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Abstract. It was established in [8] that Lipschitz inf-compact functions are uniquely determined
by their local slope and critical values. Compactness played a paramount role in this result,
ensuring in particular the existence of critical points. We hereby emancipate from this restriction
and establish a determination result for merely bounded from below functions, by adding an
assumption controlling the asymptotic behavior. This assumption is trivially fulfilled if f is inf-
compact. In addition, our result is not only valid for the (De Giorgi) local slope, but also for the
main paradigms of average descent operators as well as for the global slope, case in which the
asymptotic assumption becomes superfluous. Therefore, the present work extends simultaneously
the metric determination results of [8] and [18].
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1 Introduction

In [8, Theorem 2.4] the authors have shown that in every metric space, the local slope operator
contains sufficient information to determine any continuous inf-compact function with finite slope.
Indeed, knowledge of the critical values (values of the function on the set of points where the slope
is zero) and knowledge of the slope at every point determine uniquely the function. We hereafter
refer to this result as determination result. The proof makes use of transfinite induction and is
based on a cardinality obstruction. Pertinence of the assumptions was also thereby discussed.

In the follow-up work [7] the authors adopted a much more general framework: they introduced
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an abstract notion of descent modulus, based on three axioms (see [7, Definition 3.1] or properties
(D1)–(D3) of forthcoming Definition 2.1) and showed that the result of [8] can be emancipated
from the metric structure and fit to a mere topological setting, provided a reasonable notion of
steepest descent (or other meaningful notion of descent, like average descent) is coined. There-
fore, instead of considering metric spaces, we can work on probability spaces or Markov chains.
However, similarly to [8], an underlying compactness assumption was still required in [7]: the
functions for which the result applies should (be continuous and) have compact sublevel sets.
This was indeed paramount for the proof of the main result of both works.

The aim of the current work is to eliminate the compactness assumption and use instead complete-
ness together with a control on asymptotic behaviour. This renounces full generality, restricting
naturally to the framework of (complete) metric spaces.

Very recently, in the same setting of complete metric spaces, Thibault and Zagrodny in [18] were
able to obtain a determination result for the global slope (we recall this definition in (2.13)). The
proof is highly technical and uses the notion of countably orderable families previously introduced
in [12]. For a general function, the global slope is a very restrictive notion (controlling also the
asymptotic behavior), but for the class of convex functions it coincides with the local slope and
the authors were able to obtain the following powerful convex determination result:

� (convex determination) Two convex continuous and bounded from below functions
with the same slope can only differ by a constant.

The above result was initially established in Hilbert spaces, see [4] (smooth case) and [17] (non-
smooth case). It can also be obtained as a corollary of a more general sensitivity result, derived
in [6], which states, roughly speaking, that the slope deviation between two convex functions
controls the deviation between the functions themselves. A similar determination result was
obtained using proximal operators [19]. All these proofs rely heavily on (sub)gradient descent
systems, making crucial use of the Hilbertian structure. However, this drawback no longer ap-
pears in [18], where the authors, working directly in metric spaces with the global slope, were
able to establish the validity of the above convex determination result in Banach spaces.

Coming back to the present work, we enhance the technique developed in [8] to obtain a general
determination result in the setting of complete metric spaces. Comparing with [18], the result not
only applies for the global slope (where the interest is essentially limited to the convex determina-
tion in a Banach space), but also for the local slope (the definition is recalled in (2.12)) as well as
for the main paradigms of average descent operator discussed in Section 2.3. As a consequence,
the result applies to a large class of functions (for instance, Lipschitz functions in complete met-
ric spaces). This already hints potential applications in Eikonal equations, or more generally, in
Hamilton-Jacobi equations whose viscosity solutions admit an alternative description via slopes
(see [13], [14], [15] e.g.). A further extension is made by formulating the result in terms of an
abstract descent modulus in the spirit of [7], but with an extra property (metric compatibility) to
reckon with the given metric (see Definition 2.12). From a practical viewpoint, in a given metric
space all reasonable descent moduli are metrically compatible (see also discussion in Section 2.4).

1.1 Organization of the manuscript

The manuscript is organized as follows: in Subsection 1.2 we fix notation and terminology, while
in Section 2 we revisit from [7] the definition of an abstract descent modulus and readjust it
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(c.f. Definition 2.1) to encompass extended real-valued functions in a way that the determination
result still holds for inf-compact functions which are continuous in their domain.

Subsection 2.1 resumes the State–of–the–art in this (slightly) more general setting, with the extra
benefit that the proofs are now significantly simplified. This is possible because Definition 2.1 is
defined in a compatible way with respect to function truncation, see proofs of Lemma 2.3 and
Theorem 2.4. We then obtain Corollary 2.5 which readily extends [8, Proposition 2.2] and [8,
Theorem 2.4] .

In Subsection 2.2 we establish an easy noncompact determination result for the case of smooth
functions in a Banach space for the natural descent modulus T [f ] = ∥∇f∥. The result illustrates
perfectly the need of controlling the asymptotic behaviour and at the same time hints towards
the right definition of asymptotically critical sequence (see Definition 3.1).

In Subsection 2.3 we present the main paradigms of descent in a metric space which are covered
by our main result: the (De Giorgi’s) local slope, the global slope, the average descent and the
diffusion descent. These paradigms are recalled in Subsection 2.4 and treated in a uniform manner
by means of the definition-scheme of a metrically compatible descent modulus (Definition 2.12).

The main result is presented in Section 3. Controlling the critical values, the asymptotic behavior
and the abstract descent at each point leads to Theorem 3.3 (comparison lemma) and Theorem 3.6
(determination result). We recover the determination result of [18] as a corollary, by applying
our result for the global slope, which is a particular case of an abstract descent, since in this case
every asymptotically critical sequence is infimizing for the function.

1.2 Notation and terminology.

Throughout this work X is a complete metric space, which will be eventually upgraded to a
Banach space in Subsection 2.2. Given any function f : X → R and r ∈ R we define by

[f ≤ r] := {x ∈ X : f(x) ≤ r},

the r-sublevel set. The strict sublevel set [f < r] is defined analogously. We denote the (effective)
domain of f by

dom f := {x ∈ X : f(x) < +∞}.

A function f is lower semicontinuous (in short, lsc) if for every r ∈ R the sublevel set [f ≤ r] is
closed. We say that f is proper if it has at least one nonempty sublevel set, or equivalently, if
dom f ̸= ∅. Further, a function f is called inf-compact if the sublevel sets [f ≤ r] are compact
for all r < sup f . Notice that every lower semicontinuous inf-compact function attains its global
minimum.

We further denote by (R∪ {+∞})X the set of extended real-valued functions on X and by C(X)
the set of continuous real-valued functions on X. We also denote by

LSC(X) := {f : X → R ∪ {+∞} : f proper, lsc} ;
C(X) := {f : X → R ∪ {+∞} : f proper, lsc and f |dom f continuous} .

A subset F of (R∪{+∞})X is called a cone, if for any f ∈ F and r ≥ 0 we have rf ∈ F (with the
convention 0 · (+∞) = 0). A cone F which is closed under translation (that is, f + c ∈ F for all
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f ∈ F and c ∈ R) will be called translation cone. In what follows, F will always be a translation
cone of proper functions.

Notice that C(X) is a vector subspace of (R∪{+∞})X while LSC(X), C(X) are translation cones.
Notice further that f ∈ C(X) if and only if f ∈ C(X) and dom f = X.

For any a ∈ R we set a+ := max{a, 0} (the positive part of the number a).

For a function f : X → R ∪ {+∞} we define the operator ∆+f : dom f ×X → R by

∆+f(x, y) =


{f(x)−f(y)}+

d(x,y) , if x ̸= y,

0 , if x = y.
(1.1)

2 Descent moduli: state-of-the-art and extended definitions

Following the spirit of [7], we call descent modulus on a topological space X any operator T :
F → [0,+∞]X satisfying three natural properties (see (D1)–(D3) in Definition 2.1 below). The
quantity T [f ](x) ∈ [0,+∞] is conceived as an abstract measurement of descent for the function f
at the point x. If T [f ](x) = 0, then the point x is called T -critical (or simply critical). Therefore,
the set of T -critical points of f coincides with the zeros of the function T [f ] and is denoted by

ZT (f) := {x ∈ X : T [f ](x) = 0}. (2.1)

A formal definition for proper extended real-valued functions follows:

Definition 2.1 (Descent modulus). Let F ⊂ (R ∪ {+∞})X be a translation cone.
An operator T : F → [0,+∞]X is called descent modulus on F if

domT [f ] ⊂ dom f, for every f ∈ F (D0)

and the following three conditions hold for every f, g ∈ F and x ∈ X :

(D1) x ∈ argmin f =⇒ x ∈ ZT (f).

(D2) T [f ](x) < T [g](x) =⇒ ∃z ∈ dom g : {f(x)− f(z)}+ < {g(x)− g(z)}+.

(D3) If 0 < T [f ](x) < +∞ and r > 1, then T [f ](x) < T [rf ](x).

Let us have a brief discussion on the properties defining the descent modulus: Property (D1)
guarantees preservation of global minima, since ZT (f) = argminT [f ]. Property (D2) can be seen
as a monotonicity property on the sublevel set: indeed, if for every z ∈ [g ≤ g(x)] one has
f(x) − f(z) ≥ g(x) − g(z) (that is, if f has more descent than g in all descent directions of g)
then one should necessarily have T [f ](x) ≥ T [g](x). Therefore, (D2) can be restated as follows:

{g(x)− g(z)}+ ≤ {f(x)− f(z)}+

for all z ∈ dom g

}
=⇒ T [g](x) ≤ T [f ](x). (D̃2)

Finally (D3) is a scalar monotonicity property, ensuring that if a function f has a nonzero finite
descent at x, then the function (1+ ε)f has an amplified descent at the same point for any ε > 0.
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Remark 2.2. (i). Definition 2.1 applies to extended real-valued functions and (D0) imposes an
infinite descent to all points for which f(x) = +∞. If F = C(X), then (D0) holds trivially and
the above definition of descent modulus coincides with [7, Definition 3.1].

(ii). A straightforward consequence of the above definition is that a descent modulus can be
defined only for proper functions. (To see this, given g ∈ F , consider the function f ≡ 0 in F
and apply (D2)).

We define the domain domT ⊂ F of a descent modulus T as follows:

domT := {f ∈ F : domT [f ] = dom f}, (2.2)

that is, f ∈ domT if and only if it has a finite slope at every point in which it has a finite value.
If X is a metric space, then domT contains the class of Lipschitz continuous functions for every
reasonable descent modulus. (The reader can easily verify that this is the case for the main
instances of descent moduli of this work: c.f. Example 2.10 and Example 2.13.)

2.1 Determination in compact spaces

The determination result established in [7] requires the functions to have compact sublevel sets.
The proof was based on a transfinite induction and the conclusion was obtained by contradiction,
due to a cardinality obstruction since the induction did not allow point repetitions. In this section,
for the sake of completeness, we restate this result in a slightly more general setting: the descent
modulus is now considered on extended real-valued (inf-compact) functions. In fact, this new
framework, contemplated by the extended Definition 2.1 allows a much simpler proof (namely,
the transfinite induction is replaced by a maximum principle), which in the setting of [8], [7] was
formally impossible. We present this proof here.

Lemma 2.3 (Strict comparison in compact spaces). Let X be a compact topological space and T
a descent modulus on a translation cone F containing LSC(X). Let f ∈ C(X), g ∈ LSC(X) and
assume:

(i). (descent domination) T [f ](x) < T [g](x), for every x ∈ dom g \ ZT (g) ;

(ii). (control of criticality) f(z) < g(z), for every z ∈ ZT (g) ;

Then, it holds
f(x) < g(x), ∀x ∈ dom g.

Proof. Notice that dom g ⊂ dom f , therefore f is continuous on dom g. Let us first assume that
g is finite, that is, dom g = X. Then, f − g is (finite and) upper semicontinuous and attains
its maximum at some point x0 ∈ X. It suffices to show that x0 ∈ ZT (g) (then (ii) applies
and max (f − g) = (f − g)(x0) < 0). If x0 /∈ ZT (g), then, T [g](x0) > T [f ](x0) which yields
by hypothesis (D2) that there exists z ∈ X such that {f(x0) − f(z)}+ < {g(x0) − g(z)}+. In
particular, (f − g)(x0) < (f − g)(z), which is a contradiction.

Let us now consider the case dom g ̸= X, that is, g takes the value +∞ at some point. Let
h : X → R ∪ {+∞} given by

h(x) =

{
(f − g)(x) , if x ∈ dom g ,

+∞ , otherwise.
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Fix any a > inf g. Since g is lsc, the set Ka = [g ≤ a] is nonempty compact and the upper
semicontinuous function h attains its maximum there at some point xa ∈ Ka. If xa /∈ ZT (g),
then, as before, there exists za ∈ dom g such that {f(xa) − f(za)}+ < {g(xa) − g(za)}+. This
yields that za ∈ Ka and h(xa) < h(za), which is a contradiction. Thus, xa ∈ ZT (g) and h is
strictly negative in Ka. Since dom g =

⋃
a>inf g[g ≤ a], the conclusion follows. □

The following theorem is the direct extension of the determination theorems of [7], invoking
Lemma 2.3 instead of [7, Lemma 3.3].

Theorem 2.4 (Descent determination of extended real-valued functions in compact spaces). Let
X be a compact topological space and T a descent modulus on a translation cone F containing
LSC(X). Let f ∈ C(X) and g ∈ LSC(X) ∩ dom(T ). Then,

(a) If T [f ](x) ≤ T [g](x), for all x ∈ X and f(x) ≤ g(x), for all x ∈ ZT (g), then f ≤ g.

(b) If f, g ∈ C(X) ∩ dom(T ), T [f ](x) = T [g](x), for all x ∈ X and f(x) = g(x) for all
x ∈ ZT (g) = ZT (f), then f = g.

Proof. Since statement (b) is symmetric, it is sufficient to prove (a). Notice that (D2) implies
that T [g + c] = T [g], for every c ∈ R (see also [7, Proposition 3.2(b)]). Therefore, replacing, if
necessary, g by g − inf g and f by f − inf g we may assume that g is non-negative on X. Now,
replacing g by gε = (1 + ε)(g + ε), we get that dom gε = dom g, T [f ](x) < T [gε](x) for every
x ∈ dom gε, ZT (gε) ⊂ ZT (g) and f(x) < gε(x) for every x ∈ ZT (gε). Thus, f < gε over dom gε.
Taking ε→ 0, we obtain f ≤ g on dom g, which readily yields f ≤ g on the whole space X. □

The comparison principles and the determination result of [7] for inf-compact functions can be
derived from Lemma 2.3 and Theorem 2.4, as the following corollary shows.

Corollary 2.5. Let X be a topological space (not necessarily compact) and T a descent modulus
on F = C(X). Let f, g ∈ F be bounded from below.

(a) If g is inf-compact, T [f ](x) < T [g](x) for all x ∈ X \ ZT (g), and f(x) < g(x) for all
x ∈ ZT (g), then f < g.

(b) If g is inf-compact, g ∈ dom(T ), T [f ](x) ≤ T [g](x), for all x ∈ X and f(x) ≤ g(x), for all
x ∈ ZT (g), then f ≤ g.

(c) If f, g are inf-compact, f, g ∈ C(X) ∩ dom(T ), T [f ](x) = T [g](x), for all x ∈ X and
f(x) = g(x) for all x ∈ ZT (g) = ZT (f), then f = g.

Proof. It is enough to prove (a). The conclusion is trivial if g is constant, since in this case
ZT (g) = X. Therefore we may assume that inf g < sup g. Fix any a ∈ (inf g, sup g) and set
Ka = [g ≤ a]. Then, Ka is nonempty and compact. We set Fa := {h ∈ F : Ka ⊂ domh} and for
every h ∈ F , we define

ha := h+ iKa ,

where iKa denotes the indicator function of Ka, that is,

iKa(x) :=

{
0, x ∈ Ka

+∞, x /∈ Ka.
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Notice that ha ∈ C(X) = F and Fa ⊂ F , so the operator T is a descent modulus on Fa. We

deduce easily from (D̃2) that for every h ∈ Fa

T [ha](x) ≤ T [h](x), for all x ∈ Ka

and (since Ka is a nontrivial sublevel set of g)

ZT (ga) = ZT (g) ∩Ka and T [ga](x) = T [g](x), for all x ∈ Ka.

Then,
T [fa](x) ≤ T [f ](x) < T [g](x) = T [ga](x).

Moreover, for every x ∈ ZT (ga) we have fa(x) = f(x) < g(x) = ga(x). Applying Lemma 2.3
we deduce that fa < ga on Ka, and consequently, f(x) < g(x), for every x ∈ Ka. Since a ∈
(inf g, sup g) is arbitrary, we conclude that f < g on dom g \ argmax g.

If argmax g = ∅ or sup g = +∞, we have dom g \ argmax g = dom g and the result follows. Thus,
it suffices to consider the case sup g < +∞ and argmax g ̸= ∅. Then take x ∈ argmax g. If
T [g](x) = 0, then f(x) < g(x) by hypothesis. If not, T [f ](x) < T [g](x) and property (D2) entails
that there exists z ∈ dom g such that

f(x)− f(z) ≤ {f(x)− f(z)}+ < {g(x)− g(z)}+ = g(x)− g(z).

Then, z /∈ argmax g, entailing that g(z) > f(z). Thus, f(x) < g(x) + f(z) − g(z) < g(x). We
conclude that, regardless the value of T [g](x), we always have that f(x) < g(x). Therefore f < g
on dom g, and the proof is complete. □

2.2 A simple noncompact result: the smooth case

Let us consider the setting given by X = Rd, the cone F = C1(Rd) of continuously differentiable
functions, and the descent modulus given by T [f ](x) = ∥∇f(x)∥.
In this setting, consider two functions f, g ∈ F bounded from below such that

∥∇f(x)∥ ≤ ∥∇g(x)∥, ∀x ∈ X.

Following [17]1 we compare the functions f and g along the descent curves of g (which is the
function with dominating slope). Given x0, we consider the curve γ : [0,+∞) → Rd that solves{

γ̇(t) = −∇g(γ(t)), t ≥ 0,

γ(0) = x0.
(2.3)

1A first version of this idea was due to J.-B. Baillon in 2018, see [3].
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Then, we can directly write

g(x0)− f(x0) = lim sup
t→+∞

(g − f)(γ(t))−
∫ t

0
((g − f) ◦ γ)′(s) ds

= lim sup
t→+∞

(g − f)(γ(t))−
∫ t

0

(
⟨∇g(γ(s)), γ̇(t)⟩ − ⟨∇f(γ(s)), γ̇(t)⟩

)
ds

= lim sup
t→+∞

(g − f)(γ(t)) +

∫ t

0
∥∇g(γ(s))∥·|γ̇(s)| ds+

∫ t

0
⟨∇f(γ(s)), γ̇(s)⟩ds

≥ lim sup
t→+∞

(g − f)(γ(t)) +

∫ t

0

(
∥∇g(γ(s))∥−∥∇f(γ(s))∥︸ ︷︷ ︸

≥0

)
|γ̇(s)| ds

≥ lim sup
t→+∞

(g − f)(γ(t)) = lim
t→+∞

g(γ(t))− lim inf
t→+∞

f(γ(t)).

(2.4)

Consequently, if there exists x̄ ∈ ω- lim γ (ω-limit point of γ), then x̄ ∈ Z := ZT (g). In such a
case, if g

∣∣
Z
≥ f

∣∣
Z
(which is the boundary condition of Theorem 2.4 (a)), we would conclude that

g(x0) ≥ f(x0). However, since the space is noncompact, ω- lim γ might be empty and we need to
include the boundary condition

lim inf
t→+∞

f(γ(t)) ≤ lim
t→+∞

g(γ(t)). (2.5)

The above condition should be imposed only for steepest descent curves γ : [0,+∞) → Rd of g
without ω-limits and not for those for which ω- lim γ ̸= ∅, since this latter case is already captured
by the comparison condition on the critical set ZT (g) (ω-limits of the gradient descent curve are
automatically critical points for g).

The drawback of the boundary condition (2.5) is that it depends on ∇g, via (2.3), rather than on
the descent modulus T [g] = ∥∇g∥. To overcome this difficulty and obtain a boundary condition
that is independent of ∇g we introduce the following definition:

Definition 2.6 (Asymptotically critical path, smooth version). We say that a differentiable curve
γ̃ : [0,+∞) → Rd is an asymptotically T -critical path for the function g (with T [g] = ∥∇g∥) if

∥γ̃′∥ = 1, ω- lim γ̃ = ∅ and

∫ +∞

0
T [g](γ̃(s)) ds < +∞. (2.6)

The above definition encompasses the following key elements for the class of continuously differ-
entiable bounded from below functions:

(1) If γ̃ is an asymptotically critical path for g, then lim
s→∞

T [g](γ̃(s)) = 0.

(2) Every steepest descent curve without ω-limits yields, upon reparametrization, an asymp-
totically critical path.

(3) If two continuously differentiable functions have the same slope, then they have the same
critical points and the same asymptotically critical paths.

The last assertion is obvious from Definition 2.6, while the first is a straightforward consequence
of the integrability condition in (2.6). Concerning the second assertion, let γ : [0,+∞) → Rd be
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a descent curve of g without ω-limits. Then, γ has infinite length and so does γ̃, its arc-length
parametrization, defined by

γ̃(s) := γ(σ−1(s)) where s = σ(t) :=

t∫
0

∥γ̇(t)|| dt. (2.7)

Then, ω-lim γ̃ = ∅ and ∥γ̃′(s)∥ = 1. Performing a change of variables we deduce:

g(γ(0))−inf g ≥ −
∫ +∞

0
(g◦γ)′(t) dt =

∫ +∞

0
∥∇g(γ(t))∥·∥γ̇(t)∥dt =

∫ +∞

0
∥∇g(γ̃(s))∥ ds, (2.8)

which yields (2.6).
With the above in mind, we establish the following noncompact determination result.

Theorem 2.7. Let f, g : Rd → R be two continuously differentiable functions which are bounded
from below. Assume that

(i) ∥∇f(x)∥= ∥∇g(x)∥ for every x ∈ Rd;

(ii) f(z) = g(z) for every z ∈ ZT (f) = ZT (g).

(iii) lim inf
s→+∞

f(γ̃(s)) = lim inf
s→+∞

g(γ̃(s)), for each (common) asymptotically critical path γ̃.

Then, f = g.

Proof. Take x0 ∈ Rd and γ be a steepest descent curve of g emanating from x0. Then, we can
divide our analysis in two cases:

Case 1 : ω- lim γ is nonempty. Choose z̄ ∈ ω- lim γ. Since lim
t→∞

∥∇g(γ(t))∥= 0, continuity of

∇g entails that z̄ ∈ ZT (g). Moreover, continuity of g and f yield that lim
t→∞

g(γ(t)) = g(z̄) and

lim
t→∞

f(γ(t)) = f(z̄). Then, (2.4) yields that

g(x0)− f(x0) ≥ g(z̄)− f(z̄) = 0.

Case 2 : ω- lim γ is empty.

Then, since γ is the steepest descent curve of g emanating from x0, we get that∫ +∞

0
∥∇g(γ(t))∥·∥γ̇(t)∥dt = −

∫ +∞

0
(g ◦ γ)′(t)dt = g(x0)− lim

t→+∞
g(γ(t)) ≤ g(x0)− inf g < +∞.

Thus, the curve γ̃ given in (2.7) is an asymptotically critical path and consequently assumption
(iii) applies. We deduce from (2.4) that

g(x0)− f(x0) ≥ lim
t→+∞

g(γ(t))− lim inf
t→+∞

f(γ(t)) = lim
s→+∞

g(γ̃(s))− lim inf
s→+∞

f(γ̃(s)) = 0.

In either case we get g(x0) ≥ f(x0) and (since x0 is arbitrary) deduce g ≥ f . Exchanging the
roles of g and f , we obtain the desired result. □
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Remark 2.8 (importance of integrability condition). It is tempting to simplify Definition 2.6 and
replace the integrability condition in (2.6) on the path γ : [0,+∞) → Rd by its consequence

lim
s→+∞

T [g](γ(s)) = 0 (2.9)

(see (1) after Definition 2.6 above), possibly together with the requirement that the curve is
unbounded with no ω-limits (to avoid reduncandy with critical points). The following example
illustrates that this would lead to an undesirably large class of asymptotically critical curves:

Indeed, set U := R× (0,+∞) and consider the convex function{
g : U → R

g(x, y) = x2

y .
(2.10)

Then, Im(g) = [0,+∞) and c = 0 is the unique critical value of g (in particular, every point of
the level set [g = 0] := {0} × (0,+∞) is critical !). Since g is a convex and inf g = 0, the result
of [4] applies and g is determined by its slope ∥∇g∥ and its minimum value inf g = 0. Let us now
focus on assumption (iii) of Theorem 2.7 (control on asymptotic critical paths). For a convex
function, the integrability condition (2.6) yields g(γ(s)) → inf g = 0. Therefore, (iii) is not an
additional requirement (it is already contained in assumption (ii)) and Theorem 2.7 generalizes
the convex determination result mentioned in the introduction.

1
2

3
4

5

1
7

13
19

25

0

1

2

3

4

X
Y

Z

Figure 1: Function g(x, y) = x2/y. In blue, the plane z = 1. In black, the curve γ(t) for c = 1. In dashed red,

the curve (γ(t), g(γ(t))) = (γ(t), c) for c = 1. Plane XY plotted in 1:6, starting at point (1,1). Plane XZ plotted

in 1:1, starting at point (1,0).

Omiting the integrability condition in Definition 2.6 would have led to a completely different
situation: for every c > 0, the level set

[g = c] := {(x, y) ∈ U : x2 = cy} = {(
√
ct, t2) : t ̸= 0}

contains an unbounded curve γ(t) = (
√
ct, t2), t > 0, without ω-limits, satisfying

g(γ(t)) = c and ∇g(γ(t)) =
(
2
√
c

t
,
c

t2

)
−→
t→∞

0,

10



that is, every c > 0 would have been an asymptotic critical value of g (see Figure 1 for an
illustration of the case c = 1). Therefore, assumption (iii) of Theorem 2.7 becomes very restrictive
leading to an essentially useless statement. ♢

In what follows, we will move to metric spaces and establish determination results for general
classes of functions. The lack of derivatives (and norms) is addressed by the metric slope, which
we consider under an abstract unified framework encompassing several other paradigms of de-
scent operators. An additional difficulty is to control the asymptotic behaviour of the functions:
asymptotically critical paths will be replaced by asymptotically critical sequences {zn}n with
T [g](zn) → 0 as n→ ∞ and the integrability condition (2.6) by the summability condition∑

n≥1

T [g](zn) d(zn, zn+1) < +∞. (2.11)

Indeed, since γ̃ is parameterized by arc-length, setting zn := γ̃(sn), for all n ≥ 1, we deduce

sn+1 − sn ≥ d(γ̃(sn+1), γ̃(sn))

and (2.11) follows directly from the discretization of (2.6). This together with the fact that the
sequence has no accumulation points eventually leads to Definition 3.1.

2.3 General descent paradigms

Our goal is to derive a nonsmooth version of Theorem 2.7 for functions defined in a complete
metric space (X, d). As already mentioned, this requires a suitable extension of the notion of
asymptotically critical paths in order to impose a boundary condition in the lines of condition (iii)
of Theorem 2.7. Moreover, we aim to obtain a statement that generalizes (and recovers) the
determination results of [8] (local slope, inf-compact case) and [18] (global slope, complete metric
case) and apply to the main paradigms of descent moduli studied in [7] and quoted below:

1. The local (metric) slope ([10], [1] e.g.): For any f ∈ LSC(X) the local (metric) slope is
given by:

s[f ](x) = sf (x) :=

{
lim sup
y→x

∆+f(x, y), if x ∈ dom f

+∞, otherwise.
(2.12)

2. The global slope: Similarly, for any f ∈ LSC(X) the global slope is given by

G[f ](x) :=

{
sup
y∈X

∆+f(x, y), if x ∈ dom f

+∞, otherwise.
(2.13)

3. The average descent modulus: Let µ be a probability measure over X, and let F be the
µ-measurable extended-valued functions on X. The average descent modulus is then given
by

M[f ](x) =


∫
X
∆+

f (x, y)µ(dy) =

∫
X
{f(x)− f(y)}+

(
1

d(x, y)
µ(dy)

)
, if x ∈ dom f,

+∞, otherwise.
(2.14)

11



This is an oriented nonlocal operator determined by the family of measures {µx}x with

µx(dy) =
1

d(x, y)
µ(dy), if y ̸= x (under the convention

0

0
= 0).

(see [7, Definition 4.14]).

4. The diffusion descent modulus: Let F be the µ-measurable extended-valued functions on
X, and suppose now that µ(A) > 0 for every open set A of X. Then, we define the diffusion
descent modulus D over F given by

D[f ](x) =


lim sup
ε→0+

1

µ(B(x, ε))

∫
B(x,ε)

∆+
f (x, y)µ(dy), if x ∈ dom f,

+∞, otherwise.

(2.15)

This is the oriented 1-dispersion operator for measure µ (see [7, Definition 4.2]).

All four notions described above fit the definition of descent modulus in the extended sense of
Definition 2.1. The proofs are mild adaptations of [7]. In all cases, Lipschitz continuous functions
are contained in the domain of each of the aformentioned descent moduli.

2.4 Metrically compatible descent moduli

The definition of a descent modulus (cf. Definition 2.1) does not require prior assumptions on
the space X. In particular, X does not need to be metric (neither topological) space, although
the aforementioned determination result in [7, Theorem 3.5] will eventually require topology, to
formulate the assumptions of continuity and compactness. This being said, this work is inscribed
in the framework of a complete metric space (X, d). In order to obtain determination results
in this setting and ensure an efficient use of completeness property, we need to impose some
(metric) compatibility condition to the considered descent modulus reckoning with completeness
of X. The condition should encompass the four paradigms of Subsection 2.3. The first natural
attempt for such condition leads to the following definition.

Definition 2.9 (strong metric compatibility). We say that a descent modulus T : F → [0,+∞]X

is strongly metrically compatible, if for some strictly increasing continuous function θ : R+ → R+

with θ(0) = 0 and lim
t→∞

θ(t) = +∞ and for every f, g ∈ dom(T ), x ∈ dom g and δ > 0 it holds:

T [f ](x) < δ < T [g](x) =⇒ ∃z ∈ dom g :
{f(x)− f(z)}+

d(x, z)
< θ(δ) <

{g(x)− g(z)}+

d(x, z)

(D̂2)

The idea behind the above definition is to guarantee that whenever T [f ](x) < δ < T [g](x), there
exists a point z ensuring on the one hand more descent for g than for f and on the other hand
enough descent for g relative to the distance d(x, z) (up to a factor θ(δ)−1).

It is straightforward to see that (D̂2) yields (D2). Another important remark is that the function
θ is invertible, and its inverse θ−1 : R+ → R+ verify the same properties as θ, that is, θ is a
strictly increasing continuous function with θ−1(0) = 0 and lim

s→∞
θ−1(s) = +∞.

The above definition encompasses the sup–type paradigms of metric descent modulus.

12



Example 2.10 (steepest descent operators). (i). (local slope) Let us recall from (2.12) the
definition of the local slope. It has been shown in [7, Proposition 3.7] that the “local slope”
operator

s : (R ∪ {+∞})X → [0,+∞]X ,

defined by s[f ] := sf is a descent modulus on the linear subspace C(X), that is, it satisfies
properties (D1)–(D3) of Definition 2.1. Since (D0) is also verified, it follows easily that s[·] is a
descent modulus on the translation cone F := LSC(X) as well. Moreover, let f, g ∈ LSC(X) and
x ∈ dom g be such that sf (x) < δ < sg(x). Then, (2.12) yields that for some σ > 0 sufficiently
small, we have:

sup
y∈B(x,σ)

∆+
f (x, y) < δ < sup

y∈B(x,σ)
∆+

g (x, y).

In particular, we can choose z ∈ B(x, σ) such that ∆+
g (x, z) > δ, and obtain

{f(x)− f(z)}+

d(x, z)
< δ <

{g(x)− g(z)}+

d(x, z)
.

Thus (D̂2) holds for θ(δ) = δ.

(ii). (global slope) The global slope of a function f ∈ LSC(X) at a point x ∈ X is defined
in (2.13) as follows:

Gf (x) := sup
y∈X

∆+
f (x, y) = sup

y∈dom f
∆+

f (x, y)

It is straightforward to see that the “global slope” operator G : LSC(X) → [0,+∞]X is strongly

metrically compatible, satisfying (D̂2) with θ(δ) = δ. ♢

Notice that if a descent modulus T is strongly metrically compatible, then T̂ := ϕ ◦ T remains
strongly metrically compatible, for every strictly increasing continuous function with ϕ(0) = 0
and lim

t→+∞
ϕ(t) = +∞. However, unfortunately, Definition 2.9 is quite restrictive and fails to cope

with some important average–type paradigms, as reveals the following example:

Example 2.11 (Average descent fails strong metric compatibility). Set X = [0, 1] endowed with
the distance d(t, s) = |t − s| and the usual Lebesgue measure. We show that for any function
θ : [0,+∞) → [0,+∞) given as in Definition 2.9 and any δ > 0, there exist functions f and g for

which (D̂2) fails for the average descent modulus M (see Subsection 2.3). Indeed, fix θ(·), δ > 0

and pick any positive number ε < min
{

δ
2 ,

θ(δ)
6

}
, then set

t0 = min
{

1
2 ,

δ−ε
2θ(δ)

}
, t1 = t0 +

3ε
2θ(δ) , t2 = t0 +

3ε
θ(δ) .

We can easily see that δ − ε > 0 and t2 < 1. We now define h > 0 in a way that

1

2
(h− θ(δ)) t0 + θ(δ) t0 = δ − ε ,
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that is, h = 2(δ−ϵ)
t0

− θ(δ). By the definition of t0, it is easy to check that h > 3θ(δ). Let us define
functions ψ, ϕ : X → [0,+∞) as follows:

ψ(t) =


h− h−θ(δ)

t0
t, if t ∈ [0, t0)

θ(δ)− θ(δ)2

3ε (t− t0), if t ∈ [t0, t2],

0, if t ∈ [t2, 1].

and ϕ(t) =


h− h−θ(δ)

t0
t, if t ∈ [0, t0),

θ(δ)− 2θ(δ)2

3ε (t− t0), if t ∈ [t0, t1],

0, if t ∈ [t1, 1].

It is not hard to realize (see Figure 2) that∫
X
ψ(t)dt = δ +

ε

2
> δ > δ − ε

4
=

∫
X
ϕ(t)dt.

0 t0 t1 t2 1
0

θ(δ)

h

ψ = ϕ

ψ

ϕ

A1 = δ − ε

A2 = 3ε
4 A3 = 3ε

4

0 t0 t1 t2 1

0

−θ(δ)t0

g

g = f

f

Figure 2: Left: Regions below the functions ψ and ϕ. Right: The functions g(t) = −tψ(t) and f(t) = −tϕ(t)
coincide on [0, t0) while for t ≥ t0 we have f ≥ g.

Now, we can define the functions g, f : X → R given by

g(t) = −t ψ(t) and f(t) = −t ϕ(t).

Then ψ and ϕ coincide with the functions ∆+g(0, ·) and ∆+f(0, ·). Indeed, since g and f attain
their global maximum at t = 0, we can directly write

∆+g(0, t) =
g(0)− g(t)

t
= ψ(t) and ∆+f(0, t) =

f(0)− f(t)

t
= ϕ(t).

Thus, (D̂2) fails at 0, since M[f ](0) = δ − ε
4 < δ < δ + ε

2 < M[g](0) but there is no t ∈ X such
that ϕ(t) < θ(δ) < ψ(t). Even worse, there is no t ∈ X such that ϕ(t) < ψ(t) (more descent for g
than for f) and θ(δ) < ψ(t) (enough descent for g) simultaneously. ♢

The previous example reveals that average–type descents fail Definition 2.9 (strong metric com-
patibility). To overcome this difficulty, we need to relax this definition as follows:
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Definition 2.12 (metric compatibility). A descent modulus T : F → [0,+∞]X is said to be
metrically compatible, if for every ρ > 0, there exists a strictly increasing continuous function
θρ : R+ → R+ with θρ(0) = 0 and lim

t→+∞
θρ(t) = +∞, such that for every f, g ∈ dom(T ), x ∈ dom g

and δ > 0 it holds:

T [f ](x) < δ < T [g](x) =⇒ ∃z ∈ dom g :


{f(x)− f(z)}+ < (1 + ρ){g(x)− g(z)}+

and
θρ(δ) d(x, z) < g(x)− g(z)

(C)

The above definition is a trade-off between the needs of the proof of Theorem 3.3 and a common
scheme that incorporates all main paradigms of Subsection 2.3. The difference with Definition 2.9
is that given ρ > 0, if T [f ](x) < δ < T [g](x), we can find a point z (depending on ρ) ensuring
more descent for g than for f up to a factor (1 + ρ) and sufficient descent for g relative to the
distance d(x, z), up to a factor θρ(δ)

−1 (depending again on ρ). In this sense, for a given tolerance
ρ > 0, condition (C) is a trade-off between these requirements.

Average descent operators are operators for which the descent of f at a point x is obtained by
integrating the quotient ∆+

f (x, y) with respect to some probability measure on X. This category
of operators are now metrically compatible with respect to this relaxed definition:

Example 2.13 (average descent moduli). Let µ be a probability measure on the metric space
(X, d) and consider the translation cone

F := {f : X → R ∪ {+∞} : f is proper and µ-measurable}.

(i) Consider the operator M defined in (2.14). Let us show that M is a metrically compatible
descent modulus. Indeed, fix ρ > 0 and assume that for some f, g ∈ dom(M), x ∈ dom g and
δ > 0 we have M[f ](x) < δ <M[g](x). Then, by definition, we have that∫

X
(1 + ρ)∆+

g (x, y)µ(dy) >

∫
X
(∆+

f (x, y) + ρ δ)µ(dy) =

∫
X
∆+

f (x, y) dµ + ρ δ,

which yields that there exists z ∈ dom g such that (1 + ρ)∆+
g (x, z) > ∆+

f (x, z) + ρδ. The above
inequality yields

(1 + ρ){g(x)− g(z)}+ > {f(x)− f(z)}+ and
g(x)− g(z)

d(x, z)
>

(
ρ

1 + ρ

)
δ︸ ︷︷ ︸

θρ(δ)

.

Thus, (C) is verified for θρ(δ) :=
ρ

1+ρ δ.

(ii) Suppose now that µ(A) > 0 for every open set A of X and consider the oriented 1-dispersion
operator for the measure µ, given by (2.15). Then, D is a metrically compatible descent modulus.
Indeed, let f, g ∈ dom(D), x ∈ dom g and δ ∈ R such that D[f ](x) < δ < D[g](x). Then, for
ε > 0 sufficiently small we have

1

µ(B(x, ε))

∫
B(x,ε)

∆+
f (x, y)µ(dy) < δ <

1

µ(B(x, ε))

∫
B(x,ε)

∆+
g (x, y)µ(dy).

Then, the conclusion follows by noting that ν(dy) = 1
µ(B(x,ε))µ(dy) is a probability measure over

the metric space B(x, ε), and therefore we can proceed as in the previous example (i). ♢
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Based on these examples-schemes, we can significantly enlarge the class of metrically comptatible
descent moduli as follows: for any strictly increasing, continuous function ϕ : R+ → R+ with
ϕ(0) = 0 and lim

t→+∞
ϕ(t) = +∞, we can replace ∆+

f (x, y) (in definitions (2.12), (2.13), (2.14) and

(2.15)) by

∆̃+
f (x, y) := ϕ−1(∆+

f (x, y))

and obtain new classes.

Let us now give an example of a descent modulus which is not metric compatible.

Example 2.14. Take X = N endowed with the distance function d given by d(m,n) = |m− n|.
Consider the operator T given by

T [f ](k) = sup
m∈N

{f(k)− f(m)}+ , for all k ∈ N.

Clearly, T is a descent modulus (it coincides with the global slope for the distance d0 given by
d0(k,m) = 1, if k ̸= m, and d0(k,m) = 0, if k = m). Consider the function fn, n ∈ N, given by

fn(m) =

{
1, if m ̸= n,

0, if m = n.

Observe that for each δ ∈ (0, 1) and each n ≥ 2, we have that T [fn](1) = 1 > δ > 0 = T [f1](1).
However, regardless the tolerance ρ > 0, the only choice for m ∈ [fn < fn(1)] is m = n and so

(1 + ρ)∆+
fn
(1, n) = (1 + ρ)

fn(1)− fn(n)

d(1, n)
=

1 + ρ

n− 1
> 0 =

{f1(1)− f1(n)}+

d(1, n)
= ∆+

f1
(1, n).

If T were metrically compatible, there would exist a continuous, strictly increasing function
θρ : [0,+∞) → [0,+∞), with θρ(0) = 0 and θρ(δ) <

fn(1)−fn(n)
d(n,1) = 1

n−1 for all δ ∈ (0, 1) and all
n ≥ 2, which is a contradiction. Therefore T is not metrically compatible for the metric d. Notice
however, that it is so for the discrete metric d0. ♢

Remark 2.15. We recall from [7, Section 3.4] that there exist slope–like operators, as the weak
slope ([5], [9] e.g.) or the limiting slope ([11]) that are not descent moduli, since they fail property
(D2) (monotonicity).

We finish the section with two stability properties that we will need in the sequel. The first one
stems from [7, Proposition 3.2(b)], whose proof is based on the monotonicity property (D2) of
the descent moduli.

Proposition 2.16 (translation-invariance). Let T : F → [0,+∞]X be a descent modulus. Then
for any f ∈ F and c ∈ R, we have

T [f ] = T [f + c].

The second property provides another way of constructing new metrically compatible descent
moduli, similar to the remark after Example 2.13.
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Proposition 2.17 (composition with increasing functional). Let ϕ : R+ → R+ be a strictly
increasing continuous function with ϕ(0) = 0 and lim

t→+∞
ϕ(t) = +∞. Let

T : F → [0,+∞]X

be a descent modulus. One has that

T is metrically compatible ⇐⇒ ϕ ◦ T is metrically compatible, (2.16)

where ϕ ◦ T is the descent modulus given by (ϕ ◦ T )[f ](x) = ϕ(T [f ](x)), with ϕ(+∞) = +∞.

Proof. The fact that ϕ ◦ T is a descent modulus was established in [7, Proposition 3.9] for real-
valued functions. The proof can be easily adapted to the present setting of extended real-valued
functions. Concerning metric compatibility, since ϕ−1 is also strictly increasing and continuous,
with ϕ−1(0) = 0 and lim

s→+∞
ϕ−1(s) = +∞, it is sufficient to establish only one implication. To

this end, let us assume that T is metrically compatible with {θρ}ρ>0 given as in Definition 2.12.
Let f, g ∈ dom(ϕT ), x ∈ dom g and δ > 0 such that (ϕT )[f ](x) < δ < (ϕT )[g](x). Fix ρ > 0. It
is straightforward to see that f, g ∈ dom(T ) and T [f ](x) < ϕ−1(δ) < T [g](x), therefore for some
z ∈ dom g we have

{f(x)− f(z)}+ < (1 + ρ){g(x)− g(z)}+ and θρ(ϕ
−1(δ)) <

g(x)− g(z)

d(x, z)
.

Since θ̃ρ := θρ ◦ ϕ−1 is continuous and strictly increasing with θ̃ρ(0) = 0 and lim
t→+∞

θ̃ρ(t) = +∞,

the conclusion follows. □

3 Main result

This section contains our main result: we establish a comparison principle, in the lines of
Lemma 2.3, for metrically compatible descent moduli (cf. Definition 2.12) in a complete, but
not necessarily compact, metric space. This result will eventually lead to our determination re-
sult (Theorem 3.6). Absence of compactness imposes an assumption on the asymptotic behaviour
for which, as already discussed in Subsection 2.2, the choice of the notion of asymptotic criticality
is paramount. This latter not only consists of saying that the descent moduli vanish at infinity,
but also requires two additional restrictions: absence of accumulation points and a summability
condition (Definition 3.1). The price to pay is that the scheme of proof becomes more involved,
but as a reward, we are able to obtain a statement that generalizes all previous results (c.f.
Theorem 3.6). Both the local slope determination of [8] for inf-compact functions and the global
slope determination [18] are now recovered by our final statement.

3.1 Comparison lemmas in complete metric spaces

In this section, we want to establish a comparison principle, in the lines of Lemma 2.3, for
metrically compatible descent moduli (cf. Definition 2.12) in a complete (but not necessarily
compact) metric space. Absence of compactness assumption leads inevitably to impose control
on the asymptotic behavior. To do so, we need a precise notion of asymptotic T -criticality, which
is given in the following definition:
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Definition 3.1 (asymptotic critical sequences). A sequence {zn}n≥1 ⊂ X \ ZT (g) is called T -
asymptotically critical for a function g ∈ F (in short, T [g]-critical) if it has no converging subse-
quence and

+∞∑
n=0

T [g](zn) d(zn, zn+1) < +∞. (3.1)

We denote by AZT (g) the set of asymptotically critical sequences for g.

Remark 3.2 (justification of terminology). Any sequence {zn}n≥1 satisfying lim inf
n→∞

T [g](zn) > 0

and (3.1) is necessarily Cauchy: indeed, assume that for some δ > 0 and N ≥ 1 we have
T [g](zn) ≥ δ, for all n ≥ N. Then for every ε > 0, we take n0 ≥ N such that∑

i≥N

T [g](zi) d(zi, zi+1) < ε δ,

and for every m > n ≥ n0 we deduce

d(zn, zm) ≤
m−1∑
i=n

d(zi, zi+1) ≤ 1

δ

m−1∑
i=n

T [g](zi) d(zi, zi+1) < ε.

Therefore, absence of convergent subsequences in Definition 3.1 ensures that in a complete metric
space, every T [g]-critical sequence {zn}n should satisfy

lim inf
n→∞

T [g](zn) = 0. (3.2)

Another important feature of this notion is that it becomes vacuous under compactness.

The requirement for the convergence of the series in (3.1) restricts significantly the class of
critical sequences. This was motivated by the discussion in Subsection 2.2 and can be seen as a
discrete version of the integrability condition in (2.6), which in turn was inspired by the steepest
descent gradient system. A similar condition was also employed in the fundamental lemma [18,
Lemma 4.2] used to derive the determination result in [18]. Our next result (Theorem 3.3)
extends the metric determination result of [18], since it holds for any metrically compatible
descent modulus (and not only for the global slope). Indeed, in case of the global slope we have
(see forthcoming Lemma 3.7):

� If T [g] = G[g] (global slope) and {zn}n is a T [g]–critical sequence, then g(zn) −→
n→∞

inf g.

We are now ready to establish the main comparison lemma.

Theorem 3.3 (comparison lemma). Let (X, d) a complete metric space and T : F → [0,+∞]X

a metrically compatible descent modulus. Let f, g ∈ dom(T ) be two bounded from below functions
with g ∈ LSC(X) and f ∈ C(X). Let us assume that:

(i). (descent domination) T [f ](x) < T [g](x), for every x ∈ X \ ZT (g) ;

(ii). (control of criticality) f(z) ≤ g(z), for every z ∈ ZT (g) ;

(iii). For every {zn}n ∈ AZT (g) it holds:

lim inf
n→+∞

f(zn) ≤ lim inf
n→+∞

g(zn). (3.3)
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Then, it holds
f(x) ≤ g(x), for every x ∈ dom g.

Proof. We deduce from (i) and (D0) of Definition 2.1 that dom g ⊂ dom f .

Let us fix ρ > 0. Replacing f and g by f − inf g + 1 and g − inf g + 1 if needed, we may assume
that g > 0 and consequently (1+ ρ)g > g > 0. In what follows, we prove f < (1+ ρ)g. Once this
is done, since ρ is arbitrarily small, we deduce f ≤ g.

To this end, let {θρ′}ρ′>0 be a family of continuous strictly increasing functions associated to

the descent modulus T (c.f. Definition 2.12). By Proposition 2.16 the operator T̂ := θρ ◦ T
is a metrically compatible descent modulus, which preserves T -critical points (i.e. Z

T̂
(g) =

ZT (g)) and T [g]-critical sequences (i.e. a sequence is T [g]-critical if and only if it is T̂ [g]-critical).
Furthermore, assumption (i) continues to hold for T̂ and (C) is now satisfied for θρ(δ) = δ, δ > 0.

Therefore, by replacing T by T̂ if necessary, we may assume that for the value ρ > 0 (that we
fixed in the beginning) condition (C) holds for the identity function θρ(δ) = δ.

With all the above in mind, let us define, for every x ∈ dom g, the quantity

δ(x) :=
1

2
T [f ](x) +

1

2
T [g](x). (3.4)

Notice that since f, g ∈ domT, we have δ(x) < +∞. Moreover, if x /∈ ZT (g) (that is, x is not
T -critical for g), then (i) yields δ(x) > 0 and

T [f ](x) < δ(x) < T [g](x) < 2δ(x). (3.5)

We now assume, towards a contradiction, that there exists x0 ∈ dom g such that

f(x0) ≥ (1 + ρ) g(x0).

In what follows, using successively assumption (i) (descent domination) and condition (C) of
Definition 2.12, we are going to construct a sequence of points {xn}n≥1 failing the conclusion of
our theorem, where additionally g is strictly decreasing.

Basic iteration scheme (classical induction). Thanks to assumption (ii), we have x0 /∈ ZT (g) and
we deduce from (i) that (3.5) holds for x = x0. Using (C) for θ(δ) = δ and δ = δ(x0) we obtain
x1 ∈ [g < g(x0)] such that

0 < f(x0)− (1 + ρ)g(x0) ≤ f(x1)− (1 + ρ)g(x1) and δ(x0) d(x0, x1) ≤ g(x0)− g(x1). (3.6)

Therefore we obtain:

g(x0) > g(x1), f(x1) > (1 + ρ)g(x1) and x1 /∈ ZT (g).

It is quite clear that the above procedure can be repeated as many times as we wish, producing
a sequence {xn}n≥1 in X \ ZT (g) such that

the sequence {(f − (1 + ρ)g) (xn)}n≥0 is nondecreasing and positive (3.7)

and
0 < δ(xn) d(xn, xn+1) < g(xn)− g(xn+1), for every n ≥ 0. (3.8)
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The telescopic series obtained by summing up the above inequalities for all n ≥ 0, together with
(3.5) and the fact that the sequence {g(xn)}n≥0 is strictly decreasing and bounded from below,
yield that

1

2

∞∑
n=0

T [g](xn) d(xn, xn+1) <
∞∑
n=0

δ(xn) d(xn, xn+1) ≤ g(x0)− inf g < +∞. (3.9)

Assumption (iii) together with (3.7) ensure that the sequence {xn}n≥0 cannot be T [g]–critical,
therefore we deduce from the above inequality and Definition 3.1 that {xn}n≥0 has accumulation
points as n→ ∞.

First limit ordinal. Let us denote by ω the first infinite ordinal and by ω+ ≡ ω + 1 its successor.
We first consider the case where

lim inf
n→∞

T [g](xn) ≥ δ > 0. (3.10)

It follows from (3.9) that the sequence {xn}n≥1 is Cauchy (see Remark 3.2), therefore it converges
to some point x̄ ∈ X. Setting xω := x̄ we deduce easily from (3.8) that

g(xn) > g(x̄), for every n ≥ 0. (3.11)

Similarly, we deduce from (3.7) that

(f − (1 + ρ)g) (x̄) > 0, (3.12)

therefore, xω ∈ X \ ZT (g), δ(xω) > 0 and the basic iteration scheme can be pursued from xω to
define xω+1, xω+2 etc.

We now focus on the case
lim inf
n→∞

T [g](xn) = 0. (3.13)

Then, xω should be selected inside the set of accumulation points of the sequence {xn}n≥0 (as
we have seen, this set is nonempty, but if (3.13) holds, it might not be a singleton). Although
any accumulation point x̄ satisfies inequalities (3.11) and (3.12), we cannot assign xω randomly
among the accumulation points, but instead, we need to select it in an adequate way (for reasons
that relate to forthcoming property (P3) required in our forthcoming transfinite induction). To
this end, let us set k0 = 0 and define inductively:

kn+1 := min {m ≥ kn : T [g](xm) < T [g](xkn)}. (3.14)

With this construction, {T [g](xkn)}n∈N is strictly decreasing and T [g](xkn) → 0. Since for all
ℓ ∈ [kn, kn+1) ∩ N we have T [g](xℓ) ≥ T [g](xkn) we deduce easily from the triangular inequality
that:

T [g](xkn) d(xkn , xkn+1) ≤
kn+1−1∑
ℓ=kn

T [g](xℓ) d(xℓ, xℓ+1)

yielding that

+∞∑
n=0

T [g](xkn) d(xkn , xkn+1) ≤ σ(ω) :=

∞∑
n=0

T [g](xn) d(xn, xn+1) < +∞. (3.15)
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Therefore, the obtained subsequence {xkn}n≥1 should also have accumulation points (it cannot
be T [g]–critical, thanks to (iii) and (3.7)) and we define xω to be any accumulation point x̄ of
{xkn}n≥1.

Idea of the proof. Let us outline the main idea of the proof: so far we have defined {xn}n<ω+ ≡
{xn}n<ω ∪ {xω} in X \ZT (g) such that {g(xα)}α<ω+ is strictly decreasing (in terms of ordinals).
Let us denote by Ω the first uncountable ordinal, that is,

Ω = {λ : λ countable ordinal }.

Our objective is to extend {xn}n<ω+ to all countable ordinals and come up with a generalized
sequence {xλ}λ<Ω in X \ ZT (g) such that {g(xλ)}λ<Ω is strictly decreasing. Then for every
λ < Ω we would have g(xλ) − g(xλ+) > 0 (where λ+ denotes the successor of λ) and since Ω is
uncountable we would deduce:

g(x0)− inf g ≥ g(x0)− inf
λ<Ω

g(xλ) ≥
∑
λ<Ω

[g(xλ)− g(xλ+)] = +∞. (3.16)

The above clearly contradicts the fact that the function g is bounded and proves the result.
This construction is naturally based on transfinite induction, where we should (also) deal with
ordinals of limit type (ie. λ = sup{α : α < λ}). In this case, xλ should be defined among the
accumulation points of {xα}α<λ so that we can deduce xλ /∈ ZT (g) and guarantee the strict
descent of g. However, in absence of compactness, we need an additional argument to ensure that
the set accumulation points is nonempty whenever

lim inf
α<λ

T [g](xα) = 0 (else, the limit lim
α↗λ

xα exists!)

In this critical situation, we need to construct a sequence {xαn}n≥1 with αn ↗ λ (out of the
generalized sequence {xα}α<λ) satisfying

+∞∑
n=0

T [g](xαn) d(xαn , xαn+1) < +∞,

use assumption (iii) to deduce that {xαn}n≥1 cannot be T [g]–critical, evoke Definition 3.1 to
conclude that it has accumulation points and eventually select xλ among them. (Notice that
although the set Ω is uncountable —which is crucial for the contradiction in (3.16) above— all
of its elements λ < Ω are countable ordinals and consequently, we can always obtain cofinal
sequences.) This being said, in order to effectively realize the aforementioned critical step, we
need to verify properties (P1)–(P3) below at every step of the forthcoming transfinite induction.

Properties (P1)–(P3): For every ordinal λ ∈ [ω,Ω), we are going to construct a generalized
sequence {xα}α<λ satisfying the following properties:

(P1) For every 0 ≤ α < α+ < λ :

0 < δ(xα)d(xα, xα+) < g(xα)− g(xα+). (3.17)
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Notice that (3.17) yields in particular that

σ(λ) :=
∑

0≤α<λ

T [g](xα) d(xα, xα+) < +∞. (3.18)

(P2) For every 0 ≤ α1 < α2 < λ :

0 ≤ (f − (1 + ρ)g) (xα1) ≤ (f − (1 + ρ)g) (xα2) (3.19)

and
d(xα1 , xα2) ≤

∑
α1≤α<α2

d(xα, xα+). (3.20)

(P3) For every ε > 0 and ordinals 0 ≤ α0 < ξ < λ, there exists a finite sequence of ordinals
α0 < α1 < . . . < αN < αN+1 := ξ such that

N∑
n=0

T [g](xαn) d(xαn , xαn+1) < σ(ξ)− σ(α0) + ε. (3.21)

Construction (via transfinite induction). We use transfinite induction as follows: assuming
{xα}α<λ ⊂ X \ ZT (g) is well-defined and satisfies (P1)–(P3), we define xλ ∈ X \ ZT (g) in a way
that the extended generalized sequence {xα}α<λ+ ≡ {xα}α≤λ still satisfies the same properties.
In case of a successor ordinal λ = β+, since xβ /∈ ZT (g), defining xλ ≡ xβ+ by means of (C)
of Definition 2.12 automatically guarantees that (P1)–(P3) continue to hold for {xα}α<λ+ (see
details below). If λ is a limit-ordinal and xλ is an accumulation point of the generalized sequence
{xα}α<λ, that is,

xλ ∈
⋂
α<λ

{xα′ : α′ ≥ α} (equivalently, xλ = lim
n→∞

xαn , for some αn ↗ λ) (3.22)

then (P1) is automatically fulfilled by the induction step (since no new succesor ordinal is added)
and (P2) follows by passing to the limit. Therefore, the main technical difficulty is to show that
{xα}α<λ has accumulation points and to define xλ (among these accumulation points) in a way
that (P3) holds. Let us now proceed to a rigorous construction:

Initialization. We have already defined {xα}α<ω+ = {xn}n≥0 satisfying (P1)–(P2). Let us
prove that (P3) also holds. Fix ε > 0 and consider the case α0 = 0 and ξ = ω (every other value
of α0 ∈ N follows replacing {xn}n≥0 by {xn}n≥α0). We consider three cases:

Case 1: lim inf
n→∞

T [g](xn) = δ ∈ (0,+∞). Since (3.9) holds, in view of Remark 3.2, the sequence

{xn}n≥1 converges and xω = lim
n→ω

xn. Taking n0 ≥ 0 such that

d(xn, xω) <
ε

δ + 1
, for all n ≥ n0,

and choosing N ≥ n0 such that T [g](xN ) < δ + 1, we readily obtain

N−1∑
n=0

T [g](xn) d(xn, xn+1)︸ ︷︷ ︸
<σ(ω)

+T [g](xN ) d(xN , xω) < σ(ω) + ε.
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The result follows for αn := n, n ∈ {0, 1, . . . , N} and αN+1 := ω.

Case 2: lim inf
n→∞

T [g](xn) = +∞. Similarly to the previous case, the sequence {xn}n≥1 converges

and xω = lim
n→ω

xn. Let N ≥ 0 be such that

T [g](xN ) = min
n≥0

{T [g](xn)} (the minimum is attained since T [g](xn) → +∞).

Then, T [g](xn) ≥ T [g](xN ) for all n ≥ N which in view of (3.20) (for α1 = N and α2 = ω) yields

T [g](xN ) d(xN , xω) ≤ T [g](xN )

+∞∑
n=N

d(xn, xn+1) <

+∞∑
n=N

T [g](xn) d(xn, xn+1).

Consequently,

N−1∑
n=0

T [g](xn) d(xn, xn+1) + T [g](xN ) d(xN , xω) ≤
+∞∑
n=0

T [g](xn) d(xn, xn+1) := σ(ω).

Case 3: lim inf
n→∞

T [g](xn) = 0. In this case xω is defined among the accumulation points of the

sequence {xkn}n≥1 constructed in (3.14). Given ε > 0 we chose n0 ∈ N in a way that

d(xkn0
, xω) <

ε

T [g](xkn0
)
.

In view of (3.15), we deduce that

n0−1∑
n=0

T [g](xkn) d(xkn , xkn+1) + T [g](xkn0
) d(xkn0

, xω) < σ(ω) + ε,

and the result follows for N = kn0 and αn := kn, n ∈ {0, 1, . . . , N}.

Successor ordinal. Assume λ = β+ > ω is a successor ordinal and {xα}α<λ ≡ {xα}α≤β is
well-defined and satisfies (P1)–(P3). Then from (3.19) and (ii) we deduce that xβ /∈ ZT (g) and
δ(xβ) > 0. Using (C) as before, we obtain xβ+ ∈ [g < g(xβ)] such that

0 < f(xβ)− (1 + ρ)g(xβ) ≤ f(xβ+)− (1 + ρ)g(xβ+) and δ(xβ)d(xβ, xβ+) ≤ g(xβ)− g(xβ+).

Notice that (3.20), (3.21) follow easily from the induction step and the triangular inequality.
Therefore {xα}α<λ+ ≡ {xα}α≤λ also satisfies (P1)–(P3).

Ordinal of limit type. Let us now assume that λ ∈ (ω,Ω) is a limit ordinal and {xα}α<λ is
defined and satisfies (P1)–(P3).

Case I. We first focus on the case where

lim inf
α<λ

T [g](xα) ≥ δ > 0. (3.23)

We deduce that there exists ξ0 < λ such that T [g](xα) ≥ δ/2 for all ξ0 ≤ α < λ. Thus, in an
analogous way as in Remark 3.2, we get from (3.18) that∑

ξ0≤α<λ

d(xα, xα+) ≤ 2

δ

∑
ξ0≤α<λ

T [g](xα) d(xα, xα+) < +∞
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and consequently the generalized sequence {xα}α<λ converges as α↗ λ. We set

xλ := lim
α→λ

xα

and obtain readily that the generalized sequence {xα}α<λ+ still satisfies (P1)–(P2). It remains to
check that (P3) holds for ε > 0 and 0 ≤ α0 < λ < λ+. To this end, we need to consider separately
two different cases depending on whether (3.23) is finite or not.

– Subcase I1. Assume that lim inf
α<λ

T [g](xα) = δ ∈ (0,+∞). Then, we fix α∗ ≥ α0 such that for all

α ∈ (α∗, λ) we have

d(xα, xλ) <
ε

2(δ + 1)
.

Pick any α̂ ∈ (α∗, λ) such that T [g](xα̂) < δ + 1. We deduce directly that

T [g](xα̂) d(xα̂, xλ) <
ε

2
.

Applying (P3) for 0 ≤ α0 < α̂ < λ (and ε̃ = ε/2) we obtain a finite strictly increasing sequence
{αn}Nn=0 satisfying

N−1∑
n=0

T [g](xαn) d(xαn , xαn+1) + T [g](xαN ) d(xαN , xα̂) < σ(α̂)− σ(α0) +
ε

2
.

The result follows by concatenation.

– Subcase I 2. Assume that lim inf
α<λ

T [g](xα) = lim
α<λ

T [g](xα) = +∞. Then, there exists α∗ ≥ α0

such that T [g](xα) ≥ 1, for all α ∈ (α∗, λ). We deduce from (3.18) that

∆ :=
∑

α∗≤α<λ

d(xα, xα+) ≤
∑

α∗≤α<λ

T [g](xα) d(xα, xα+) < +∞.

Set
µ∗ := inf

α∗≤α<λ
{T [g](xα)} ≥ 1.

In contrast to Case 2 of Initialization, the above infimum might not be attained if λ is limit
of ordinals of limit type (that is, λ = sup{ξ < λ : ξ limit-ordinal}). However, we can choose
α̂ ∈ (a∗, λ) such that

T [g](xα̂) < µ∗ +
ε

2∆
.

We deduce from (3.20) (for α1 = α̂ and α2 = λ) that

T [g](xα̂)d(xα̂, xλ) ≤ T [g](xα̂)
∑

α̂≤α<λ

d(xα, xα+) <
∑

α̂≤α<λ

(
µ∗ +

ε

2∆

)
d(xα, xα+)

<
∑

α̂≤α<λ

T [g](xα) d(xα, xα+)︸ ︷︷ ︸
:=σ(λ)−σ(α̂)

+
ε

2
.

We conclude as before by concatenating {α̂, xλ} with the finite sequence obtained by applying (P3)
(which by the induction step is assumed to hold for the generalized sequence {xα}α<λ) for the
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choice ε̃ = ε/2 and 0 ≤ α0 < α̂ < λ.

Case II. It remains to deal with the case

lim inf
α<λ

T [g](xα) = 0.

Our objective is to show that

C =
⋂
α<λ

{xα′ : α′ ≥ α} ≠ ∅

and define xλ in C in a way that {xα}α<λ+ satifies (P3). (We recall that if xλ ∈ C then (P1)–(P2)
are automatically satisfied.) To this end, fix ε > 0 and 0 ≤ α0 < λ < λ+. Let

{εn}n≥0 ⊂ (0, ε) such that

+∞∑
n=0

εn =
ε

2
.

Let further γn ↗ λ and define inductively a sequence of ordinals {ξn}n≥0 as follows:

ξ0 = α0 and ξn+1 := min

{
α ≥ max{ξn, γn} : T [g](xα) ≤

T [g](xξn)

2

}
.

The above definition guarantees that ξn ↗ λ and T [g](xξn) ↘ 0 (that is, the sequence of descent
moduli converges to 0 decreasingly). For every n ≥ 0, thanks to our induction assumption, we
can apply property (P3) for εn > 0 and 0 ≤ ξn < ξn+1 < λ+ to obtain Nn ≥ 1 and a finite
sequence ξn := αn

0 < αn
1 < . . . < αn

Nn+1 := ξn+1 such that

Nn∑
i=0

T [g](xαn
i
) d(xαn

i
, xαn

i+1
) < σ(ξn+1)− σ(ξn) + εn.

Concatenating the above finite sequences {αn
i : i ∈ {0, . . . , Nn}}, for n ≥ 0, we obtain a strictly

increasing sequence

α0 := α0
0 < α0

1 < . . . < α0
N0+1 := ξ1 := α1

0 < . . . < α1
N1+1 := ξ2 < . . . < . . . (3.24)

which converges to λ and satisfies

+∞∑
n=0

Nn∑
i=0

T [g](xαn
i
) d(xαn

i
, xαn

i+1
) < σ(λ)− σ(α0) +

ε

2
.

Renaming (3.24) to {βn}n≥0, we have β0 ≡ α0, βn ↗ λ

+∞∑
n=0

T [g](xβn) d(xβn , xβn+1) < σ(λ)− σ(α0) +
ε

2
and lim inf

n→∞
T [g](xβn) = 0.

Acting as in (3.14), we set k0 = β0 ≡ α0 and

kn+1 := min {βm ≥ kn : T [g](xβm) < T [g](xkn)}.
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Since for all ℓ ∈ [kn, kn+1) ∩ {βm}m∈N we have T [g](xβℓ
) ≥ T [g](xβkn

), we deduce:

+∞∑
n=0

T [g](xkn) d(xkn , xkn+1) ≤
+∞∑
n=0

kn+1−1∑
ℓ=kn

T [g](xℓ) d(xℓ, xℓ+1) < σ(λ)− σ(α0) +
ε

2
. (3.25)

Since {xkn}n≥1 cannot be T [g]–critical (thanks to assumption (iii)), we deduce from Defini-
tion 2.12 that it has accumulation points as n→ ∞. We define xλ to be any accumulation point
of {xkn}n≥1. Then, the last part of the argument is the same as in Case 3 of Initialization: we
chose n0 ∈ N in a way that

d(xkn0
, xλ) <

ε

2T [g](xk0)

and we deduce that

n0−1∑
n=0

T [g](xkn) d(xkn , xkn+1) + T [g](xkn0
) d(xkn0

, xλ) <
+∞∑
n=0

T [g](xkn) d(xkn , xkn+1) +
ε

2
, (3.26)

and the result follows by combining (3.25) and (3.26).

This completes the transfinite induction and allows to obtain a generalized sequence {xα}α<λ for
all countable ordinal λ. Thus we ultimately define {xα}α<Ω with {g(xλ)}λ<Ω uncountable and
strictly decreasing, contradicting that g is bounded from below.

Therefore, f < (1 + ρ)g. Repeating the procedure for any ρ > 0, we deduce that f ≤ g should
hold. The proof is complete. □

Remark 3.4 (discussion on the assumptions). (a). Assumptions (ii) and (iii) are complementary
and independent: indeed, asymptotically critical sequences can neither yield nor be obtained by
critical points, since they are not allowed to converge (c.f. Definition 3.1). In particular, in absence
of compactness, the set of critical points ZT (g) can be empty, case in which assumption (ii) of
Theorem 3.3 is trivially satisfied and provides no information. This potential lack of information
is contemplated by assumption (iii).

(b). The main difficulty in proving Theorem 3.3 is that the construction requires transfinite
induction, while assumption (iii) allows comparison through sequences. Indeed, from a point xα
for which T [g](xα) > 0, we produce a descent point xα+ (that is, g(xα+) < g(xα), and after
countably many descent points, we select an adequate accumulation point; due to the (possible)
existence of points x ∈ X \ ZT (g) for which lim infy→x T [g](y) = 0, such construction might end
prematurely unless we allow to restart the process from the limit points, inducing a transfinite
construction (see Example 3.5). The critical part is to prove, using only asymptotically critical
sequences, that for every limiting ordinal λ, the accumulation point xλ can always be constructed.
The importance of the invariant properties (P1)–(P3) during this construction was precisely the
fact that if such a point xλ fails to exist, then we would be able to extract an asymptotically
critical (cofinal) subsequence from {xα}α<λ, and compare the functions over that sequence.

(c). Let us momentarily assume that condition (3.3) is imposed to every sequence {zn}n≥1 ⊂
X \ ZT (g) satisfying (3.1), rather than only to those that are free of accumulation points. Let
further z̄ denote some accumulation point of {zn}n≥1. Then the case where z̄ is critical (i.e.
z̄ ∈ ZT (g)) is already covered by assumption (ii) of Theorem 3.3 (since f is continuous and g
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lower semicontinuous) while the case where z̄ /∈ ZT (g) leads to a superfluous assumption making
the statement of the theorem weaker. This is illustrated in Example 3.5 below, where the descent
operator T [f ] is the local slope s[f ]. The example reveals that accumulation points of sequences
satisfying (3.1) might not be critical for the slope s[g] but instead, for the closure of s[g] (called
regularized slope in [11]) and that it is neither necessary nor desirable to impose any condition
there.

Example 3.5. Set X = [1,+∞) with the usual distance. For each interval In = [n, n + 1) we
define the function gn : In → [0, 1] given by

gn(x) =
1

n+ 1
+

(
1

n(n+ 1)

)
(x− (n+ 1))n(n+1) .

We finally define g : [1,+∞) → [0, 1] given by g(x) = gn(x) whenever x ∈ In.

1 2 4 6 8 10
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Figure 3: Function g : [1,+∞) → [0, 1], constructed by blocks In = [n, n + 1). Plot of the first
9 intervals. At each integer point n ≥ 1, the lateral derivatives are g′−(n) = 0 from the left and
g′+(n) = 1 from the right.

Consider the descent operator T [g] = s[g] (local slope) and notice that

s[g](x) = (n+ 1− x)n(n+1)−1 > 0, for x ∈ [n, n+ 1) and ZT [g] = ∅.

Notice further that
inf
x∈X

g = lim
x→+∞

g(x) = 0.

Finally, for every n ∈ N, the point x̄ := n is not critical, but it is critical for the regularized slope
(see Figure 3), that is:

lim inf
x→n

s[g](x) = 0. (3.27)

It is easy to see that f ≤ g for every continuous function f : X → R satisfying

(a) s[f ] < s[g] on X and (b) lim inf
x→+∞

f(x) < 0.
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Indeed, we can either apply Theorem 3.3 or do the following elementary proof: pick any increasing
sequence xn → +∞ such that lim

n→+∞
f(xn) = lim inf

x→+∞
f(x), and assume towards a contradiction

that f(x0) ≥ (1 + ρ)g(x0), for some ρ > 0. Following the construction of [7, Lemma 3.3], we can
build a (generalized) sequence {zλ}λ in the compact interval [x0, x1], strictly decreasing for g and
such that f(zλ) ≥ (1 + ρ)g(zλ) for each λ. The construction eventually ends (due to cardinality
obstructions) and the only way for this to happen is that zλ → x1, since this is the only critical
point of g restricted to [x0, x1]. Continuity of f and lower semicontinuity of g would yield that
f(x1) ≥ (1 + ρ)g(x1). An inductive argument shows that f(xn) ≥ (1 + ρ)g(xn) for all n ∈ N,
which yields limn f(xn) ≥ inf g = 0, leading to a contradiction.

On the other hand, if Definition 3.1 allowed to consider convergent sequences, then Theorem 3.3
could not directly apply since it would have required an extra condition on all sequences satisfying
(3.27), leading to (infinitely many) unnecessary extra conditions: f(n) < g(n) for all n ≥ 1.
Finally, observe that for every n ∈ N, the steepest descent curve γn : [0,+∞) → R solving{

γ̇(t) = −∇g(γ(t)), t ≥ 0,

γ(0) = n,

satisfies that lim
t→+∞

γn(t) = n + 1. Thus, if we follow the construction of Theorem 3.3 by taking

a descent point at each iteration, we should obtain a generalized sequence {xα} (similar to a
concatenation of discretizations of the curves {γn}) diverging to +∞. The delicate construc-
tion of the proof of Theorem 3.3 would allow us to retrieve an s-asymptotically critical cofinal
subsequence for g, and therefore to compare f and g at the limit values. ♢

3.2 Determination in complete metric spaces

If two functions f, g have the same descent modulus at every point (that is, T [f ] = T [g]), then
they have the same critical set (ZT := ZT (f) = ZT (g)) and the same asymptotically critical
sequences (AZT := AZT (f) = AZT (g)). Using the same strategy as in Theorem 2.4, we obtain
the main result of this work.

Theorem 3.6 (main determination result). Let T be a metrically compatible descent modulus on
the complete metric space (X, d). Let f, g ∈ C(X) ∩ dom(T ) be bounded from below and satisfy

T [f ](x) = T [g](x), for all x ∈ X.

Assume that f |ZT
= g|ZT

and lim inf
n→∞

f(zn) = lim inf
n→∞

g(zn), for all {zn}n≥1 ∈ AZT .

Then
f(x) = g(x), for all x ∈ X.

By considering only metric spaces and metrically compatible descent moduli, it is clear that the
above result generalizes Theorem 2.4: indeed, for every f ∈ F one has that AZT (f) = ∅ whenever
X is compact.

Theorem 3.6 also generalizes [18, Section 4]. This is due to the fact that for the global slope G
defined in (2.13), every G-asymptotically critical sequence of f is infimizing for the function f .
This is the content of the following lemma.
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Lemma 3.7 (infimizing sequences). Let (X, d) be a complete metric space, f ∈ C̄(X) ∩ dom(G)
and {zn}n≥1 a G-asymptotically critical sequence (Definition 3.1). Then

lim inf
n→∞

f(zn) = inf f. (3.28)

Proof. Let {zn}n≥1 be a G-asymptotically critical sequence for the function f. Then, {G[f ](zn)}n≥1

is a sequence of strictly positive numbers that converges to zero. We set k1 = 1 and define in-
ductively

kn+1 := min {m ≥ kn : G[f ](zm) < G[f ](zkn)} .

Then, {G[f ](zkn)}n≥1 is strictly decreasing and for m ∈ [kn, kn+1) ∩ N we have

G[f ](zkn) ≤ G[f ](zm).

We deduce that for every n ≥ 1

G[f ](zkn) d(zkn , zkn+1) ≤ G[f ](zkn)
∑

kn≤m<kn+1

d(zm, zm+1)

≤
∑

kn≤m<kn+1

G[f ](zm)d(zm, zm+1)

and consequently

∞∑
n=1

G[f ](zkn) d(zkn , zkn+1) ≤
∞∑

m=1

G[f ](zm)d(zm, zm+1) < +∞.

Let u ∈ X be arbitrarily chosen. We deduce from the definition of the global slope (2.13) that

f(zkn) ≤ f(u) + G[f ](zkn) d(zkn , u), for all n ≥ 1.

Therefore, it suffices to show that

lim inf
n→∞

G[f ](zkn) d(zkn , u) = 0.

To this end, take n,m ∈ N with n < m. Then, since G[f ](zkn) is decreasing, we deduce:

G[f ](zkm) d(zkm , u) ≤ G[f ](zkm−1) d(zkm−1 , zkm) + G[f ](zkm) d(zkm−1 , u)

and consequently

G[f ](zkm) d(zkm , u) ≤
∑

n≤ℓ<m

G[f ](zkℓ) d(zkℓ , zkℓ+1
) + G[f ](zkm) d(zkn , u).

Thus, keeping n fixed and passing to the limit as m→ ∞, we deduce that:

lim inf
m→∞

G[f ](zkm) d(zkm , u) ≤
+∞∑
ℓ=n

G[f ](zkℓ) d(zkℓ , zkℓ+1
) ≤

∞∑
ℓ=n

G[f ](zℓ) d(zℓ, zℓ+1).

Since the last quantity becomes arbitrarily small as n increases, the conclusion follows. □
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Remark 3.8. Comparing the above lemma with [18, Lemma 4.2], we observe that the main dif-
ference is that the latter considers summable sequences where

∑
n G[g](zn+1)d(zn, zn+1) < +∞.

This can be seen as proximal algorithm-type condition. However, in our context, we need to
consider asymptotically critical sequences where

∑
n G[g](zn)d(zn, zn+1) < +∞. Thus, asymp-

totically critical sequences can be seen as gradient algorithm-type condition, which is strongly
related on how descent (generalized) sequences are constructed from descent moduli.

Finally, Lemma 3.7, together with the fact that any critical point for the global slope has to be
a global minimizer, yields directly the following corollary.

Corollary 3.9 (Global slope determination, [18]). Let (X, d) be a complete metric space and
f, g : X → R be two proper lower semicontinuous functions which are bounded from below and
continuous on their domain. If G[f ](x) = G[g](x), for all x ∈ X and inf f = inf g, then f = g.

Corollary 3.10 below reveals that a continuous bounded from below function f ∈ C̄(X)∩ dom(T )
necessarily possesses either a critical point or an asymptotically critical sequence.

Corollary 3.10 (existence of critical elements). Let f : X → R∪{+∞} be a lower semicontinuous
function which is continuous on its domain and bounded from below. If f ∈ dom(T ) for some
metrically compatible descent modulus on X, then either ZT (f) ̸= ∅ or AZT (f) ̸= ∅.

Proof. We may assume that inf f = 0. Fix ε > 0, set g := (1+ε) f and f̃ = f +1. It follows that
inf g = 0 < inf f̃ = 1. In view of Proposition 2.16 and property (D3) of the descent modulus,
we deduce that ZT (g) ⊂ ZT (f̃) and T [g](x) > T [f̃ ](x), for all x ∈ X \ ZT (g). Moreover, if a
sequence {zn}n is T [g] –critical, then it is also T [f̃ ]–critical (and consequently, T [f ]–critical). Let
us assume, towards a contradiction that g has no critical points and no T [g]–critical sequences.
Then ZT (g) = ∅ and assumptions (ii) and (iii) of Theorem 3.3 are trivially fulfilled. We deduce
that g > f̃ which is a contradiction. Therefore, either ZT (g) ̸= ∅ or AZT (g) ̸= ∅. □

(Open question) It is well-known that the local and the global slopes coincide for convex functions
in any Banach space and are equal to the remoteness of the subdifferential (the distance of the
convex subdifferential to zero). This fact was used in [18, Section 5] to obtain a nontrivial
generalization (from Hilbert to Banach spaces) of the determination result for the class of convex
functions obtained in [4, Theorem 3.8] (smooth case) and [17] (nonsmooth case). Indeed, the
identification of derivatives with gradients and the use of (sub)gradient systems played a crucial
role in the latter works. In the recent work [6], the authors have again used the Hilbertian
structure to show that the deviation between the slopes of two convex functions controls the
deviation between the functions themselves. It is not known if such slope-based sensitivity result
would hold for convex functions in Banach spaces, or more generally, if one can use metric descent
modulus deviations to measure deviations of functions in general.
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