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HOROFUNCTION EXTENSION

AND METRIC COMPACTIFICATIONS

A. DANIILIDIS, M. I. GARRIDO, J. A. JARAMILLO, AND S. TAPIA-GARCÍA

Abstract. A necessary and sufficient condition for the horofunction extension

(X, d)
h
of a metric space (X, d) to be a compactification is hereby established.

The condition clarifies previous results on proper metric spaces and geodesic
spaces and yields the following characterization: a Banach space is Gromov-
compactifiable under any renorming if and only if it does not contain an iso-
morphic copy of �1. In addition, it is shown that, up to an adequate renorming,

every Banach space is Gromov-compactifiable. Therefore, the property of be-
ing Gromov-compactifiable is not invariant under bi-Lipschitz equivalence.
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1. Introduction and preliminary results

A compactification for a topological spaceX is a pair (Y, i), where Y is a compact
space and i : X → Y is a continuous injection such that i(X) ⊂ Y is dense and i is a
homeomorphism from X to i(X). If the injection i is canonical or implicitly known,
we simply say that the compact space Y is a compactification of the space X.

Classical instances of compactification are the Alexandroff (one-point) compa-
ctification X∞ (for locally compact spaces) and the Stone-Čech compactification
βX (for completely regular spaces), corresponding to the two extreme cases in terms
of size.
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Gromov [15] proposed a new compactification scheme in case that (X, d) is a
metric space. This is based on the identification of each point z of the space with
the distance function d(·, z) to it (modulo constant functions), providing a natural
injection of X to a quotient of the space of continuous real functions on X (endowed
with the compact-open topology). Gromov called horofunction extension of X the

closureX
h
of the image ofX there (see more details in Section 1.1). For applications

of the horofunction extension and related constructions in more abstract settings,
we refer to [1, 12, 25, 26].

In general, the horofunction extension of a metric space (X, d) is not a (topo-
logical) compactification of X, since the aforementioned injection of the space does
not necessarily yield a homeomorphism over its image. In this work we use the
following terminology:

Definition 1.1 (Gromov-compactification). We say that a metric space (X, d) is

Gromov-compactifiable if the horofunction extension X
h
is a (topological) compa-

ctification for X.

There are several known examples of Gromov-compactifiable spaces, as for in-
stance proper geodesic spaces [3] or Hilbert spaces [24] and [17], as well as sufficient
criteria on the space ensuring this property [11]. However, a complete character-
ization of Gromov-compactifiability was still up-to-date unavailable. The current
work aims to fulfill this gap.

Our main contributions are:

• A necessary and sufficient condition for a metric space (X, d) to be Gromov-
compactifiable (Theorem 2.1).

• (Characterization for normed spaces) A normed space (X, ‖ · ‖) is not
Gromov-compactifiable if and only if the Hausdorff distance of the sphere
of any finite-dimensional subspace of X to the sphere of X is equal to 2
(Theorem 3.2 (a) ⇔ (c)).

• (�1-criterium) A normed space is Gromov-compactifiable under any renorm-
ing if and only if it does not contain an isomorphic copy of �1 (Theorem 3.7).

• Every Banach space can be renormed to become Gromov-compactifiable
(Corollary 3.11). In particular, Gromov-compactifiability is not invariant
under bi-Lipschitz homeomorphisms.

The paper is organized as follows: in the rest of this section we review the state-
of-the-art and provide motivation for this study. Section 2 contains our main results
in metric spaces. In Section 2.1 we establish a general characterization of Gromov-
compactifiability of metric spaces. Some applications are also given for specific
types of spaces, in particular, for locally compact or proper metric spaces. In Sec-
tion 2.2 we compare the horofunction extension of a locally compact space with the
so-called metric compactification, introduced by Rieffel in [23]. Section 3 is devoted
to study Gromov-compactifiability in the setting of normed spaces. In Section 3.1
we obtain a geometric characterization, in terms of the Hausdorff distance between
spheres. In Section 3.2 we obtain a connection with the so-called octahedrality of
the norm, a property introduced in [13]. Furthermore, we characterize stability of
Gromov-compactifiability under renormings, in terms of non-containment of an iso-
morphic copy of �1. In Section 3.3 we give a variety of examples and applications,
in particular to Lipschitz-free spaces and 1-Wasserstein spaces.
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1.1. Original definition of the horofunction extension. The notion of horo-
function extension of a metric space (X, d) goes back to Gromov in [15] (see also
[3]) and was defined as follows. For each z ∈ X, consider the distance function
dz := d(·, z). It is not difficult to see that the mapping

ι : X → C(X)

defined by ι(z) := dz is a topological embedding of X into the space C(X) of
continuous real functions on X, endowed with the compact-open topology. We
introduce the equivalence relation in C(X) given by f ∼ g if and only if f − g is

constant. Denote by Ĉ(X) the corresponding quotient space and by π : C(X) →
Ĉ(X) the natural quotient map. It is easy to check that ι̂ := π ◦ ι : X → Ĉ(X)

is one-to-one. Therefore, we have that ι̂ : X → Ĉ(X) is a continuous injection.

Now we define the horofunction extension X
h
of X as the closure of ι̂(X) in Ĉ(X),

and we call X
h \X the horofunction boundary of X. The elements of X

h \X will

be called horofunctions on X. In the literature, the elements of X
h
are also called

metric functionals on X (see, e.g., [20] and references therein).
On the other hand, if we fix an arbitrary point x0 ∈ X and we consider the closed

subspace Cx0
(X) of C(X) formed by all continuous real functions on X vanishing

at x0, we see that Ĉ(X) is naturally isomorphic to Cx0
(X) by means of the mapping

that sends the equivalence class [f ] ∈ Ĉ(X) to the function f − f(x0) ∈ Cx0
(X).

Composing with this isomorphism, we obtain the continuous injection

ιx0
: X → Cx0

(X)

given by
ιx0

(z)(·) = d(·, z)− d(x0, z).

It is then clear that the horofunction extensionX
h
ofX can be canonically identified

with the closure of ιx0
(X) in Cx0

(X), which in particular does not depend on the
chosen base point x0. Note that, for each z ∈ X, the function

x 	→ ιx0
(z)(x) = d(x, z)− d(x0, z)

is 1-Lipschitz and satisfies that

−d(x0, x) ≤ ιx0
(z)(x) ≤ d(x, x0)

for every x ∈ X. This yields that the family of functions {ιx0
(z)(·)}z∈X is equicon-

tinuous and pointwise relatively compact in C(X) and consequently, from Arzela-

Ascoli theorem, we deduce that the horofunction extension X
h
of X is a compact

space.
Section 1.2 provides an alternative way to obtain the same conclusion.

1.2. Construction using 1-Lipschitz functions. Let (X, d) be a metric space
and consider a fixed base point x0 ∈ X. We follow here the construction of [16].
Denote by Lip1x0

(X) the space of all 1-Lipschitz real-valued functions onX vanishing

at x0. Notice that for every f ∈ Lip1x0
(X) we have:

−d(x0, x) ≤ f(x) ≤ d(x, x0), for all x ∈ X.

Therefore, identifying f by its values (f(x))x∈X we readily obtain:

Lip1x0
(X) ⊂

∏
x∈X

[−d(x0, x), d(x, x0)] ⊂ R
X .
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Notice that by Tychonoff theorem the above product is a compact space. Endowing
Lip1x0

(X) with the pointwise topology inherited from the Cartesian product RX ,

we conclude easily that Lip1x0
(X) is closed. As a consequence, Lip1x0

(X) is in fact

a compact subspace of RX . On the other hand, it is easily seen that the compact-
open topology of Lip1x0

(X) coincides with its pointwise topology and Lip1x0
(X) is

closed in Cx0
(X).

Now for each z ∈ X, let us denote by brevity

hz(·) := ιx0
(z)(·) = d(·, z)− d(x0, z).

Then hz ∈ Lip1x0
(X). It follows easily that the mapping

(1.1)

{
h : X → Lip1x0

(X) ⊂ RX

h(z) := hz

is well-defined and is a continuous injection. In this way we have that the horofunc-

tion extension X
h
of X coincides with the pointwise closure of h(X) in Lip1x0

(X),
and it is therefore a compact set. As observed by the referee, this conclusion can
also be obtained by noticing that Lip1x0

(X) is the closed unit ball of a dual space
(the space of real-valued Lipschitz functions onX vanishing at x0 equipped with the
Lipschitz norm). In bounded sets of this dual space, the weak∗-topology coincides
with the topology of pointwise convergence.

Proposition 1.2 (Horofunction extension vs dense subsets). Let (X, d) be a metric
space.

(i) If Z is a dense subspace of X, then Z
h
is homeomorphic to X

h
.

(ii) If X is separable, then X
h
is metrizable.

Proof. (i) Let Z be dense in X and fix x0 ∈ Z. It is clear that the natural
restriction map

r : Lip1x0
(X) → Lip1x0

(Z)

is a homeomorphism when we consider, respectively, the topology of pointwise
convergence on X and the topology of pointwise convergence on Z. We consider,
as before, the mapping h given by (1.1) and its restriction to Z:

h|Z : Z → Lip1x0
(Z) ⊂ R

Z .

Since Z is dense in X, we have that the closures of h(Z) and h(X) in Lip1x0
(X)

coincide. On the other hand, since r is a homeomorphism, the closure of h|Z (Z) in

Lip1x0
(Z) is r(h(Z)). Thus the mapping r is a homeomorphism between X

h
and Z

h
.

(ii) If X is separable, choose a countable dense subspace Z. Then we have

h : X → Lip1x0
(X) ≈ Lip1x0

(Z) ⊂ R
Z .

Since Z is countable, the space RZ (equipped with the Cartesian topology) is metri-
zable. The proof is complete.

�

Remark 1.3 (Completion). It follows from Proposition 1.2 that the horofunction
extension of any metric space coincides with the horofunction extension of its com-
pletion.
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Figure 1. Representation of the space (inside �1)

1.3. Injection versus embedding. Let (X, d) be a metric space. We already

saw that the horofunction extension X
h

is a compact space and the injection

h : X → h(X) ⊂ X
h
is continuous. Nevertheless X

h
is not, in general, a compact-

ification of X: indeed, this would require h : X → h(X) ⊂ X
h
to be a topological

embedding, that is, h to be a homeomorphism from X to h(X). This is not always
the case, even if the space X is proper (that is, every closed bounded subset of X
is compact). To illustrate this, we give the following example:

Example 1.4. Consider the Banach space �1(N) endowed with its usual norm,
given by ‖x‖ =

∑∞
k=1 |xk|, for every sequence x = (xk) ∈ �1(N). For n = 0, set

z0 = 0, and for each n ≥ 1, set zn = nen, where {en} denotes the unit vector basis
of �1(N). Now, for n ≥ 0, consider the closed segment Sn := [zn, zn+1], and define
the �1-ray by

(1.2) X :=
⋃
n≥0

Sn

with the metric inherited from the �1-norm, see Figure 1.
Notice that for any x ∈ Sn, we have x = (1 − t)nen + t(n + 1)en+1 for some

0 ≤ t ≤ 1, yielding ‖x‖ ≥ n. As a consequence, denoting by Bk the closed ball
in �1(N) centered at 0 with radius k ∈ N, we deduce that X ∩ Bk is contained in
S1 ∪ · · · ∪ Sk, which is compact. Therefore X is a proper metric space.

Let us now choose x0 = 0 as a base point and consider the corresponding mapping{
h : X → RX

z 	→ hz(·) := ‖ · −z‖ − ‖z‖

for every z ∈ X. In order to see that h is not a topological embedding, we consider
the sequence (zn)n≥0 ⊂ X, where zn = nen. It is clear that (zn)n≥0 does not
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converge to z0 = 0 in X. Nevertheless from the following claim we have that the
sequence of functions (hzn) converges pointwise on X to the function h0 = ‖ · ‖.
Claim. Let (an) be a sequence in X such that (‖an‖) → ∞. Then the sequence
(han

) converges pointwise on �1(N) to the function h0 = ‖ · ‖.
Proof of the claim. Indeed, let us denote by c00(N) the space of eventually null
sequences, that is, x̄ ∈ c00(N) if and only if x̄ has finite nonzero terms. Since c00(N)
is dense in �1(N), fixing x ∈ �1(N) and ε > 0, we can find x̄ = (x̄i) ∈ c00(N) such
that ‖x − x̄‖ ≤ ε. Let k ∈ N be such that x̄i = 0 for all i ≥ k and let n0 ∈ N

be such that an /∈ S1 ∪ · · · ∪ Sk, for every n ≥ n0 (this is possible since (an) ⊂ X
and ‖an‖ → ∞). It follows that for n ≥ n0, the sequences an and x̄ have disjoint
supports. Therefore

‖x̄− an‖ = ‖x̄‖+ ‖an‖.
Then

han
(x)− h0(x) = ‖x− an‖ − ‖an‖ − ‖x‖

≤ ‖x− x̄‖+ ‖x̄− an‖ − ‖an‖ − ‖x‖ ≤ ε+ ‖x̄‖ − ‖x‖ ≤ 2ε

and
han

(x)− h0(x) = ‖x− an‖ − ‖an‖ − ‖x‖
≥ ‖x̄− an‖ − ‖x− x̄‖ − ‖an‖ − ‖x‖ ≥ −2ε.

Let us finally describe the horofunction extension of the metric space X given

in (1.2). From Proposition 1.2 we have that X
h
is metrizable, so every function

f ∈ X
h
is the pointwise limit of a sequence in h(X). Let (an) be a sequence in X

such that han
converges to f . If (an) is bounded, it admits a subsequence (anj

)
convergent to some a ∈ X. Then (hanj

) (and thus (han
)) converges to ha, so f = ha.

Otherwise, if (an) is not bounded, it admits a subsequence (anj
) such that (‖anj

‖)
converges to ∞, so by the previous claim we have that (han

) converges to h0. This

shows that X
h
= h(X) (as a set) and the horofunction boundary X

h \ h(X) is

empty. Let us finally notice that X is homeomorphic to the ray [0,+∞) and X
h
is

homeomorphic to the circle S1.

Remark 1.5. Using the previous claim and a similar argument, we can also see that
for the space X = �1(N), the injection h : X → RX is not a topological embedding.
Therefore, the Banach space �1(N) is not Gromov-compactifiable. We shall see in
Section 3 that �1(N) represents a prototype of pathology for normed spaces.

It is well-known that every finite-dimensional normed space is Gromov-
compactifiable. Indeed, from [11, Lemma 2.2] we have

Proposition 1.6. Let X be a proper metric space such that every ball is path-
connected. Then, h : X → RX is a topological embedding.

In Section 3, we shall see that the horofunction extension is a compactification
for all reflexive Banach spaces (thus for all �p spaces, with 1 < p < ∞). For a
description of horofunctions of Hilbert space and �p spaces, we refer to Gutiérrez
[16, 17].

We shall now give a topological description of the horofunction extension of the
sphere of a Hilbert space. Notice that, thanks to the Kadets-Klee property, the
topology on the sphere inherited from (the norm-topology of) the Hilbert space
coincides with the weak topology.
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Example 1.7. Let H be a real infinite-dimensional Hilbert space and let us denote

by X = SH its unit sphere. Then the horofunction extension X
h
is a compactifica-

tion of SH, homeomorphically equivalent to the closed unit ball BH endowed with
the weak topology.

Proof. Fix a base point x0 ∈ SH and let z ∈ BH. Since the unit sphere SH is dense
in BH for the weak topology, there exists a net (zλ) ⊂ SH weakly convergent to z.
Then for each x ∈ SH the net

hzλ(x) := ‖x− zλ‖ − ‖x0 − zλ‖ =︸ ︷︷ ︸
‖zλ‖=‖x‖=‖x0‖=1

√
2− 2〈x, zλ〉 −

√
2− 2〈x0, zλ〉

converges to the function

ψz(x) :=
√
2− 2〈x, z〉 −

√
2− 2〈x0, z〉,

yielding that ψz is a horofunction of SH. Therefore the map

(1.3)

{
ψ : (BH,weak) → X

h

z 	→ ψ(z)(·) := ψz(·) =
√
2− 2〈·, z〉 −

√
2− 2〈x0, z〉

is well-defined. It is clear that ψ is continuous and ψz coincides with hz whenever
z ∈ SH.

Claim 1. The function ψ is injective.

Proof of Claim 1. Suppose that ψ(z) = ψ(z′), where z, z′ ∈ BH. Then for each
x ∈ SH, √

2− 2〈x, z〉 −
√
2− 2〈x0, z〉 =

√
2− 2〈x, z′〉 −

√
2− 2〈x0, z′〉

and choosing x ∈ {z, z′}⊥ we deduce that
√
2− 2〈x0, z〉 =

√
2− 2〈x0, z′〉 and

conclude that for every x ∈ SH,√
2− 2〈x, z〉 =

√
2− 2〈x, z′〉.

Therefore

〈x, z〉 = 〈x, z′〉,
for every x ∈ SH. As a consequence, we obtain that z = z′.

Claim 2. The function ψ is surjective.

Proof of Claim 2. Consider an element f ∈ X
h
. Then there is a net (zλ) ⊂ SH

such that the net (hzλ) converges to f pointwise on SH. By the weak compactness
of the closed ball, there is a subnet (z′β) weakly convergent to some point z ∈ BH.

Then (hz′
β
) converges pointwise on SH to f and also to ψz, so f = ψz.

Since (BH,weak) is compact, it follows from a standard argument that ψ is a
homeomorphism. Since ψ|SH = h, it follows that SH = ψ−1(h(SH)) and the horo-

function extension X
h
of SH is a compactification (homeomorphic to (BH,weak)).

This completes the proof.

�

In light of Examples 1.4 and 1.7, a natural question appears: characterize the

metric spaces (X, d) for which the horofunction extension X
h
is a compactification

of X, that is, what we have called in Definition 1.1 Gromov-compactifiability.
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2. Main results in metric spaces

In this section we establish a characterization of the case when the horofunc-
tion extension is a compactification, in the general setting of metric spaces. Some
applications are given for specific types of metric spaces. In particular, simplified
characterizations are obtained for the cases of locally compact or proper metric
spaces, extending previously known results. Finally, we compare the horofunction
extension of a locally compact space with the Rieffel metric compactification of the
space, introduced in [23].

2.1. A general characterization and first consequences. We start with a gen-
eral purely metric characterization of metric spaces X which are Gromov-
compactifiable.

Theorem 2.1 (Characterization of Gromov-compactifiability in metric spaces).
Let (X, d) be a metric space. The following conditions are equivalent:

(a) The horofunction extension X
h
is a compactification of X.

(b) For every point x ∈ X and every r > 0, there exist some ηr > 0 and
a compact set Kr ⊂ X such that, for each z ∈ X \ B(x, r) there exists
w ∈ Kr with

d(w, z) ≤ d(w, x) + d(x, z)− ηr.

Proof. Let us fix x0 ∈ X to be a base point for X. Therefore, for every z ∈ X we
have

hz(·) := d(·, z)− d(x0, z).

(b) ⇒ (a). We proceed towards a contradiction, that is, we assume that (b)

holds true but the (continuous injective) function h : X → h(X) ⊂ X
h
is not

bicontinuous, that is, h−1 is not continuous. Therefore, there exist a net (zλ)λ∈Λ ⊂
X and x ∈ X such that

(hzλ) → hx uniformly on compact sets, but (zλ) �→ x.

Therefore, there is r > 0 such that the set

Λ0 := {λ ∈ Λ : d(zλ, x) ≥ r}

is a cofinal of Λ. Thus, (zλ)λ∈Λ0
is a subnet of (zλ)λ∈Λ. Fix ηr > 0 and the compact

set Kr given by statement (b). Consider now the set

Λ1 := {λ ∈ Λ0 : zλ /∈ Kr}.

Claim. Λ1 is a cofinal of Λ0 and therefore, (zλ)λ∈Λ1
is a subnet of (zλ)λ∈Λ.

Proof of the claim. Indeed, otherwise the set Γ1 := Λ0 \Λ1 is a cofinal of Λ0. Since
(zλ)λ∈Γ1

⊂ Kr, by compactness there is a subnet (zβ)β∈Γ2
convergent to some point

z ∈ Kr. Note that z �= x. Since the mapping h : X → X
h
is continuous, we have

that

hx = lim
λ∈Λ

hzλ = lim
β∈Γ2

hzβ = hz.

Since h is injective, we get a contradiction. This completes the proof of the claim.
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For any λ ∈ Λ1, let wλ ∈ Kr be the point given by statement (b) associated to
zλ, i.e.,

d(wλ, zλ) ≤ d(wλ, x) + d(x, zλ)− ηr, for all λ ∈ Λ1.

Since (hzλ)λ∈Λ1
converges to hx uniformly on compact sets, it converges uniformly

on Kr ∪ {x}. So, we have that

hx(x)− hzλ(x) = −d(x0, x)− d(x, zλ) + d(x0, zλ) =: αλ → 0.

However,

hx(wλ)− hzλ(wλ) = d(wλ, x)− d(x0, x)− d(wλ, zλ) + d(x0, zλ)

= αλ + d(x, zλ) + d(wλ, x)− d(wλ, zλ)

≥ αλ + ηr → ηr > 0.

This contradicts the fact that (hzλ)λ∈Λ1
converges to hx uniformly on Kr ∪ {x}.

(a) ⇒ (b). If X is compact, the result follows trivially by choosing, given r > 0,
ηr = r, Kr = X and w = z. If X is not compact, we proceed by a contrapositive
argument, that is, we assume that (b) does not hold and we prove that h−1 is not
continuous. Since X is not compact, then it is not pseudocompact and there exists
a continuous function f : X → R such that f(x) > 0 for all x ∈ X and infX f = 0
(see, e.g., [8]). Let us define

K := {K ⊂ X : K nonempty compact}

and the partial order ≤ on K given by the set inclusion:

for all K1, K2 ∈ K, K1 ≤ K2 ⇔ K1 ⊂ K2.

Consider now the net (ηK)K∈K ⊂ R defined by

ηK := min{f(x) : x ∈ K} > 0, for all K ∈ K.

Since infX f = 0, it follows that (ηK)K∈K converges to 0. Choose x ∈ X and r > 0
for which the statement (b) does not hold. Then for each compact set K ∈ K there
is some zK ∈ X \B(x, r) satisfying

d(w, zK) > d(w, x) + d(x, zK)− ηK , for all w ∈ K.

We show that (hzK )K∈K converges to hx uniformly on compact sets, but (zK)K∈K
does not converge to x. The second part is clear from the fact that d(x, zK) ≥ r > 0
for all K ∈ K. Now fix L0 ∈ K. Then, for any L ∈ K such that L ⊃ L0 ∪ {x0} we
have that

|hzL(x)− hx(x)| = |d(x, zL)− d(x0, zL)− d(x, x) + d(x0, x)|
= d(x0, x) + d(x, zL)− d(x0, zL) =: αL < ηL.

Observe that the above inequality follows from the fact that x0 ∈ L. Now, for any
w ∈ L0, we have that

|hzL(w)− hx(w)| = |d(w, zL)− d(x0, zL)− d(w, x) + d(x0, x)|
= |d(w, zL)− d(w, x) + αL − d(x, zL)|
≤ d(w, x) + d(x, zL)− d(w, zL) + αL ≤ 2ηL.
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Therefore, we have shown that for any L ≥ L0 ∪ {x0},
sup{|hx(w)− hzL(w)| : w ∈ L0} ≤ 2ηL → 0.

Since L0 is an arbitrary compact subset of X, we have that (hzK )K∈K converges to
hx uniformly on compact sets. Therefore, h−1 : h(X) → X is not continuous. �

As usual, the Lipschitz property allows us to replace compact sets by finite sets.

Remark 2.2. Statements (a) and (b) of Theorem 2.1 are also equivalent to the
following:

(c) For every x ∈ X and r > 0, there exist ηr > 0 and a finite set Kr ⊂ X such
that for every z ∈ X \B(x, r) there exists w ∈ Kr satisfying

d(w, z) ≤ d(w, x) + d(x, z)− ηr.

Indeed, (c) ⇒ (b) follows readily (since every finite set is compact). Assume now
that (b) holds, fix x ∈ X, r > 0 and let η > 0 and K ⊂ X given by statement (b).
Since K is compact, there exists a finite set A ⊂ K which is an η/3-net of K. For
any w ∈ K, take aw ∈ A such that d(w, aw) ≤ η/3. Let z ∈ X \ B(x, r). Then
there is w ∈ K such that d(w, z) ≤ d(w, x) + d(x, z) − η. Therefore d(aw, z) ≤
d(aw, x) + d(x, z)− η

3
. Setting ηr := η

3 and Kr = A, we see that (c) holds true.

A very interesting consequence of the above characterization is the following
result, which provides a completely new insight to the situation observed in Exam-
ple 1.7.

Corollary 2.3 (Gromov-compactifiability of the sphere of any normed space). Let
(M,d) be a bounded metric space such that for every x ∈ M we have:

(2.1) sup
y∈M

d(y, x) = diam(M) := sup
y,z∈M

d(y, z).

Then M is Gromov-compactifiable.
In particular, the unit sphere SX of any normed space X (equipped with the

distance inherited by the norm) is always Gromov-compactifiable.

Proof. Assume that the metric space (M,d) is bounded and satisfies (2.1). We shall
show that condition (b) of Theorem 2.1 is fulfilled.

To this end, let x ∈ M and r > 0. If r ≥ diam(M), the conclusion of (b) is
vacuously satisfied. Therefore, we may assume that r < diam(M). Then we fix
η = r/2 and choose y ∈ M such that

d(y, x) ≥ diam(M)− r

2
.

We set K = {y} and observe that for any z ∈ M \B(x, r) we have

d(y, x) + d(x, z) ≥
(
diam(M)− r

2

)
+ r ≥ d(y, z) + η.

The second part of the statement is straightforward, since for the metric space
M = SX (unit sphere of a normed space X) and for any x ∈ SX , we can take
y := −x ∈ SX and observe that

d(x,−x) = 2 = diam(SX).

The proof is complete. �
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Let us notice that there are simple examples of bounded metric spaces which are
not Gromov-compactifiable. For example, consider M = {en : n ∈ N} ∪ {0} as a
subspace of �1(N). Here, it is easily seen that the sequence (hen) converges to h0

pointwise on M .
In what follows, we study special classes of metric spaces that allow to sim-

plify the statement of Theorem 2.1 (necessary and sufficient condition for Gromov-
compactifiability). Let us start with the following consequence for proper metric
spaces, which improves the sufficient condition given in [11, Lemma 2.2].

Corollary 2.4 (Simplified characterization for proper spaces). Let (X, d) be a
proper metric space. The following are equivalent:

(a) The horofunction extension X
h
is a compactification of X.

(b′) For every point x ∈ X, there exist constants η > 0 and R > 0 such that,
for each z ∈ X \B(x,R), there exists some w ∈ B(x,R) such that

d(w, z) ≤ d(w, x) + d(x, z)− η.

Proof. First note that condition (b′) above implies condition (b) of Theorem 2.1.
Indeed, if for every x ∈ X we have constants η > 0 and R > 0 satisfying (b′)
it is clear that condition (b) is fulfilled if for each r > 0 we choose ηr := η and
Kr := B(x,R).

Conversely, choose any r > 0, e.g., r = 1, then get ηr and Kr from condition (b)
of Theorem 2.1. Now take R > r so that B(x,R) contains Kr. Then (b′) follows
at once. �

We now obtain some sufficient conditions in the setting of locally compact metric
spaces. As in the previous case, the first one is a direct consequence of Theorem 2.1.

Corollary 2.5 (Locally compact spaces). Let (X, d) be a locally compact metric
space. Suppose that for every point x ∈ X, there exist constants η > 0 and R > 0
such that the ball B(x,R) is compact, and for each z ∈ X \ B(x,R), there exists
some w ∈ B(x,R) such that

d(w, z) ≤ d(w, x) + d(x, z)− η.

Then the horofunction extension X
h
is a compactification of X.

Corollary 2.6 is a generalization of Proposition 1.6.

Corollary 2.6. Let (X, d) be a locally compact metric space such that every ball in

X is connected. Then the horofunction extension X
h
is a compactification of X.

Proof. It suffices to show that the condition of Corollary 2.5 is fulfilled. Given
x ∈ X, we can choose any R > 0 such that B(x,R) is compact, and η = R

2 . Indeed,

for each z ∈ X \B(x,R), set R′ = d(x, z) > R and consider the closed ball B(z,R′).
Since this ball is connected, the set

F :=

{
y ∈ B(z,R′) : d(y, x) =

R

2

}
is nonempty. Choosing w ∈ F we obtain that d(w, z) ≤ R′ and

d(x, z) + d(w, x)− d(w, z) ≥ R′ +
R

2
−R′ =

R

2
.

The proof is complete. �
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In the previous result, local compactness is an important assumption. Indeed,
in Remark 1.5 we saw that for the space X = �1(N), the horofunction extension

X
h
is not a compactification of X, although �1(N) is a geodesic space.

In fact, without local compactness, we cannot ensure a positive result even for
metric trees. Recall that a metric space (X, d) is said to be a metric tree or R-tree
if it satisfies the following two conditions:

(i) For every x, y ∈ X, there exists a unique geodesic segment [x, y] joining them.
(ii) If [y, x] ∩ [x, z] = {x} then [y, x] ∪ [x, z] = [y, z].

Example 2.7 (Non-locally compact metric tree). In the Banach space �1(N) con-
sider the union of segments

X :=

∞⋃
n=1

[0, nen].

The space X, endowed with the metric inherited from �1(N), is a metric tree.

Evoking again the claim of Example 1.4 we deduce thatX
h
is not a compactification

of X.

Let us finish this section with the following application to ultrametric spaces. Recall
that a metric space (X, d) is called ultrametric if, for every x, y, z ∈ X,

d(x, z) ≤ max{d(x, y), d(y, z)}.

Corollary 2.8 (Ultrametric spaces are Gromov-compactifiable). Let (X, d) be an

ultrametric space. Then the horofunction extension X
h
is a compactification of X.

Proof. Let us check that Theorem 2.1(b) holds true. Let x ∈ X and r > 0. Assume
that X \B(x, r) �= ∅ and set K = {w}, where d(x,w) > r. We show that the choice
ηr = r satisfies (b) of Theorem 2.1. Indeed, for any z ∈ X \B(x, r), we have that

d(z, w) ≤ max{d(z, x), d(x,w)} ≤ d(z, x) + d(x,w)− r.

The proof is complete. �

2.2. Alternative constructions. We recall the classical construction of exten-
sions of a metric (or topological) space X by using a family of continuous bounded
functions on X (see, e.g., Chandler [4]). In our case, let (X, d) be a metric space,
and let L be a family of continuous bounded real functions on X, which separates
the points of X. Consider the injection

eL : X → R
L

defined by

eL(z) := (f(z))f∈L .

The associated extension HL(X) of X is defined as the closure of eL(X) in R
L,

when this space is endowed with the product topology. It is easily seen that eL is
a continuous injection and HL(X) is compact. Note that

eL(X) ⊂
∏
f∈L

[ inf
z∈X

f(z), sup
z∈X

f(z)].
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Furthermore, it is well-known that eL is a topological embedding if and only if
the family L weakly separates points and closed sets of X. This means (see, e.g.,
[5]) that for every z0 ∈ X and every closed set F in X with z0 /∈ F , there exist

f1, . . . , fm ∈ L such that 0 /∈ g(F ), where g : X → R is defined by

g(z) := max
1≤k≤m

|fk(z)− fk(z0)|.

In this case, HL(X) is a compactification of X and, for each f ∈ L, the natural
projection πf provides a continuous extension of f to HL(X). In fact, HL(X)
can be characterized as the smallest compactification of X where every function
in L can be continuously extended (see [4]). Here, we consider the usual ordering
in the family of compactifications of X. That is, for two compactifications α1X
and α2X of X, we say that α1X ≤ α2X whenever there exists a continuous map
ϕ : α2X → α1X leaving X pointwise fixed. We also say that α1X and α2X
are equivalent if α1X ≤ α2X and α2X ≤ α1X. This implies the existence of a
homeomorphism ϕ : α1X → α2X leaving X pointwise fixed.

Now fix a base point x0 ∈ X and, for each x ∈ X, consider the function θx :
X → R defined as

θx(z) := d(x, z)− d(x0, z).

Note that θx is a bounded 2-Lipschitz function on X and, for every x, z ∈ X:

θx(z) = hz(x).

Further, consider the family

(2.2) Lθ := {θx : x ∈ X}.
Then we have the following.

Proposition 2.9. Let (X, d) be a metric space. Then:

(i) The horofunction extension X
h
coincides with the extension HLθ

(X).

(ii) The horofunction extension X
h
is a compactification of X if and only if the

family Lθ weakly separates points and closed sets of X.

Proof. Note that, for every z ∈ X we can identify:

eLθ
(z) = (θx(z))x∈X = (hz(x))x∈X = hz.

From this, part (i) follows at once. On the other hand, as we have mentioned, eL
is a topological embedding if and only if the family L weakly separates points and
closed sets of X, so (ii) follows. �

The Rieffel construction. In the case that (X, d) is a locally compact metric

space, Rieffel defines the metric compactification X
d
of X (see Definition 4.1. in

[23]) as the maximal ideal space of the uniformly closed algebra of (bounded) func-
tions on X generated by the union of the family Lθ (given in (2.2)), the family of
constant functions, and the family C∞(X) of all continuous functions on X van-
ishing at infinity. Recall that f ∈ C∞(X) if and only if for every ε > 0 there is a
compact set K such that |f(x)| < ε whenever x /∈ K. It is clear that this metric
compactification can also be obtained following our previous scheme, and in fact

X
d
= HLd

(X), where

Ld := Lθ ∪ C∞(X).
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Note that X
d
is always a compactification of X, so in general it can be different

from X
h
(see Example 1.4). Nevertheless, we always have the natural projection

map

π : X
d
= HLd

(X) → X
h ⊂ HLθ

(X)

which is continuous, closed and surjective, and satisfies π(z) = hz for every

z ∈ X. If X
h
is a compactification of X, the above map π gives that X

h ≤ X
d

with the usual ordering. Furthermore, in this case each function in Ld extends

continuously to X
h
, since every function in C∞(X) can be continuously extended

to every compactification of X, by assigning the value 0 outside X. Therefore, from

the minimality of HLd
(X) with respect to this property, we obtain that X

d ≤ X
h
.

Summarizing, we obtain:

Proposition 2.10. Let (X, d) be a locally compact metric space. Then:

(i) The horofunction extension X
h
is a quotient of the metric compactifica-

tion X
d
.

(ii) If the horofunction extension X
h
is a compactification of X, then X

d
= X

h
.

As an illustrative example, consider X to be the �1-ray defined in Example 1.4.
Here, X is a locally compact metric space homeomorphic to [0,+∞) whose one-
point compactification is [0,+∞]. In addition, if we fix x0 = 0, we obtain from the
claim in Example 1.4 that, for every x ∈ X:

lim
‖z‖→∞

θx(z) = lim
‖z‖→∞

(‖x− z‖ − ‖z‖) = ‖x‖.

This implies that θx extends continuously to the one-point compactification of X.

Therefore X
d
coincides with this compactification, that is, X

d
= [0,+∞]. On the

other hand, as we have seen in Example 1.4, we have that X
h \ X is empty and

X
h
= S

1, where the natural quotient map

π : X
d
= [0,+∞] → X

h
= S

1

identifies 0 with the point at infinity.

Open question 1. It would be interesting to know if every non-Gromov-
compactifiable metric space (X, d) admits a minimal compactification with the
property that every function in the family Lθ can be continuously extended there.
If (X, d) is locally compact, the answer is positive, since the metric compactification

X
d
considered above has this property.

3. Main results in normed spaces

In this section we establish a characterization of Gromov-compactifiability in the
setting of normed spaces. Here, the richer structure of the space allows for a more
geometric characterization, in terms of the Hausdorff distance between spheres.
Furthermore, we obtain a connection with the so-called octahedrality of the norm,
a property introduced in [13] and well-studied in the realm of Banach space geome-
try. This allows us to characterize the stability of Gromov-compactifiability under
renormings, in terms of non-containment of an isomorphic copy of �1. We finish
with some applications to Lipschitz-free spaces and 1-Wasserstein spaces.
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3.1. A simplified characterization for normed spaces. We now provide sev-
eral applications of Theorem 2.1 for (infinite-dimensional) normed spaces. We start
with a general characterization. In what follows, dH(A,B) stands for the Hausdorff-
Pompeiu distance between two subsets A and B of a metric space (X, d), that is,

dH(A,B) := max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
,

where d(x,C) = inf
y∈C

d(x, y), for any x ∈ X and C ⊂ X.

Notice that in the special case that A ⊂ B we have:

dH(A,B) = sup
x∈B

d(x,A).

In what follows, we shall need Lemma 3.1. The proof follows easily from the
triangle inequality.

Lemma 3.1. Let X be a normed space. For any two vectors u, v ∈ X and t ≥ 1 it
holds:

‖u‖ − ‖v − u‖ ≤ t‖u‖ − ‖v − tu‖.

The main result of this section reads as follows.

Theorem 3.2 (Characterization of Gromov-compactifiability in normed spaces).
For a normed space (X, ‖·‖) the following statements are equivalent:

(a) The horofunction extension X
h
is a compactification of X.

(b) There exist η > 0, M > 0 and a finite-dimensional subspace F ⊂ X such
that for every z ∈ X \B(0, 1), there is w ∈ MBF := B(0,M) ∩ F with

‖z − w‖ ≤ ‖z‖+ ‖w‖ − η.

(c) For some finite-dimensional subspace F ⊂ X we have:

dH(SF , SX) < 2

where SF and SX denote the unit spheres of F and X respectively.

Proof. Let us first notice that if X is finite dimensional, then all assertions are true.

Indeed, Proposition 1.6 yields that X
h
is a compactification of X, (b) follows easily

by taking F = X, r = η = 1 and w = z/‖z‖ and (c) follows trivially by choosing
F = X.

Let us now assume that X is infinite dimensional. We prove the following chain
of implications: (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b): It follows directly from Theorem 2.1 and Remark 2.2(c). Indeed, for
0 ∈ X and r = 1, let K ⊂ X be finite and η > 0 such that for any z ∈ X \B(0, 1),
there is w ∈ K such that ‖w − z‖ ≤ ‖w‖ + ‖z‖ − η. Set F = span(K) and
M := max{‖w‖ : w ∈ K}.

(b) ⇒ (c): Let η > 0, M > 0 and F finite-dimensional subspace of X be given
by statement (b). Without loss of generality, we may assume that M > 1. Fix
z̄ ∈ SX . Since ‖z̄‖ = 1 we have z := Mz̄ ∈ X \ B(0, 1) and there exists w ∈ MBF

such that

η ≤ ‖z‖+ ‖w‖ − ‖z − w‖.
Note that w �= 0. Applying Lemma 3.1 for t = M/‖w‖, we obtain that

‖w‖ − ‖z − w‖ ≤ ‖tw‖ − ‖z − tw‖ = M −
∥∥z −M(w/‖w‖)

∥∥.
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Summing up both last inequalities, we have:

η ≤ 2M −
∥∥z −M(w/‖w‖)

∥∥ and consequently
η

M
≤ 2−

∥∥z̄ − (w/‖w‖)
∥∥ .

Since w/‖w‖ ∈ SF and above holds true for every z̄ ∈ SX , we deduce that

dH(SF , SX) ≤ 2− η

M
< 2 .

(c) ⇒ (a): Since the distance (d(x1, x2) = ‖x1 − x2‖) in a normed space is
invariant under translations, we only need to check the statement (b) of Theorem 2.1
for x = 0. Let F ⊂ X be given by statement (c), that is, η < 2 − dH(SF , SX) for
some η > 0 and let us denote by K the closed unit ball BF of F , which is a compact
set. The implication readily follows from the next claim.

Claim. For any r > 0, the statement (b) of Theorem 2.1 is satisfied for x = 0 by
taking ηr = rη and Kr = rK.

Proof of the claim. Fix r > 0. Observe that, for every z ∈ X \ B(0, r), we have
r−1z ∈ X \B(0, 1). Since t := (1/r)‖z‖ ≥ 1, applying Lemma 3.1 for u = z/‖z‖
and v = w ∈ SF we obtain:∥∥(z/‖z‖)∥∥−

∥∥(z/‖z‖)− w
∥∥ ≤

∥∥(1/r)z∥∥−
∥∥(1/r)z − w

∥∥.
By hypothesis (c), for some w ∈ SF we have:∥∥(z/‖z‖)− w

∥∥ ≤ 2− η =
∥∥(z/‖z‖)∥∥+ ‖w‖ − η.

Summing up both last inequalities and then multiplying both sides of the resulting
inequality by r, we obtain

‖z − rw‖ ≤ ‖z‖+ ‖rw‖ − rη.

Since rw ∈ rK = Kr and rη = ηr > 0, the result follows. �

3.2. Gromov-compactifiability under renormings. In this section we obtain
concrete applications of Theorem 3.2 in connection with the geometry and structure
of Banach spaces. Let us recall that a Banach space (X, ‖·‖) is said to be octahedral
(see, e.g., [6, 13]) if, for every η > 0 and every finite-dimensional subspace F of X,
there exists a point z ∈ SX such that

‖z − w‖ ≥ (1− η)(1 + ‖w‖), for all w ∈ F.

In order to connect this property with the conditions of Theorem 3.2, the following
characterization of octahedrality, given in [18, Proposition 2.2], will be useful.

Proposition 3.3 (Characterization of octahedrality). The following assertions are
equivalent for a Banach space (X, ‖·‖):

(i) (X, ‖·‖) is octahedral.
(ii) For every η > 0 and every finite set of points w1, . . . , wn ∈ SX , there exists

z ∈ SX such that

‖z − wi‖ ≥ 2− η, for all i ∈ {1, . . . , n}.

Using the above result, we can obtain a further geometric characterization of
Gromov-compactifiablity for Banach spaces.
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Theorem 3.4 (Characterization by non-octahedrality). The following assertions
are equivalent for a Banach space (X, ‖·‖):

(i) The horofunction extension X
h
is a compactification of X.

(ii) (X, ‖·‖) is not octahedral.

Proof. Let us assume that (ii) fails, that is, the space (X, ‖·‖) is octahedral and
let us consider a finite-dimensional subspace F of X. Then for every η > 0, there
exists a point z = zη ∈ SX such that

‖zη − w‖ ≥ (1− η)(1 + ‖w‖), for every w ∈ F.

Taking w ∈ SF we deduce that ‖zη − w‖ ≥ 2(1 − η) = 2 − 2η and consequently
dist(zη, SF ) ≥ 2 − 2η, yielding dH(SF , SX) ≥ 2. Therefore, condition (c) of Theo-

rem 3.2 fails, so the horofunction extension X
h
is not a compactification of X.

Conversely, assume that condition (c) of Theorem 3.2 fails. Then for each finite-
dimensional subspace F of X we have that dH(SF , SX) ≥ 2. Let further η > 0
and a finite set of points w1, . . . , wn ∈ SX . Setting F := span{w1, . . . , wn} we
deduce that there exists some z ∈ SX such that dist(z, F ) ≥ 2−η. This yields that
‖z − wi‖ ≥ 2 − η for all i ∈ {1, . . . , n}, so from Proposition 3.3 we conclude that
(X, ‖·‖) is octahedral. �

In what follows, we are interested in the behavior of the horofunction extension
of a normed space under renormings. To this end, let us introduce Definition 3.5.

Definition 3.5 (Stable Gromov-compactification). A Banach space (X, ‖ · ‖) is
said to be stably Gromov-compactifiable if for every equivalent norm |||·||| of ‖·‖, the
horofunction extension (X, |||·|||)h is a compactification of (X, |||·|||).

We shall also need the following result of Godefroy [13] (see also [6, Theo-
rem III.2.5]) regarding the space �1 := �1(N). We mention for completeness that
this result is generalized in [2] for the spaces �1(κ).

Theorem 3.6 (Godefroy’s characterization of spaces containing �1). The following
assertions are equivalent for a Banach space (X, ‖·‖):

(i) X contains an isomorphic copy of �1.
(ii) X admits an equivalent octahedral norm.

Combining Theorem 3.4 with Theorem 3.6 we obtain readily the following char-
acterization of Gromov-compactifiability under any renorming.

Theorem 3.7 (Gromov-compactifiability under renorming). Let (X, ‖·‖) be a Ba-
nach space. The following are equivalent:

(i) X does not contain an isomorphic copy of �1.
(ii) X is stably Gromov-compactifiable.

3.3. Further applications and an �1-criterium. In this section we illustrate our
previous results in normed spaces. Theorem 3.7 recovers (and improves) previous
results on Gromov-compactifiability for finite normed spaces and for Hilbert spaces
mentioned in Section 1. These results are now reinforced, since they hold for any
renorming. The same conclusion also applies for the classical �p-spaces (or more
generally Lp(Ω, μ)), for all p ∈ (1,+∞). This is a consequence of the following
result.
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Corollary 3.8 (Asplund spaces are Gromov-compactifiable). Asplund spaces
(therefore, in particular, reflexive Banach spaces) are stably Gromov-compactifiable.

Proof. Recall that every reflexive Banach space is Asplund (e.g., [9, Cor. 11.10]).
Moreover, if a Banach space X contains an isomorphic copy of �1, then it contains
in particular a separable subspace with a non-separable dual and consequently, X
cannot be Asplund (e.g., [21, Chapter 5]). We deduce from Theorem 3.7 that every
Asplund space is stably Gromov-compactifiable. �

In Section 1 we have seen that the horofunction extension of �1 is not a topological
compactification. In the following result we show that this property also holds for
all infinite-dimensional L1-spaces. All these spaces are non-Gromov-compactifiable.

Proposition 3.9 (Examples of non-Gromov-compactifiable spaces). Consider an
infinite family {(Xγ , ‖·‖γ)}γ∈Γ of normed spaces and denote by (X, ‖·‖) the normed
space (

∑
γ Xγ)�1 , i.e., the �1-sum of the spaces (Xγ)γ

X :=

⎧⎨⎩(xγ)γ ∈
∏
γ∈Γ

Xγ : ‖(xγ)γ‖ :=
∑
γ∈Γ

‖xγ‖γ < ∞

⎫⎬⎭ .

Then, the horofunction extension X
h
is not a compactification of X. In particular,

any infinite-dimensional L1(Ω, μ) space is not Gromov-compactifiable.

Proof. Let us verify that the space X does not verify the statement (c) of Theo-
rem 3.2. For each γ ∈ Γ, consider eγ ∈ Xγ be a unit vector. Let F ⊂ X be any

finite-dimensional subspace. Since BF is compact, it easily follows that there is a
sequence (σn)n ⊂ [0,∞) and a sequence (γn)n ⊂ Γ such that limn→∞ σn = 0 and
that

BF ⊂
∞∏

n=1

BXγn
(0, σn)×

∏
γ∈Γ\{γn: n∈N}

{0}.

For each n ∈ N, consider zn := eγn
. Notice that for any n ∈ N and any w ∈ SF ,

we have

‖zn − w‖ = ‖eγn
− wγn

‖+
∞∑
γ∈Γ
γ �=γn

‖wγ‖

≥ 2− 2‖wγn
‖ ≥ 2− 2σn.

Since above inequality holds true for any w ∈ SF , we have shown that

dH(SF , SX) ≥ 2− 2σn.

Since n can be taken arbitrarily large, the statement of (c) in Theorem 3.2 is not
satisfied.

Let further (Ω,A, μ) be a measure space such that L1(Ω, μ) is infinite dimen-
sional. Then, there is an infinite countable partition of Ω, {Ωi}i ⊂ A, such that
μ(Ωi) > 0 for all i ∈ N. The conclusion follows from the following fact:

L1(Ω, μ) is isometrically isomorphic to

( ∞∑
i=1

L1(Ωi, μi)

)
�1

,

where μi := μ|Ωi
. �
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Let us now extract the following criterium from Theorem 3.7.

• (�1-criterium) If the horofunction extension X
h
of a Banach space X is not

a compactification, then X contains an isomorphic copy of �1.

We shall now show that the converse of the above criterium does not hold,
namely, there are Gromov-compactifiable spaces that contain �1. Notice that this
shows in particular that Gromov-compactifiability is not invariant under renorm-
ings.

To this end, let (Y, ‖·‖Y ) and (Z, ‖·‖Z) be two normed spaces. We denote by
Y ⊕p Z the p-sum of Y and Z, where p ∈ [1,+∞]. That is, the normed space
X := Y ⊕p Z is the direct sum of Y and Z equipped with the norm

‖x‖ = ‖y + z‖ := (‖y‖pY + ‖z‖pZ)
1
p , for all x ∈ X,

if p ∈ [1,+∞) and ‖x‖ := max { ‖y‖Y , ‖z‖Z}, if p = +∞.

Proposition 3.10. Let Y, Z be normed spaces. Then:

(i) For every p ∈ (1,+∞) the space X = Y ⊕p Z is Gromov-compactifiable.
(ii) The space X = Y ⊕1 Z is Gromov-compactifiable if and only if both spaces

Y and Z are Gromov-compactifiable.
(iii) If Y is finite dimensional, then the space X = Y ⊕∞ Z is Gromov-

compactifiable.
(iv) For every Γ �= ∅, the spaces �∞(Γ) and c0(Γ) are Gromov-compactifiable.

Proof. (i) It follows directly from Theorem 3.4 and [18, Proposition 4.7].
(ii) It follows directly from Theorem 3.4 and [22, Proposition 3.7].
(iii) We now consider the case p = +∞ and Y is finite dimensional. We shall

show that the statement (c) of Theorem 3.2 holds for F = Y . As before, fix x ∈ SX

and we write x = xY + xZ . Therefore, ‖x‖ = max{‖xY ‖, ‖xZ‖}. If xY = 0, set
y ∈ Y as any unit vector. If xY �= 0, set y = xY /‖xY ‖. Observe that, in any case,
we have that

‖x− y‖ = max{‖xY − y‖, ‖xZ‖} = max{1− ‖xY ‖, ‖xZ‖} ≤ 1.

Since x is arbitrary, we deduce that dH(SF , SX) = 1.
(iv) If Γ is a finite set, then �∞(Γ) is finite dimensional. Then, Proposition 1.6

implies that it is Gromov-compactifiable. On the other hand, if Γ is an infinite set,
it follows easily that �∞(Γ) and c0(Γ) are isometrically isomorphic to R⊕∞ �∞(Γ)
and R⊕∞ c0(Γ) respectively, and consequently (iii) applies.

�

Notice that the above result is sharp in the following sense: the horofunction

extension X
h
of the space X := �1 ⊕∞ �1 is not a compactification of X. Indeed,

we consider the (unbounded) sequence zn = (nen, nen) ∈ X and proceed in a
similar way as in Example 1.4 to show that the corresponding sequence {hzn(·)}n
converges pointwise to h0(·). The details of this example are left to the reader.

Notwithstanding, Proposition 3.10 yields the following striking result:

Corollary 3.11 (Gromov-compactifiability after renorming). For every normed
space (X, ‖·‖) there exists an equivalent norm |||·||| on X such that, the horofunction

extension (X, |||·|||)h is a compactification of (X, |||·|||).
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Proof. Let (X, ‖·‖) be a normed space. If dim(X) < ∞, the result follows from
Proposition 1.6. If dim(X) = ∞, let Y be a closed hyperplane of X and x ∈ X \Y .
Then, X = Y ⊕Rx. Since X is linearly isomorphic to Y ⊕∞Rx, Proposition 3.10(iii)
finishes the proof. �

Notice that Corollary 3.11 applies in particular to �1. Similarly to any normed
space, this highly pathological space becomes Gromov-compactifiable under suit-
able renormings.

Before we proceed, let us recall the following terminology:

Definition 3.12. A property (P) on Banach spaces is called a 3-space property
(in short, 3-SP) if, for any Banach space X and any closed subspace Y ⊂ X, the
following holds:

If two of the spaces X, Y and X/Y satisfy (P), then the third space also satis-
fies (P).

Corollary 3.13. The property of being Gromov-compactifiable is not stable neither
under bi-Lipschitz homeomorphism nor subsets and it is not a 3-SP.

Proof. The first assertion follows directly from Corollary 3.11. For the second asser-
tion, it suffices to consider the space X = R⊕2�

1 (so that �1 ⊂ X) and apply Propo-
sition 3.10. Finally, to show that the property of being Gromov-compactifiable is
not a 3-SP, consider Y = R ⊕2 {0}. Then X/Y = {0} ⊕2 �

1. Therefore, X and Y
are Gromov-compactifiable, but the space X/Y , being isometric to �1, is not. �

Let us now elaborate on the statement of Theorem 3.2(c). In Example 3.14
we show that the subspace F , evoked in the aforementioned statement, cannot be
taken one-dimensional and needs to be of dimension at least 2. The question of
whether the dimension of F needs to be arbitrarily large remains open.

Example 3.14 (Dimension of F in Theorem 3.2(c)). Consider the space X =
�1 ⊕2 �1. Thanks to Proposition 3.10, X is Gromov-compactifiable, that is, the

horofunction extension X
h
is a compactification of X (and consequently, (c) of

Theorem 3.2 holds).
We shall show that, for every one-dimensional subspace F ⊂ X we have

dH(SF , SX) = 2,

yielding that the subspace F given by Theorem 3.2(c) satisfies in this case
dimF ≥ 2.

Indeed, let w ∈ X be a unit vector and set F = Rw. Let w1 ∈ �1 × {0}N and
w2 ∈ {0}N × �1 be such that w = w1 + w2. Then,

1 = ‖w‖2 = ‖w1‖2 + ‖w2‖2.
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For sake of brevity, set a := ‖w1‖ and b := ‖w2‖. Denote by (en) and (fn) the
canonical bases of �1 for the first and second coordinate of X respectively. Then,
for any n ∈ N, xn := aen+ bfn ∈ X is a unit vector. Recalling that SF = {w,−w},
we compute

‖xn ± w‖2 = ‖aen ± w1‖2 + ‖bfn ± w2‖2

=

⎛⎜⎝|a± w1
n|+

∞∑
k=0
k �=n

|w1
k|

⎞⎟⎠
2

+

⎛⎜⎝|b± w2
n|+

∞∑
k=0
k �=n

|w2
k|

⎞⎟⎠
2

= (|a± w1
n| − |w1

n|+ a)2 + (|b± w2
n| − |w2

n|+ b)2.

Taking supremum on n ∈ N, we deduce

sup
n∈N

min
{
‖xn − w‖2, ‖xn + w‖2

}
≥ (2a)2 + (2b)2 = 4

and we conclude that dH(SF , SX) = 2.

Let us start with the following result.

Corollary 3.15 (Isometric embedding). Every metric space (X, d) can be isomet-
rically embedded in a Gromov-compactifiable space.

Proof. It is well-known ([19, Theorem 1.6]) that every metric space (X, d) can be iso-
metrically embedded into the Banach space �∞(X) of all bounded real functions on
X (equipped with the sup-norm) by means of the so-called Kuratowski-embedding.
Namely, fixing a base point x0 ∈ X, the map x 	→ θx(·), x ∈ X, where

θx ≡ {d(x, z)− d(x0, z)}z∈X ∈ �∞(X)

is an isometry from X to �∞(X). By Proposition 3.10(iv) we deduce that �∞(X)
is Gromov-compactifiable and the conclusion follows. �

We shall now discuss two classical paradigms of canonical embeddings of a metric
spaceX. The first one is the embedding to the so-called Lipschitz-free space Fx0

(X)
(also known as Arens-Eells space or Transportation cost space). Let us provide
a quick construction of Fx0

(X). (For a more detailed construction and classical
properties we refer to [14].) Fix x0 ∈ X a base point and consider the Banach
space Lipx0

(X) of real-valued Lipschitz functions that vanish at x0, equipped with
the norm of the Lipschitz constant. Let δ : X → Lipx0

(X)∗ be the evaluation map
defined by

〈δ(x), f〉 = f(x), for all x ∈ X, f ∈ Lipx0
.

It is known that δ is a (non-linear) isometry and that

(3.1) ‖δ(x)‖ = d(x, x0), for all x ∈ X.

The Lipschitz-free space Fx0
(X) is then defined as the closed linear span of δ(X)

in Lip0(X)∗ (equipped with the restriction of the underlying norm), that is

Fx0
(X) := span {δ(x) : x ∈ X }.
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It turns out that Fx0
(X)∗ = Lipx0

(X). Furthermore, the isometric structure of
Fx0

(X) is independent of the chosen base point x0. This space is usually denoted
by F(X) := Fx0

(X), and its norm by ‖ · ‖F . In this framework, Theorem 3.4
(characterization of Gromov-compactifiability via non-octahedrality) clearly relates
to the complete study about octahedrality in Lipschitz-free spaces that has been
recently carried out by Procházka and Rueda-Zoca in [22].

The second paradigm is the Wasserstein spaces, which are classes of (proba-
bility) spaces that are associated with a given metric space X and relate to the
Optimal Transport theory, see [10] for details. In particular, the 1-Wasserstein
space (P 1(X),W1) of X, which consists of the Radon probability measures on X
with finite first moment, offers another canonical isometrical embedding. The 1-
Wasserstein distance of two elements (measures) μ, ν ∈ P 1(X) is given by the
formula (see [7, Theorem 4.1])

W1(μ, ν) = sup

{∫
X

f(x)dμ(x)−
∫
X

f(x)dν(x) : f ∈ Lip(X), Lip(f) ≤ 1

}
.

In view of [7, Theorem 6.1], the set of probabilities with finite support (that is,
convex combination of Dirac measures) is dense in P 1(X). Therefore, P 1(X) is

isometrically isomorphic to convF(X)(δ(X)) ⊂ F(X).
We are now ready to state the following result, which asserts that (in contrast

to Corollary 3.13) the property of being Gromov-compactifiable is inherited to X
from either its Lipschitz-free space F(X) or its 1-Wasserstein space P 1(X). In what
follows, allowing a slight abuse of notation, for every x ∈ X, we shall denote by
δ(x) both the element of (the vector space) F(X) and the Dirac measure in P 1(X).

Proposition 3.16. Let (X, d) be a metric space. Then:

(i) X is Gromov-compactifiable when F(X) is Gromov-compactifiable.
(ii) X is Gromov-compactifiable when P 1(X) is Gromov-compactifiable.

Proof. If X is a finite metric space, then F(X) is finite dimensional and P 1(X) is
a polytope. In this case, the result follows easily from Proposition 1.6.

Let us now assume that the cardinality of X is infinite and, towards a contradic-
tion, that X is not Gromov-compactifiable. Then by Theorem 2.1(b), there exist
x0 ∈ X and r > 0 such that for any compact set K ⊂ X and any η > 0, there
exists z := zK,η ∈ X \B(x0, r) such that

d(z, w) > d(z, x0) + d(x0, w)− η, for all w ∈ K.

In particular, for 0 < η < r and every finite set A ⊂ X, we set

(3.2) z := zA,η.

Moreover, for any choice (λw)w∈A, we set

mA :=
∑
w∈A

λw δ(w)
(
∈ span(δ(X)) ⊂ Fx0

(X)
)
.
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Claim. There exists a 1-Lipschitz function f : X → R such that

(3.3) f(x0) = 0, 〈mA, f〉 = −‖mA‖F and f(z) = d(z, x0)− η.

Proof of the claim. Since Fx0
(X)∗ = Lipx0

(X), there exists a 1-Lipschitz function
g : X → R with g(x0) = 0 such that 〈mA, g〉 = −‖mA‖F . Denote by g1 the
restriction of g to A∪ {x0} ⊂ X and consider the extension of g1 to A∪ {x0, z} as
follows:

g2 : A ∪ {x0, z} → R with g2|A∪{x0} ≡ g1 and g2(z) = d(x0, z)− η.

It is easy to check that g2 is 1-Lipschitz, since for every w ∈ A we have:

|g2(z)− g2(w)| ≤ |g2(z)|+ |g2(w)| ≤ d(x0, z)− η + d(w, x0) < d(z, w).

We define f as any McShane extension of g2 to X and the claim is proved.
Thanks to [7, Theorem 4.1], for the particular case where

∑
w∈A λw = 1 and

λw ≥ 0, we deduce

(3.4) 〈mA, f〉 = −W1 (δ(x0),mA) and f(z) = W1(δ(x0), δ(z))− η.

(i) We shall use as base point the above point x0 ∈ X and prove that the
Lipschitz-free space Fx0

(X) is not Gromov-compactifiable. Indeed, we are going
to show that condition (c) of Theorem 3.2 fails. To this end, let F be a finite-
dimensional subspace of Fx0

(X) and 0 < η < r. Let further (μk)
n
k=1 be a finite η-

net of the (compact) unit sphere SF := F∩SFx0
(X) of F . By density of the subspace

span (δ(X)) in Fx0
(X), there exists (mk)

n
k=1 ⊂ span(δ(X)), with ‖mk‖F = 1, such

that

‖μk −mk‖F < η, for k ∈ {1, . . . , n}.
For every k ∈ {1, . . . , n}, take (xk,i)

nk
i=1 ⊂ X and (λk,i)

nk
i=1 ⊂ R such that

mk :=

nk∑
i=1

λk,iδ(xk,i).

Set Ak :=
⋃nk

i=1{xk,i} and A =
⋃k

k=1 Ak. Take zA := zA,η given in (3.2) and let fk
be a 1-Lipschitz function that satisfies (3.3), for the vector mk and the point zA.

Let μ ∈ SF . Then there is k ≥ 1 such that ‖μ − μk‖F ≤ η. Considering the
corresponding fk and recalling by (3.1) that

‖δ(zA)‖F = d(zA, x0) > r and 〈fk,mk〉 = −‖mk‖F = −1

we deduce:∥∥∥ δ(zA)

d(x0, zA)︸ ︷︷ ︸
SFx0

(X)

− μ︸︷︷︸
SF

∥∥∥
F

≥
∥∥∥ δ(zA)

d(x0, zA)
− μk

∥∥∥
F
− η ≥

∥∥∥ δ(zA)

d(x0, zA)
−mk

∥∥∥
F
− 2η

≥ 〈fk,
δ(zA)

d(x0, zA)
−mk〉 − 2η =

f(zA)

d(x0, zA)
+ 〈fk,−mk︸ ︷︷ ︸

=1

〉 − 2η

=

(
1− η

d(x0, zA)

)
+ 1− 2η ≥ 2− η

r
− 2η.
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Therefore, we obtain

dH(SF , SF(X)) ≥ d

(
δ(zA)

d(x0, zA)
, SF

)
:= inf

μ∈SF

∥∥∥ δ(zA)

d(x0, zA)
−μ

∥∥∥
F

≥ 2−η

(
2 +

1

r

)
.

Since η is arbitrary, we eventually conclude that dH(SF , SF(X)) = 2.

(ii) We shall show that the 1-Wasserstein space (P 1(X),W ) is not Gromov-
compactifiable. Following the same pattern of proof as in (i), we shall show that
condition (b) of Theorem 2.1 fails for P 1(X) at δ(x0) and r > 0.

To this end, let 0 < η < r and K ⊂ P 1(X) be a compact set. Let (mk)
n
k=1 ∈

conv(δ(X)) be such that

min
k≥1

W1(μ,mk) ≤ η, for any μ ∈ K.

Abusing the notation slightly, we still write mk =
∑nk

i=1 λk,iδ(xk,i) and (as in the
above proof) set Ak =

⋃nk

i=1{xk,i} and A =
⋃n

k=1Ak. Consider zA := zA,η as
in (3.2). For any μ ∈ K, fixing k such that W1(μ,mk) < η and considering fk
satisfying (3.4) with respect to mk and zA, we obtain

W1(δ(zA), μ) ≥ W1(δ(zA),mk)− η ≥ 〈fk, δ(zA)−mk〉 − η

=︸︷︷︸
(3.4)

(
W 1(δ(zA), δ(x0))− η

)
+W 1(δ(x0),mk)− η

≥ W 1(δ(zA), δ(x0)) +W 1(δ(x0), μ)− 3η.

Since η is arbitrary, statement (b) of Theorem 2.1 cannot hold for P 1(X) at δ(x0).

The proof is complete. �

Note that the converse of Proposition 3.16(i) does not hold. For example, we can
considerX = R, which is Gromov-compactifiable. In this case, F(R) is isometrically
isomorphic to L1(R), which is not Gromov-compactifiable (see Proposition 3.9). It
would be interesting to know whether the converse of Proposition 3.16(ii) holds
true.
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MR2014506

[20] Anders Karlsson, A metric fixed point theorem and some of its applications, Geom. Funct.
Anal. 34 (2024), no. 2, 486–511, DOI 10.1007/s00039-024-00658-x. MR4715369

[21] Robert R. Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lec-
ture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR1238715
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