,n}, take (z;);*; C X and (A;)i*; C R such that

23
mp = Z )\]m(s(l’/w)
i=1

Set Ay, = UM {axi} and A = J_, Ap. Take z4 := 24, given in (B.2) and let f;, be a
1-Lipschitz function that satisfies (3.3)), for the vector m; and the point z4.

Let p1 € Sg. Then there is k > 1 such that || — ug||z < 7. Considering the correspond-
ing fr and recalling by (3.1]) that

[6(z4)ll 7 = d(za,20) > and  (fi,m) = —|[myl7 = —1
we deduce:
| ], 2 [l o 2 222,
d(xg,za) ~~~Ilr = lld(zg, z4) F ~ ld(zo, z4) £
~— SF
SFag (X)
6(24) f(za)
> - — 9 = L )
fal <fk7 (xO,ZA) mk) n d(l’o,ZA) <fk7 mk’) n

=1

n n
=1—- — 1—-2n > 2— - —2n.
( d(:po,zA))+ = r "

Therefore, we obtain

dH(SF,S]:(X)) 2 d(d(SLA)),SF> = inf

(20, 24 HeSr

et ]2 ea(or)

d(xg, z4)

Since 7 is arbitrary, we eventually conclude that dg(Sp, Sr(x)) = 2.

(ii). We shall show that the 1-Wasserstein space (P*(X), W) is not Gromov-compactifiable.
Following the same pattern of proof as in (i), we shall show that condition (b) of Theo-
rem [2.1] fails for P*(X) at §(zg) and r > 0.

To this end, let 0 < 7 < r and K C P!(X) be a compact set. Let (my)?_, € conv(§(X))
be such that

Ilgm Wi(pu,mg) <m, forany p € K.

Abusing slightly notation, we still write my = > % A\ ;0(xr;) and set Ay = (J;* {@r}
and A = |J;_, Ay (as in the above proof). Consider z4 := z4, as in (3.2). For any u € K,
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fixing k such that Wi(u, mg) < n and considering f satisfying (3.4)) with respect to my
and z4, we obtain

W1(6(24), 1)

2 W1(5(ZA)7 0(x0)) + WH(d(wo), 1) — 3n-
Since 7 is arbitrary, statement (b) of Theorem [2.1| cannot hold for P'(X) at 6(zg).
The proof is complete. n

Note that the converse of Proposition (i) does not hold. For example, we can
consider X = R, which is Gromov-compactifiable. In this case, F(R) is isometrically
isomorphic to L*(IR), which is not Gromov-compactifiable (see Proposition [3.9). It would
be interesting to know whether the converse of Proposition [3.16] (ii) holds true.
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