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The norm of the gradient ‖∇f(x)‖ measures the maximum 
descent of a real-valued smooth function f at x. For (non-
smooth) convex functions, this is expressed by the distance 
dist(0, ∂f(x)) of the subdifferential to the origin, while for 
general real-valued functions defined on metric spaces by the 
notion of metric slope |∇f |(x). In this work we propose an ax-
iomatic definition of descent modulus T [f ](x) of a real-valued 
function f at every point x, defined on a general (not nec-
essarily metric) space. The definition encompasses all above 
instances as well as average descents for functions defined on 
probability spaces. We show that a large class of functions 
are completely determined by their descent modulus and cor-
responding critical values. This result is already surprising in 
the smooth case: a one-dimensional information (norm of the 
gradient) turns out to be almost as powerful as the knowl-
edge of the full gradient mapping. In the nonsmooth case, the 
key element for this determination result is the break of sym-
metry induced by a downhill orientation, in the spirit of the 
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definition of the metric slope. The particular case of functions 
defined on finite spaces is studied in the last section. In this 
case, we obtain an explicit classification of descent operators 
that are, in some sense, typical.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).
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1. Introduction

In [5] the following surprising result was obtained: two C2-smooth convex bounded 
from below functions defined on a Hilbert space H are equal up to an additive constant, 
provided they have the same modulus of derivative at every point. In other words, for 
this class of functions, equality of moduli of derivatives (‖∇f‖ = ‖∇g‖) implies equality 
of the derivatives (∇f = ∇g). An alternative way to announce this result is to say that 
the operator

f �→ ‖∇f‖ (1)

determines the function f (modulo a constant) for the class of C2-smooth convex and 
bounded from below functions defined on the Hilbert space H.

The above result has been extended in [18] to the class of convex continuous bounded 
from below functions on a Hilbert space H. A further extension for functions defined on 
an arbitrary Banach space X has been achieved in [24]. In both cases, the operator

http://creativecommons.org/licenses/by/4.0/
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f �→ d(0, ∂f(x)) (remoteness of the subdifferential) (2)

determines the function f (modulo a constant) for the class of convex continuous and 
bounded from below functions on a Banach space X.

In [8] the authors worked on an arbitrary metric space (X, d). Using the notion of 
metric slope |∇f |, they established the following result: two continuous coercive functions 
f, g : X → R are equal, provided they have the same metric slope (|∇f | = |∇g|) 
and coincide on the (common) critical set S = |∇f |−1(0) = |∇g|−1(0). (We refer to 
Section 2 for notation and relevant definitions; see also Subsection 2.1 for a more detailed 
description of the above results.) Denoting by K(X) the class of continuous coercive 
functions on X (the exact definition of coercivity will be given in (4)), we consider the 
following equivalent relation: f ∼ g if and only if f and g have the same (metric) critical 
set and their values coincide there up to a constant, that is,

f ∼ g ⇐⇒ S = |∇f |−1(0) = |∇g|−1(0) and f
∣∣
S
− g

∣∣
S

= c, for some c ∈ R.

Then, the aforementioned result of [8] asserts that the operator

f �→ |∇f | (3)

is injective on K(X)/ ∼, that is, it determines functions f ∈ K(X) modulo the equivalent 
relation ∼.

We refer to all above results as determination results on a specific class of function 
(modulo a natural equivalent relation). Although the last result is formulated in an 
abstract metric space and is quite general, we will show in this work that an even 
deeper result is hidden. Namely, the metric structure is ostensibly required to define 
the determining operator, but is not really paramount: the quantities ‖∇f(x)‖ (in the 
smooth case) and |∇f |(x) (in a metric setting) express the steepest descent of f at a given 
point x, however, this is not the only possible choice to deal with descent properties. For 
instance, one can also consider average descent (based on some probability measure on 
the space X) and emancipate dependence from the metric structure. The above leads to 
a definition of an abstract descent operator (which does not rely on a distance or even a 
topology). This abstract scheme, developed in Section 3, encompasses several instances 
of descent-type operators, in particular both paradigms of steepest descent and average 
descent. In Section 4 we study general diffusion processes in metric spaces and show that 
asymmetrization (via downhill orientation) is the key property to obtain a determination 
result, in a complete analogy to the asymmetric definitions of (2)–(3). In the last section 
we consider the particular case of descent operators in finite dimensional spaces and 
obtain an explicit classification of a broad subfamily of these operators.
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2. Notation and preliminaries

We set R = R 
 {−∞, +∞} and R+ = R+ 
 {+∞}. For any a ∈ R we set a+ =
max{a, 0}. For two real numbers r, s ∈ R, we write r ∧ s := min{r, s} and r ∨ s :=
max{r, s}. Given a nonempty set X and a function f : X → R we define the domain of 
f as follows:

dom(f) := {x ∈ X : f(x) < +∞} .

Given α ∈ R, we write

[f ≤ α] := {x ∈ X : f(x) ≤ α}

[f < α] := {x ∈ X : f(x) < α}

to denote the sublevel set and strict sublevel set of f at value α. The sets [f = α], [f ≥ α]
and [f > α] are defined analogously.

We shall often equip the set X with a topology, denoted by τ . In this case, we denote 
by B(X) the σ-algebra of the Borel subsets of the topological space (X, τ).

We say that a function f : X → R ∪ {+∞} is τ -lower semicontinuous if all sublevel 
sets [f ≤ a], a ∈ R, are τ -closed subsets of X. The function f is called τ -coercive if

for every α ∈ (−∞, sup f), the sublevel set [f ≤ α] is τ -compact. (4)

We simply call f lower semicontinuous (respectively, coercive), when no ambiguity on the 
topology occurs. Notice that the above definition of coercivity encompasses in particular 
all constant functions.

We further denote by

C(X) the space of continuous functions from X to R (5)

and we define the subclass of coercive continuous functions by

K(X) := {f ∈ C(X) : f is τ -coercive}. (6)

If (X, τ) is compact, then every lower semicontinuous functional is coercive and K(X) =
C(X).

Let Ln stand for the usual Lebesgue measure over Rn and let Bn(x, r) (respectively, 
Bn(x, r)) be the open (respectively, closed) ball centered at x ∈ Rn of radius r > 0. We 
also denote by Bn (respectively, Sn) the closed unit ball (respectively, unit sphere) of 
Rn. If there is no ambiguity, we omit the subindex n for each of the elements above. It 
is well known (see, e.g., [22]) that the n-dimensional volume of the ball of radius r > 0
in Rn is given by



A. Daniilidis et al. / Journal of Functional Analysis 287 (2024) 110626 5
Ln(B(0, r)) = πn/2

Γ
(
n
2 + 1

)rn , (7)

where Γ stands for the gamma function. In particular, the volume of the n-dimensional 
ball B(0, r) is proportional to rn. For any (affine) subspace W of Rn, we denote by 
dim(W ) its (affine) dimension.

We say that a family F of real-valued functions is a cone if for every f ∈ F and 
r ≥ 0 we have rf ∈ F . In addition, we say that F is a translation cone if it is closed by 
translations (that is, for every f ∈ F and every constant c ∈ R, we have that f + c ∈ F). 
Clearly, the set K(X) of coercive continuous functions is a translation cone in C(X).

For an operator T : F → (R+)X , we define its domain

dom(T ) := {f ∈ F : T [f ](x) < +∞, for all x ∈ X}.

If (X, d) is a metric space, we define the metric slope |∇f |(x) of an extended real-valued 
function f : X → R ∪ {+∞} at the point x ∈ dom(f) as follows:

|∇f |(x) :=

⎧⎨⎩ lim sup
y→x

{f(x)−f(y)}+
d(y,x) , if x is not isolated,

0, otherwise.
(8)

In the same setting, the global slope G [f ](x) is defined as follows:

G [f ](x) := sup
y∈X

{f(x)− f(y)}+
d(y, x) .

Notice that G [f ](x) = 0 if and only if x ∈ argmin f (i.e. x is global minimum of f), 
while |∇f |(x) = 0 whenever x is a local minimum of f . The notions of metric slope (also 
known as strong slope) and global slope are well known in the literature (see, e.g., [1]
and the references therein).

Let us now assume that X is a Banach space with dual X∗. It is well-known that if 
f : X → R is a smooth function, then

|∇f |(x) = ‖∇f(x)‖.

In the nonsmooth setting, if f : X → R ∪{+∞} a lower semicontinuous convex function, 
its (Fenchel-Moreau) subdifferential ∂f(x) at x ∈ dom(f) is defined as follows:

∂f(x) = {p ∈ X∗ : ∀y ∈ X, f(y) ≥ f(x) + 〈p, y − x〉}.

It is well-known that ∂f(x) is a closed convex set and it is nonempty if x is a point of 
continuity of f (see, e.g., [21]). Moreover, it is known (see, e.g., [1, Proposition 1.4.4]) 
that for any lower semicontinuous convex function over a Banach space, one has

|∇f |(x) = G [f ](x) = d(0, ∂f(x)). (9)
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2.1. State-of-the-art

The derivative of a smooth function recovers, up to an additive constant, the function 
through integration. In the nonsmooth case, Rockafellar [20] showed that every lower 
semicontinuous convex function can be represented through its subdifferential by means 
of a nonsmooth integration. This result has been refined in [4] for Banach spaces with 
the Radon-Nikodym property, provided the function satisfies a mild coercivity property 
(namely, the asymptotic cone of its epigraph is epi-pointed). In this latter case, a partial 
knowledge of the subdifferential mapping ∂f is sufficient to recover the function up to a 
constant.

Historically, this integration result was first stated as a determination result: For every 
two proper convex lower semicontinuous functions f, g : X → R over a Banach space X, 
one has that

(∂f(x) = ∂g(x),∀x ∈ X) =⇒ f = g + c, for some c ∈ R. (10)

This result was first obtained in Hilbert spaces by Moreau [16], and generalized to Banach 
spaces one year later by Rockafellar [19]. A more general result was established by Brezis 
for monotone operators [6], where the same determination result can be obtained in 
Hilbert spaces only in terms of the element of minimal norm of the subdifferential, that 
is,

(proj(0, ∂f(x)) = proj(0, ∂g(x)),∀x ∈ H) =⇒ f = g + c, for some c ∈ R, (11)

where proj(x, A) denotes the metric projection of x onto the set A. Notice that knowledge 
of a full gradient ∇f(x) (respectively, subdifferential ∂f(x) ⊂ X∗, or proj(0, ∂f(x)) ∈ H) 
at many (all) x ∈ X is already a rich information: at every such point x we need to know 
a vector (respectively, a set of vectors). Nonewithstanding, it has recently become clear 
that much less information (namely, a scalar) is often sufficient if our objective is only 
to determine functions (rather than recovering them via an explicit formula). This is 
resumed below:

2.1.1. Determination of convex functions
Let H be a Hilbert space and f : H → R be a C2-smooth convex and bounded from 

below function. Set V (x) = 1
2‖∇f(x)‖2 and consider the second-order dynamical system

ẍ(t) = ∇V (x(t)), (12)

with initial condition x(0) = x0 ∈ H. It has been shown in [5] that every evanescent 
solution of (12) (that is, every solution satisfying ‖ẋ(t)‖ → 0 and ‖∇V (x(t))‖ → 0, as 
t →∞) is solution of the first order gradient system:
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{
ẋ(t) = −∇f(x(t))
x(0) = x0.

(13)

On the other hand, C2-smoothness assumptions guarantee that (13) has unique solution. 
The fact that f is bounded from below ensures that this solution is evanescent. By 
straightforward differentiation we deduce that this solution is also solution of the second-
order system (12), therefore (12) and (13) have the same solutions. Since (12) depends 
only on ‖∇f‖ (rather than on ∇f), the following conclusion has been obtained:

• If f, g : H → R are two C2-smooth convex bounded from below functions, then

‖∇f‖ = ‖∇g‖ ⇐⇒ ∇f = ∇g ⇐⇒ f = g + c, for some c ∈ R. (14)

Notice that C2-smoothness was required in order to define property (12). However, 
this assumption can be relaxed to C1-smoothness, assuming existence of minimizers [2]. 
This is based on the remark that

‖∇f‖ = ‖∇g‖ ⇐⇒ 〈∇(f + g),∇(f − g)〉 = 0 (15)

which ensures in turn that the function f − g is constant among the gradient orbits 
of the (convex) function f + g. Since each such orbit lands on the (common) set S of 
minimizers of the functions f , g and f + g, and since f − g is constant there (with value 
min f −min g), the result follows.

A generalization of (14) has been carried out in [18], where smoothness assumption 
has been replaced by lower semicontinuity.

• If f, g : H → R are two convex lower semicontinuous and bounded from below 
functions, then

d(0, ∂f(x)) = d(0, ∂g(x)), for all x ∈ H ⇐⇒ ∂f = ∂g

⇐⇒ f = g + c, for some c ∈ R.
(16)

To achieve the above result, the authors studied the subgradient system ẋ(t) ∈ −∂f(x(t))
and showed that in this case the assumption d(0, ∂f(·)) ≥ d(0, ∂g(·)) yields f ≥ g + c. 
This is proven based on two key observations: First, the solution x(t) is not only a 
minimizing curve for f (i.e., f(x(t)) → inf f as t → +∞), but it is also a minimizing 
curve for g. Second, the chain rule of the convex subdifferential entails that (f − g) is 
nonincreasing along x(t). Thus, one can consider c = inf f − inf g. After proving this 
comparison principle, (16) follows by symmetry.

2.1.2. Determination in metric spaces
Convexity assumption was important for the proofs of (14) and (16). However, the 

outlined proof via (15) uses convexity only in two places: to conclude that every steepest 
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descent curve lands on a critical point (i.e. has an accumulation point in the set of critical 
points), and that every critical point is global minimizer, that is,

Crit f = {x ∈ X : ∇f(x) = 0} = arg min f. (17)

Assuming (17) and some coercivity condition (instead of convexity), the same argument 
leads to the following result:

• If f, g : H → R are two C1-smooth coercive functions, then:

‖∇f‖ = ‖∇g‖ and
Crit f = arg min f = arg min g �= ∅

}
=⇒ f = g + c, for some c ∈ R.

On the other hand, all results mentioned in the previous subsection are strongly 
based on (sub)gradient dynamical systems and the Hilbertian structure of the space. 
Quite surprisingly, it turns out that this structure is eventually not required. Indeed, 
in the recent work [24], the result (16) has been extended to arbitrary Banach spaces, 
through a completely different approach, which was based on the notion of countable 
orderable sets introduced in [14]. In that work the authors establish that two continuous 
and bounded from below functions f, g : X → R defined on a metric space (X, d) and 
with finite global slopes are equal up to a constant, provided they have the same global 
slopes at every point. In other words:

G [f ] = G [g] < +∞ =⇒ f = g + c, for some c ∈ R. (18)

The key technique to achieve such a result is the construction of a minimizing sequence 
by means of the global slope. The construction is based on the following result (proved in 
[24]): for every sequence {xi}i of the metric space (X, d) and for every proper extended 
real-valued function f : X → R 
 {∞} it holds:(

lim
i→∞

G [f ](xi) = 0 and
∞∑
i=1

G [f ](xi+1)d(xi, xi+1) <∞
)

=⇒ lim inf
i→∞

f(xi) = inf
X

f.

(19)
Although the setting is quite general (metric spaces), the notion of global slope is 

rather restrictive, since it does not coincide with the modulus of the derivative in the 
smooth case. But this notion is a very good fit for convex functions defined on a general 
Banach space X. In this case, combining (9) with (18) yields a generalization of (16).

In an independent work [8], the authors considered the local notion of metric slope and 
established the following comparison result for the class of continuous coercive functions. 
In what follows we denote by

Critf = {x ∈ X : |∇f |(x) = 0}
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the set of (metrically) critical points.

Proposition 2.1 (slope comparison). Let (X, d) be a metric space and f, g : X → R be 
two continuous coercive functions. Assume that

(i). |∇f |(x) > |∇g|(x), for all x ∈ X�Critf .; and
(ii). f(x) > g(x), for all x ∈ Critf .

Then, f > g.

The proof was obtained by reasoning to contradiction and using discrete iterations 
and transfinite induction. The following determination result was then obtained as con-
sequence of Proposition 2.1.

Theorem 2.2 (Determination in metric spaces). Let (X, d) be a metric space and f, g :
X → R be two continuous coercive functions. Assume that

(i). |∇f |(x) = |∇g|(x) < +∞, for all x ∈ X; and
(ii). f(x) = g(x), for all x ∈ Crit f .

Then, f = g.

The above result asserts that information on the metric slope |∇f | and critical values 
is sufficient to determine continuous coercive functions with finite slope (therefore, in 
particular, Lipschitz continuous coercive functions). Taking into account the pathologies 
that prevail Lipschitz functions, the above statement appears close to be optimal: In [8]
several counterexamples are presented to show the pertinence of the assumptions. This 
being said, there is still room for improvements: indeed, assuming X is a complete metric 
space, it seems plausible to relax coercivity/compactness assumption (which is required 
in the current proof), by an alternative assumption ensuring the existence of appropriate 
descent (generalized) sequences that link any point to the critical set.

2.2. Description of the current work

Revising the arguments employed in [8] for the proof of Proposition 2.1 and The-
orem 2.2 we observe that continuity and coercivity are topological notions, while the 
metric structure of (M, d) is only required in order to define the metric slope, see (8). 
In particular, one can assume continuity and coercivity with respect to another topol-
ogy (not related to the given distance d) and the topological part of the proof can be 
completely decoupled.

In this work we show that a similar result to Theorem 2.2 holds for any topological 
space equipped with a Borel probability measure μ, if we replace the metric slope |∇f |(x)
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(corresponding to the steepest descent at x) by the μ-average descent Tμ(f)(x) at x given 
by

Tμ(f)(x) :=
∫
X

{f(x)− f(y)}+ dμ(y) =
∫

[f≤f(x)]

[f(x)− f(y)] dμ(y).

More generally, we introduce an abstract descent operator T [f ] (see Definition 3.1) that 
encompasses both metric and global slopes (in metric spaces) and average descent (in 
probability spaces) as well as many other instances, see Subsection 3.3 for further exam-
ples and stability properties of this operator. We then establish an abstract determination 
result (Theorem 3.5) revealing that the metric structure is neither minimal nor optimal 
framework, as hinted by the topological and metric decoupling observed in [8]. In Sec-
tion 4 we study general stochastic processes in metric spaces and define adequate oriented 
operators (particular instances of Definition 3.1) that allow to obtain determination re-
sults. Finally, in Section 5 we introduce an equivalence relation among descent moduli for 
functions f ∈ RV defined in finite spaces V and show that a typical descent modulus is 
equivalent to a steepest descent with respect to a prescribed active neighborhood system 
(see Theorem 5.8).

3. Descent modulus: definition, properties and main examples

Let F be a family of functions from a nonempty set X to R. For an operator 
T : F → (R+)X , we define its domain

dom(T ) := {f ∈ F : T [f ](x) < +∞, for all x ∈ X}. (20)

We also define the set ZT (f) of T -critical points of f ∈ F as follows:

ZT (f) = {x ∈ X : T [f ](x) = 0}. (21)

(Note that every T -critical point of f is a global minimizer for the function T [f ].)
In this section we give an axiomatic definition of an abstract descent operator, that 

is, an operator T acting on (a certain class of) functions f from X to R. This operator 
associates to each point x ∈ X an extended nonnegative number T [f ](x) ∈ R ∪ {+∞}
which corresponds to an abstract measure of descent (henceforth called descent modulus) 
of f at x.

The required properties of this abstract definition will be kept minimal to encompass 
several instances stemming from classical and variational analysis, metric geometry and 
stochastic processes: in particular, the metric slope (used in [8]), the global slope (used 
in [24]) and the notion of average descent (that will be discussed later in this work) are 
all captured by the proposed abstract scheme.
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3.1. Axiomatic definition

Let F be a translation cone in the space of functions from a nonempty set X to R.

Definition 3.1 (Abstract descent modulus). Let T : F → (R+)X be a nonlinear operator.
We say that:

(D1). T preserves global minima, if for every function f ∈ F and x ∈ X we have

x ∈ argmin f =⇒ x ∈ ZT (f) .

(D2). T is monotone at x, if for every f, g ∈ F we have:

∀z ∈ X : (f(x)− f(z))+ ≥ (g(x)− g(z))+ =⇒ T [f ](x) ≥ T [g](x). (22)

(D3). T is scalar-monotone at x, if for every function f ∈ F and r > 1, we have

0 < T [f ](x) < +∞ =⇒ T [f ](x) < T [rf ](x).

The operator T is called (scalar) monotone, if it is (scalar) monotone at every x ∈ X.
We say that T is a descent modulus for the class F if properties (D1)–(D3) hold, that 

is, if T is monotone, scalar-monotone and preserves global minima.

Before we proceed, let us have a brief discussion on the above properties:

Property (D1) states that there is no descent at global minima; thus T [f ](x) = 0 holds 
at every x ∈ argmin f .

Property (D2) expresses the fact that the amount of descent of f at a point x depends 
only on the sublevel set [f ≤ f(x)] and is captured by the function z �→ (f(x) − f(z))+. 
Accordingly, for a fixed x ∈ X, the relation

g �x f ⇐⇒
def

∀z ∈ X : (g(x)− g(z))+ ≤ (f(x)− f(z))+

is a preorder relation on F which roughly reads as follows: “f has more descent than g at 
x”. Under this terminology, (D2) requires the mapping F � f �→ T [f ](x) to be monotone 
with respect to �x.

Notice further that (22) yields the following: If g �x f , then

z /∈ [f < f(x)] =⇒ g(z) ≥ g(x) (that is, z /∈ [g < g(x)]). (23)

This means that g �x f implies that [g < g(x)] ⊂ [f < f(x)]. Finally, scalar-
monotonicity in (D3) expresses the fact that the descent of the function g = rf should 
be larger than the one of f , when r > 1.
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In conclusion, the above axioms (D1)–(D3) are natural requirements for an abstract 
notion of descent of a function f at a point x. The following proposition reveals further 
properties that can be derived from the axioms of Definition 3.1.

Proposition 3.2 (Properties of descent moduli). Let F ⊂ C(X) (as before) and T : F →
(R+)X be an operator. Then:
(a). (one-step descent property) T is monotone if and only if for every f, g ∈ F and 
x ∈ X

T [f ](x) > T [g](x) =⇒ ∃z ∈ [f < f(x)] : f(x)− f(z) > g(x)− g(z). (24)

(b). (translation-invariance) If T is a descent modulus for F , then for every c ∈ R and 
f ∈ F we have:

T [f ] = T [f + c].

(c). (strict monotonicity) Let T be monotone at x ∈ X. Then the following are equivalent:
– (c1). T is scalar-monotone at x.
– (c2). For every f, g ∈ F with T [f ](x) > 0, T [g](x) < +∞ and [g ≤ g(x)] ⊂ [f ≤ f(x)], 
the implication

∃δ > 0 : ∀z ∈ [g ≤ g(x)] =⇒ f(x)− f(z) ≥ (1 + δ)(g(x)− g(z)),

yields

T [f ](x) > T [g](x).

– (c3). For every f ∈ F , x ∈ X and r ∈ (1, +∞) such that 0 < T [f ](x) and T [rf ](x) <
+∞, the mapping

[0, r − 1] � δ �→ T [(1 + δ)f ](x)

is strictly increasing.

Proof. Let us show the above properties separately:
(a). (sufficiency) Reasoning by absurd, we assume that the operator T verifies the one-
step property but it is not monotone. Then, there exist f, g ∈ F and x ∈ X with 
(f(x)− f(·))+ ≥ (g(x)− g(·))+ but with T [f ](x) < T [g](x). By the one-step descent 
property (24), there exists z ∈ [g < g(x)] such that

g(x)− g(z) > f(x)− f(z).

However, the inequality (f(x) −f(·))+ ≥ (g(x) −g(·))+ yields that [g < g(x)] ⊂ [f ≤ f(x)], 
and so the above inequality is a direct contradiction.
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(necessity) Assume that T is monotone but the one-step descent property does not hold. 
Then, there exist f, g ∈ F and x ∈ X with T [f ](x) > T [g](x) such that for all z ∈ X we 
either have f(x) ≤ f(z) or f(x) − f(z) ≤ g(x) − g(z). It is not hard to see that for every 
z ∈ X one has that

(f(x)− f(z))+ =
{
f(x)− f(z) ≤ g(x)− g(z) , if f(x) > f(z)

0 , otherwise.

Thus, in any case, we get that (f(x) − f(z))+ ≤ (g(x) − g(z))+. Then, monotonicity 
yields that T [f ](x) ≤ T [g](x), which is a contradiction.
(b). We show that for every f ∈ F and c ∈ R, we have T [f ] = T [f + c].

Notice that [(f(x) + c)− (f(z) + c)]+ ≥ [f(x)− f(z)]+ holds trivially for all x, z ∈ X. 
By monotonicity we deduce that T [f ] ≤ T [f + c]. Replacing now f by f ′ = f + c and 
respectively, c by c′ = −c, we obtain equality.
(c). Let us show first that (c1) ⇒ (c2):

Reasoning by absurd, assume that there exist f, g ∈ F and δ > 0 satisfying the 
hypotheses of the statement and x ∈ X with 0 < T [f ](x) ≤ T [g](x) < +∞. Then for all 
z ∈ X it holds:

(f(x)− f(z))+ ≥ ((1 + δ)g(x)− (1 + δ)g(z))+ .

By monotonicity, we deduce that T [(1 + δ)g] ≤ T [f ]. Further, using scalar-monotonicity, 
we get

0 < T [g](x) < +∞ =⇒ T [g](x) < T [(1 + δ)g](x) ≤ T [f ](x) ≤ T [g](x),

which is a contradiction.
Let us now show that (c2) ⇒ (c3):
Let f ∈ F , x ∈ X and r > 1 such that 0 < T [f ](x), T [rf ](x) < +∞. Fix δ1, δ2 ∈

[0, r− 1] with δ1 < δ2. We set g = (1 + δ1)f and h = (1 + δ2)f . Monotonicity yields that 
0 ≤ T [g](x) and T [h](x) < +∞. Then, setting

δ = 1 + δ2
1 + δ1

− 1

we have that for all y ∈ X, [g ≤ g(y)] = [h ≤ h(y)], and for all y, z ∈ X:

h(y)− h(z) = (1 + δ)(g(y)− g(z)).

Thus, (c2) yields that T [h](x) > T [g](x).
Let us finally establish that (c3) ⇒ (c1).
To this end, let f ∈ F , r > 1 and x ∈ X such that 0 < T [f ](x) < +∞. We need to 

show that T [f ](x) < T [rf ](x). This holds trivially if T [rf ](x) = +∞, therefore we can 
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assume that T [rf ](x) < +∞. Since T is monotone, we have that T [rf ](x) ≥ T [f ](x)
already, and in particular, T [rf ](x) > 0. Then, by hypothesis, we have that the mapping

[0, r − 1] � δ �→ T [(1 + δ)f ](x)

is strictly increasing, which leads us directly to the desired inequality. �
3.2. Determination in topological spaces

Let (X, τ) be a topological space and let T be a descent modulus for K(X). Let 
us define the following equivalent relation on the class K(X) of continuous coercive 
functions: we say that the functions f, g ∈ K(X) are equivalent (and we denote f ∼ g) 
if they have the same T -critical set and they are equal there.
In other words:

f ∼ g ⇐⇒ ZT (f) = ZT (g) = S and f |S = g|S .

In this section, borrowing from techniques developed in [8], we show that properties 
(D1)–(D3) of the descent modulus (cf. Definition 3.1) are sufficient to guarantee that the 
mapping f �→ T [f ] is injective on K(X), modulo the above equivalent relation. Therefore, 
according to our terminology, the descent modulus determines the class K(X). At this 
stage, let us also outline the topological nature of this result: no linear or metric structure 
is required.

The results of this section will be stated in a slightly more general framework. We 
assume, similarly to the previous section, that F ⊂ K(X) is a translation cone.

We start with the following lemma.

Lemma 3.3 (strict domination of descent modulus). Let T be a descent modulus for the 
class F . Let f, g ∈ dom(T ) such that

∀x ∈ X \ ZT (f), T [f ](x) > T [g](x).

Then, for all x ∈ X, we have that

f(x) ≥ g(x) + μ(x),

where

μ(x) := inf{(f − g)(z) : z ∈ [f ≤ f(x)] ∩ ZT (f)} ∈ R ∪ {−∞}.

Proof. Since the set of global minimizers of every function f ∈ F is nonempty and the 
abstract descent modulus T preserves global minima, we deduce that ZT (f) �= ∅ and 
consequently, μ(x) < +∞. Let us assume, towards a contradiction, that there exists 
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x ∈ X such that f(x) < g(x) + μ(x). Then, clearly μ(x) > −∞ which readily yields 
x ∈ X \ ZT (f). Therefore, by assumption, T [f ](x) > T [g](x). Applying the one-step 
descent property (24) of T , we infer that there exists z0 ∈ X such that

f(z0) < f(x) and (g − f)(z0) = c > (g − f)(x) > −μ(x).

Since z0 is not a T -critical point, we can repeat the above argument to obtain z1 /∈ ZT

such that f(z1) < f(z0) and (g − f)(z1) > c = (g − f)(z0). Following the strategy of 
[8, Proposition 2.2], we construct (by means of a transfinite induction over the ordi-
nals) a generalized sequence {zα}α ⊂ [f ≤ f(z0)] such that {f(zα)}a is decreasing and 
{(g − f)(zα)}α is increasing:
– If α = β + 1 is a successor ordinal then, since zβ /∈ ZT (f) and g(zβ) ≥ f(zβ) + c, the 
one-step descent property (24) yields zβ+1 such that

f(zβ+1) < f(zβ) ≤ f(z0) and (g − f)(zβ+1) > (g − f)(zβ) ≥ c.

– If α is a limit-ordinal and {zβ}β<α ⊂ [f ≤ f(z0)] is defined accordingly, then since the 
sublevel set [f ≤ f(z0)] is compact, the ω-limit set

A =
⋂
β<α

{zη : β ≤ η < α},

is nonempty. Pick any zα ∈ A. Clearly, zα ∈ [f ≤ f(z0)], f(zα) ≤ f(zβ) for all β ≤ α, 
and by continuity

(g − f)(zβ) = inf{(g − f)(zη) : β ≤ η < α} ≤ (g − f)(zα).

Notice that the above construction never meets a T -critical point of f . Indeed, if zα ∈
ZT (f) for some ordinal α, then since f(zα) < f(x) we would have that

−μ(x) = sup{(g − f)(z) : z ∈ [f ≤ f(x)] ∩ ZT (f)}

≥ (g − f)(zα) ≥ c > −μ(x),

which is a contradiction. Due to a cardinality obstruction, we necessarily deduce that 
zα = zβ for some ordinals α, β with α > β. This yields

(g − f)(zβ+1) > (g − f)(zβ) = (g − f)(zα) ≥ (g − f)(zβ+1),

which is clearly a contradiction. The conclusion follows. �
Theorem 3.4 (Comparison principle). Let T be a descent modulus for F and let f, g ∈
dom(T ) and c ∈ R such that
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(i). T [f ](x) ≥ T [g](x), for all x ∈ X; and
(ii). f(x̄) ≥ g(x̄) + c, for all x̄ ∈ ZT (f).

Then, f ≥ g + c.

Proof. Let x ∈ X \ ZT (f) be arbitrarily chosen. Fix ε > 0, set fε = (1 + ε)f and notice 
that monotonicity of T yields that ZT (fε) ⊂ ZT (f). Let z ∈ X \ ZT (fε). We have two 
cases:

Case 1: z ∈ X \ ZT (f). Then scalar-monotonicity of T yields

T [fε](z) = T [(1 + ε)f ](z) > T [f ](z) ≥ T [g](z).

Case 2: z ∈ ZT (f) \ ZT (fε). Then T [fε](z) > 0 = T [f ](z) ≥ T [g](z).

In both cases, T [fε](z) > T [g](z). Thus, by Lemma 3.3, we have that

fε(x) ≥ g(x) + inf{(fε − g)(z) : z ∈ ZT (fε) ∩ [fε ≤ fε(x)]}

≥ g(x) + inf{(fε − g)(z) : z ∈ ZT (f) ∩ [f ≤ f(x)]}

≥ g(x) + c + ε inf{f(z) : z ∈ ZT (f) ∩ [f ≤ f(x)]}

≥ g(x) + c + εmin f.

Finally, by taking ε → 0, we deduce that f(x) ≥ g(x) + c. The proof is complete. �
Applying twice Theorem 3.4, we deduce easily the following determination result.

Theorem 3.5 (Determination of continuous coercive functions). Let T be a descent mod-
ulus for a translation cone F of K(X). Let f, g ∈ dom(T ) and c ∈ R be such that

(i). T [f ](x) = T [g](x) for all x ∈ X (whence ZT (f) = ZT (g)); and
(ii). f(x) = g(x) + c, for all x ∈ ZT (f).

Then, f = g + c.

Remark 3.6. A descent modulus T for a class F is meant to assign a quantified measure 
of descent at every point of f ∈ F . This quantity is also allowed to be infinite at some 
points of some functions and whenever this happens the determination result cannot 
apply. Therefore, T does not determine the whole class F , but instead only functions in 
dom(T ) ⊂ F .
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3.3. Stability properties of descent moduli and examples

The metric slope (used in [1], [9] e.g.) is a natural instance of abstract descent modulus 
and the results of the previous section can be seen as a minimal axiomatic presentation 
of the slope determination result given in [8]. In this section, we show that the axiomatic 
descent modulus also captures the notion of global slope (used in [24]) as well as several 
natural adaptations of the notion of slope to topological spaces, emancipating from the 
metric framework.

Throughout this section, F will denote a translation cone of C(X).

Proposition 3.7 (m-slope). Let m : X ×X → R+ be a mapping satisfying:

m(x, y) = 0 ⇐⇒ x = y (separation axiom).

Let further D = {Dx}x∈X be a family of subsets of X satisfying x ∈ Dx for every x ∈ X. 
Then, the m-slope

sf (x) :=
{

lim sup
y→x

Δ+
f (x, y) if x is not isolated,

0 otherwise,

and the semiglobal (D, m)-slope

GD[f ](x) = sup
y∈Dx

Δ+
f (x, y) (25)

are moduli of descent for the class F , where

Δ+
f (x, y) =

⎧⎪⎨⎪⎩
(f(x)−f(y))+

m(x,y) if y �= x,

0 if y = x.

(26)

Proof. Let us show that the above operators of (local) m-slope and (semiglobal) (D, m)-
slope satisfy axioms (D1)–(D3) of Definition 3.1. It is straightforward to see that (D1) 
(preservation of global minima) is fulfilled. Axiom (D3) (scalar monotonicity) is also 
fulfilled, since for every f ∈ F and r > 0 we have

srf (x) = rsf (x) and GD[rf ](x) = rGD[f ](x).

It remains to show that both operators also satisfy axiom (D2) (Monotonicity). To this 
end, let f, g ∈ F such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+.

Then for every y ∈ X we have Δ+
f (x, y) ≥ Δ+

g (x, y), which readily yields that sf (x) ≥
sg(x) and GD[f ](x) ≥ GD[g](x). The proof is complete. �
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Remark 3.8. When (X, τ) is a metric space and m is the distance function, the m-slope 
sf (x) coincides with the usual metric slope |∇f |(x) and the main result of [8] follows 
directly from Theorem 3.5. Taking now Dx = X for all x ∈ X, the semiglobal (D, m)-
slope GD[f ](x) coincides with the global slope G [f ](x) (see, e.g., [1, Definition 1.2.4]) 
which was used in [24].

Notice that the semiglobal slope GD[f ] is intrinsically different from the metric slope 
(or the norm of the gradient ‖∇f‖ in the differentiable case), which already reveals that 
Definition 3.1 represents a much more general setting. The next proposition shows that 
we can go even further.

Proposition 3.9 (Constructing descent moduli). (i). Let T1, T2 be descent moduli for the 
class F . Then T1 + T2 is also a descent modulus for F , where

(T1 + T2)[f ](x) := T1[f ](x) + T2[f ](x), for all f ∈ F and x ∈ X.

(ii). Let T be a descent modulus for F and let φ : R+ → R+ be a strictly increasing 
function with φ(0) = 0 and lim supt→+∞ φ(t) = +∞. Then

(φT )[f ](x) := (φ ◦ T [f ])(x), for all f ∈ F and x ∈ X,

is also a descent modulus for F , under the convention φ(+∞) = lim supt→+∞ φ(t) = +∞.
In particular, rT , r ≥ 0 is a descent modulus for F , where

(rT )[f ](x) := r · T [f ](x),

under the convention r ·(+∞) = +∞ for r > 0, and 0 ·(+∞) = 0.

Proof. Let T1, T2, T and φ as in the statements (i) and (ii). We show that axioms 
(D1)–(D3) of Definition 3.1 are fulfilled:
– (D1) (Preservation of global minima) Let f ∈ F and x ∈ argmin f . Then

T1[f ](x) = T2[f ](x) = T [f ](x) = 0

and consequently (T1 +T2)[f ](x) = 0 and φ(T [f ](x)) = φ(0) = 0. Therefore, T1 +T2 and 
φT preserve global minima.
– (D2) (Monotonicity) Let f, g ∈ F and x ∈ X such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀x ∈ X.

Then, since T1 and T2 are monotone, we have that

(T1 + T2)[f ](x) = T1[f ](x) + T2[f ](x) ≥ T1[g](x) + T2[g](x) = (T1 + T2)[g](x).
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Similarly, since T is monotone and φ is non-decreasing, we get that

(φT )[f ](x) = φ(T [f ](x)) ≥ φ(T [g](x)) = (φT )[g](x).

Thus, T1 + T2 and φT are monotone.
– (D3) (Scalar monotonicity) Let f ∈ F , x ∈ X and r > 1 and let us assume that 
0 < (T1 + T2)[f ](x) < +∞. Therefore, T1(x), T2(x) < +∞ and up to a mutual change of 
T1 and T2, we may also assume T1[f ](x) > 0. Then, using the scalar monotonicity of T1
and the monotonicity of T2, we deduce

(T1 + T2)[rf ](x) = T1[rf ](x) + T2[rf ](x) > T1[f ](x) + T2[rf ](x)

≥ T1[f ](x) + T2[f ](x) = (T1 + T2)[f ](x).

Thus, (T1 + T2) is scalar-monotone.
Let us now assume 0 < (φT )[f ](x) < +∞. Since φ(0) = 0 and φ(+∞) = +∞, we 

obtain again 0 < T [f ](x) < +∞. Thus, T [rf ](x) > T [f ](x) and

(φT )[rf ](x) = φ(T [rf ](x)) > φ(T [f ](x)) = (φT )[rf ](x),

yielding that (φT ) is scalar-monotone. We conclude that both (T1 + T2) and (φT ) are 
descent moduli for F . �

Notice that the family of descent moduli for the class F has the structure of a convex 
cone (i.e., it is a cone closed for the sum), with the sum and the scalar multiplication 
being defined as in Proposition 3.9.

The following proposition provides other types of operations, based on truncations, 
that preserve descent moduli.

Proposition 3.10 (Truncated descents). Let T be a descent modulus for the class F . Then:

(i). For every ε > 0, the operator Tε given by

Tε[f ](x) =
{

T [f ](x), if f(x) > inf f + ε

0, otherwise,

is a descent modulus for F .
(ii). For every K ⊂ X, the operator T

∣∣
K

given by

T
∣∣
K

[f ](x) =
{

T [f ](x), if x ∈ K

0, otherwise,

is a descent modulus for F .
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Proof. Let T , ε > 0 and K ⊂ X as in the statement of the proposition. We will show 
that the operators Tε and T

∣∣
K

satisfy properties (D1)–(D3) of Definition 3.1. Notice 
that for every f ∈ F and x ∈ X we have T [f ](x) ≥ Tε[f ](x) and T [f ](x) ≥ T

∣∣
K

[f ](x). 
Therefore, if T [f ](x) = 0, the above readily yields Tε[f ](x) =

∣∣
K

(x) = 0, and (D1) holds 
trivially.

Let us now prove (D2). To this end, Let f, g ∈ F and x ∈ X such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀x ∈ X.

Let us first deal with Tε: if f(x) > inf f+ε, then Tε[f ](x) = T [f ](x) ≥ T [g](x) ≥ Tε[g](x). 
On the other hand, if f(x) ≤ inf f + ε, then [f(x) − f(z)]+ ≤ ε for all z ∈ X, whence 
g(x) ≤ inf g + ε and Tε[f ](x) = Tε[g](x) = 0 (by definition of Tε). We conclude that 
Tε[f ](x) ≥ Tε[g](x).

Let us now deal with T
∣∣
K

: If x ∈ K, then T
∣∣
K

[f ](x) = T [f ](x) ≥ T [g](x) =
T
∣∣
K

[g](x), while if x ∈ X \ K, then T
∣∣
K

[f ](x) = T
∣∣
K

[g](x) = 0. In both cases 
T
∣∣
K

[f ](x) ≥ T
∣∣
K

[g](x).
It remains to prove (D3). Let f ∈ F , x ∈ X and r > 1. If inf f = −∞, then 

Tε[f ] = T [f ] and the result follows. Therefore, we may assume inf f > −∞ and 
0 < Tε[f ](x) < +∞. This yields f(x) > inf f + ε and consequently, Tε[f ](x) = T [f ](x). 
Noting that rf(x) > r(inf f + ε) > inf rf + ε, we conclude that Tε[rf ](x) = T [rf ](x), 
as well. Then, since Tε[f ](x) = T [f ](x) < T [rf ](x) = Tε[rf ](x), we conclude that Tε is 
scalar-monotone.

Let us now assume 0 < T
∣∣
K

[f ](x) < +∞. This yields in particular that x ∈ K and 
so T

∣∣
K

[f ](x) = T [f ](x) and T
∣∣
K

[rf ](x) = T [rf ](x). Then, since

T
∣∣
K

[f ](x) = T [f ](x) < T [rf ](x) = T
∣∣
K

[rf ](x),

we conclude that T
∣∣
K

is scalar-monotone. �
The last stability property that we study is the pointwise limit. In general, this oper-

ation does not preserve moduli of descent, since scalar-monotonicity can be lost in the 
limit process, as the following example reveals.

Example 3.11 (Axiom (D3) is not preserved under pointwise limits). Let X = Rn and 
consider the class F = C1(Rn) of C1-smooth functions. Let us further consider the 
sequence of descent moduli

Tn[f ](x) = n
√
‖∇f(x)‖, n ∈ N,

and its pointwise limit operator:

T [f ](x) = lim
n→∞

Tn[f ](x) =
{

0 , if ∇f(x) = 0,
1 , otherwise.
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, 
The operator T preserves global minima and is monotone. However, it is not scalar-
monotone (and it clearly fails to determine functions in the sense of Theorem 3.5.) �

The following definition introduces a large subclass of abstract descent moduli which 
provides a remedy to the above situation.

Definition 3.12 (Homogeneous descent moduli). Let F ⊂ C(X) be a translation cone, and 
let p ∈ (0, +∞). An operator T : F → (R+)X is said to be

(i). p–homogeneous if T [rf ](x) = rp T [f ](x), for every f ∈ F and r > 0.
(ii). p–superhomogeneous if T [rf ](x) ≥ rp T [f ](x), for every f ∈ F and r > 0.

Clearly all p–homogeneous and all p–superhomogeneous operator are also scalar-
monotone. The interest of this class is that every operator T which is defined as a 
pointwise limit of a sequence of p-(super)homogeneous descent moduli {Tn}n∈N , that is,

T [f ](x) = lim
n→+∞

Tn[f ](x), for all f ∈ F and x ∈ dom(f),

is itself a p–(super)homogeneous descent modulus. In other words, axiom (D3) (scalar-
monotonicity) is preserved in this context. One can also observe that up to a composition 
with the strictly increasing function ϕ(t) := t1/p, p–(super)homogenicity reduces to 1
–(super)homogenicity.

Proposition 3.13. Let (Λ, �) be a directed set, p ∈ (0, +∞) and (Tα)α∈Λ be a generalized 
sequence of p –(super)homogeneous descent moduli for the class F . Then the following 
operators, defined for every f ∈ F and x ∈ dom(f), are descent moduli for the class F :

(i). 
(

lim sup
α∈Λ

Tα

)
[f ](x) := lim sup

α∈Λ
Tα[f ](x);

(ii). 
(

sup
α∈Λ

Tα

)
[f ](x) := sup

α∈Λ
Tα[f ](x);

(iii). 
(

lim inf
α∈Λ

Tα

)
[f ](x) := lim inf

α∈Λ
Tα[f ](x);

(iv). 
(

inf
α∈Λ

Tα

)
[f ](x) := inf

α∈Λ
Tα[f ](x).

Proof. Let us verify that T := lim supα Tα satisfies axioms (D1)–(D3) of Definition 3.1. 
(A similar reasoning will apply to the other three operators.)
– (D1) (Preservation of global minima) Choose f ∈ F and x ∈ argmin f . Then, 
Tα[f ](x) = 0 for all α ∈ Λ and so T [f ](x) = 0. Thus, T preserves global minima.
– (D2) (Monotonicity). Let f, g ∈ F and x ∈ X such that (f(x)− f(z))+ ≥ (g(x)− g(z))+
for all z ∈ X. Then, Tα[f ](x) ≥ Tα[g](x) for each α ∈ Λ. Thus, T [f ](x) ≥ T [g](x) as 
well, showing that T is monotone
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– (D3) (Scalar-monotonicity): Let f ∈ F and x ∈ X. We readily deduce from 
p-superhomogeneity that T [rf ](x) = lim supα Tα[rf ](x) ≥ rp lim supα Tα[f ](x) =
rp T [f ](x). It follows that T is also p–superhomogeneous, therefore, in particular, scalar-
monotone.

The proof is complete. �
3.4. Slope-like operators that are not descent moduli

We finish this section by discussing two examples in the literature that have being 
introduced as “slope operators” on a metric space (X, d), but fail to verify Definition 3.1
of descent modulus.

The first concept is the so-called weak slope, introduced in [10,7]. For a continuous 
function f : X → R, the weak slope at a point x ∈ X, denoted by |df |(x), is defined 
as the supremum of σ ∈ R+ such that there exist δ > 0 and a continuous map H :
[0, δ] ×B(x, δ) → X such that

∀s ∈ [0, δ], ∀y ∈ B(x, δ), d(H(s, y), y) ≤ s and f(H(s, y)) ≤ f(y)− σs. (27)

Notice that |df(x)| ≥ σ whenever it is possible to find a continuous deformation H
over a neighborhood of x, such that the descent of f through that deformation is at least 
σ for every point y over which H is acting. Thus, one might interpret the weak-slope 
as the slowest descent around x. This concept has been largely studied in the setting of 
nonsmooth variational analysis and critical point theory.

The second concept is the limiting slope (see, e.g. [15, Definition 8.4]), which is defined 
as the lower semicontinuous envelope (or closure) of the strong slope |∇f |. That is, for 
a lower semicontinuous function f : X → R and a point x ∈ X, the limiting slope of f
at x is given by

|∇f |(x) := lim
ε→0

inf {|∇f |(y) : d(x, y) ≤ ε, and f(y) ≤ f(x) + ε} . (28)

Since the slope can be very ill-behaved, the limiting slope provides a regularized alter-
native. It is worth to mention that using this notion, Drusvyatskiy, Ioffe and Lewis were 
able to deal with the long-standing problem of existence of steepest descent curves [11].

The following example shows that the weak slope and the limiting slope are not 
descent moduli for K(X), since they fail to determine coercive continuous functions even 
in the interval [0, 1].

Example 3.14. Let c : [0, 1] → [0, 1] be the well-known Cantor Staircase and let us 
consider the function f : [0, 1] → R given by f(t) = c(t) + t. By construction, it is 
not hard to see that |∇f |(t) ∈ {1, +∞} for every t ∈ (0, 1], that |∇f |(0) = 0 (since 
0 ∈ argmin f), and that the slope is +∞ only in a subset of the Cantor set. Thus,
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|∇f |(t) = 1(0,1](t) :=
{

1, if t ∈ (0, 1]
0, if t = 0.

Similarly, we claim that |df |(t) takes the same values as |∇f |(t). Clearly |df |(0) = 0
and |df |(t) ≥ 1 for all t ∈ (0, 1]. Now, fix t̄ ∈ (0, 1] and take any σ > 0, δ > 0 and H
satisfying (27). Since f is strictly increasing, H(s, t) < t for every t ∈ B(t̄, δ) and every 
s ∈ [0, δ]. In particular, 0 < t −H(s, t) = d(H(s, t), t) ≤ s. Whence t − s ≤ H(s, t) and 
consequently, f(t − s) ≤ f(H(s, t)). Since the Cantor set is totally disconnected, there 
exists t ∈ (t̄− δ, ̄t) such that |∇f |(t) = 1. Then,

|∇f |(t) ≥ lim sup
s→0+

f(t)− f(t− s)
s

≥ lim sup
s→0+

f(t)− f(H(s, t))
s

≥ σ.

Thus, σ ≤ 1, which proves that |df(t̄)| = 1. This proves the claim. By taking g : [0, 1] → R

given by g(t) = t, we get that |∇g|(t) = |dg|(t) = 1(0,1](t), and so, the conclusion 
of Theorem 3.5 fails to hold for both the weak and the limiting slope. Since clearly 
both operators preserve global minima and are scalar-monotone (by homogeneity), we 
conclude that both operators fail to be monotone in the sense of Definition 3.1. �

4. The paradigm of averaged descent

It was shown in [5, Theorem 3.8] that two C2-smooth convex and bounded from 
below functions f, g defined on a Hilbert space H are equal up to a constant, provided 
‖∇f(x)‖ = ‖∇g(x)‖, for all x ∈ H. In other words, the operator:

f �→ Γ[f ] := ‖∇f‖2 (29)

is injective, modulo the constant functions, on the class of C2-smooth convex and bounded 
from below functions. Notice that the Γ-operator defined in (29) (also known as carré-
du-champ operator) is strongly related to the Wiener diffusion process, generated by the 
Laplacian operator. This hints towards a new important instance of descent modulus, 
namely the average descent, giving rise to a determination result of probabilistic nature. 
This will be developed in this section, in full generality.

4.1. Extension of dispersion measures

We first recall that for a C1-smooth function f : Rn → R the following formula holds:

‖∇f(x)‖2 = lim
ε→0

n

Ln(Bn(x, ε))

∫ [
f(x)− f(y)
‖x− y‖

]2

Ln(dy), (30)

Bn(x,ε)
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where, as mentioned in Section 2, Ln stands for the usual Lebesgue measure on Rn. The 
above formula is well-known and can be deduced from the following (also well-known) 
lemma, for which we provide a simple proof for completeness.

Lemma 4.1. For any k ≥ 1, any r > 0 and V ∈ Rk it holds:

‖V ‖2 = k

Lk(Bk(0, r))

∫
Bk(0,r)

〈
V,

u

‖u‖

〉2

du. (31)

Proof. The proof is a consequence of the invariance by rotations of the ball. Consider 
(ei)ki=1 the usual orthonormal basis of Rk. By symmetry, we can restrict to the case 
where V = ‖V ‖ · e1, so that

∫
Bk(0,r)

〈
V,

u

‖u‖

〉2

du = ‖V ‖2
∫

Bk(0,r)

〈
e1,

u

‖u‖

〉2

du

= ‖V ‖2
∫

Bk(0,r)

〈
ei,

u

‖u‖

〉2

du

for any i ∈ {1, ..., k}. We deduce

∫
Bk(0,r)

〈
V,

u

‖u‖

〉2

du = ‖V ‖2
k

∫
Bk(0,r)

k∑
i=1

〈
ei,

u

‖u‖

〉2

du

= ‖V ‖2
k

∫
Bk(0,r)

∥∥∥∥ u

‖u‖

∥∥∥∥2

du

= ‖V ‖2
k

∫
Bk(0,r)

1 du

= ‖V ‖2Lk(Bk(0, r))
k

leading to the desired equality. �
Based on equation (30), we propose an extension of the Γ-operator (29), that we call 

dispersion operator, for functions defined on a topological space (X, τ).
To this end, we consider the family β = {βx}x∈X of neighborhood bases: βx is a 

neighborhood base at x of the topology τ . We further denote by

μ : X × B(X)→ R+
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a mapping that associates to every x ∈ X, a locally finite measure μ(x, ·) ≡ μx (that is, 
for every y ∈ X, μx is finite on a neighborhood Vy of y), with positive measure at every 
element of βx. Let further m : X ×X → R+ be as in Proposition 3.7, that is,

m(x, y) = 0 ⇐⇒ x = y.

Finally, let us consider the local dimension mapping n : X → R+, where we interpret 
n(x) to be the local dimension of X at x. (Obviously, if X = Rn or if X is a manifold of 
dimension n, then n(x) ≡ n, for all x ∈ X.)

We are now ready to give the following definition:

Definition 4.2 (Dispersion operator). Let p ∈ (0, +∞). We define the p-dispersion oper-
ator Tμ (depending also on β and n : X → R+) as follows:

Tμ[f ](x) := lim sup
B∈βx

n(x)
μx(B)

∫
B

|Δf (x, y)|p μx(dy) (32)

where the limit-superior is taken over the inductive set βx endowed with the partial order 
of the reverse inclusion and

Δf (x, y) :=

⎧⎪⎨⎪⎩
f(x)−f(y)
m(x,y) , if y �= x,

0, if y = x.

(33)

Remark 4.3. (i). We kept the notation simple and denoted the above dispersion operator 
by Tμ (rather than Tμ,β,m,n,p) in order to emphasize that Tμ is the limit-superior of 
integral operators. The action at x in these operators is integrated by the measure μx.
(ii). Definition 4.2 is inspired by a construction used in [23] to extend diffusion processes 
to metric spaces. The “lim sup” ensures that Tμ is always well-defined, with possibly 
+∞–values. When X is a metric space and m is the distance function, the domain 
dom(Tμ) contains at least all (locally) Lipschitz functions. This makes the dispersion 
operator to be a nontrivial extension of (29) beyond the differentiable setting.
(iii). The family β in Definition 4.2 encompasses several natural choices when the struc-
ture of the space (X, τ) is known. For example, if (X, τ) is a (pseudo)metric space, then we 
can take the set of corresponding balls βx = {B(x, r)}r>0, for all x ∈ X. More generally, 
if the topological space (X, τ) is first-countable, then a natural choice is βx = {Vn}n∈N , 
where {Vn}n∈N is any countable basis of the neighborhoods of x.

If X = Rn, then our default choice will be βx := {B(x, r)}r>0.

We denote by S+
n the set of (n ×n)–positive semidefinite matrices, and let us consider 

a map R : Rn → S+
n . The following proposition shows that the operators of the form

ΓR[f ](x) = ‖R(x)∇f(x)‖2, x ∈ Rn
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can be obtained as particular cases of (32), under suitable choices of the parameter p > 0, 
the separation map m, the measure map μ : Rn × B(Rn) → R+ and a local dimension 
map x �→ n(x).

In what follows supp (μx) stands for the support of the measure μx := μ(x, ·). We say 
that a measure μ is absolutely continuous with respect to ν (and denote μ << ν) if both 
measures are defined on the same measurable space (X, B) and it holds:

ν(A) = 0 =⇒ μ(A) = 0, for all A ∈ B.

We are now ready to state and prove the following result:

Proposition 4.4. Let R : Rn → S+
n and set Wx := x + Ker(R(x))⊥, for each x ∈ Rn. 

Then for m(x, y) := ‖x −y‖, and p = 2, there exist a measure map μ : Rn×B(Rn) → R+
and a dimension map n : X → R+ such that supp (μx) ⊂Wx for all x ∈ Rn and

Tμ[f ](x) = ‖R(x)∇f(x)‖2, for every f ∈ C1(Rn).

Proof. Let us fix x ∈ Rn. We are going to define a positive real value n(x) and a measure 
μx whose support is contained in Wx, in a way that:

Tμ[f ](x) = lim sup
r>0

n(x)
μx(B(x, r))

∫
B(x,r)

Δf (x, y)2μx(dy) = ‖R(x)∇f(x)‖2. (34)

Set k = dim (Ker R(x))⊥, 0 ≤ k ≤ n.
If k = 0, then Ker R(x) = Rn, Wx ≡ {x} and R(x)∇f(x) = 0. Then (34) holds 

trivially by setting μx = δx (the Dirac measure at x) and using the fact that Δf(x, x) = 0
(cf. (33)).

Let us now assume that 1 ≤ k ≤ n. Let {ej}nj=1 be an orthonormal base of Rn such 
that

(Ker R(x))⊥ = span (ej)kj=1 = Rk

and

Ker R(x) ≡ Rn−k =
{

span (ej)nj=k+1, for k < n

{0} for k = n.

Then there exists R ∈ S+
k (the trace of R(x) ∈ S+

n on the subspace Rk × {0}n−k of Rn) 
such that decomposing z ∈ Rn as z = (v, w) ∈ Rk ×Rn−k, it holds R(x)z = Rv.

Let Ψ : Rk → Rk be given by

Ψ(u) =
{

‖u‖
‖Ru‖Ru if u �= 0

0 otherwise.
(35)
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Clearly Ψ is an isometric automorphism of Rk (depending on x, which is fixed) with 
inverse:

Ψ−1(v) =
{

‖v‖
‖R−1v‖R

−1v if v �= 0
0 otherwise.

In particular Ψ(Bk(0, r)) = Bk(0, r), for every r > 0. Furthermore, Ψ is a C1-
diffeomorphism of Rk \ {0}. Following the notation of [13, Chapter 3], let us define 
the Jacobian operator as

JΨ(u) = |det(DΨ(u))|, (36)

where DΨ is the derivative of Ψ. We define hk : Rk → R (depending on Ψ, therefore on 
x) such that

hk(v) = ‖RΨ−1(v)‖2
‖Ψ−1(v)‖2

[
JΨ(Ψ−1(v))

]−1
, v ∈ Rk.

Notice that for v = Ψ(u) the above yields:

hk(Ψ(u)) = ‖Ru‖2
‖u‖2 [JΨ(u)]−1, u ∈ Rk. (37)

We set {
h : Rn → R

h(z) := hk(v), for z = (v, w) ∈ Rn (38)

and consider the measure λ : B(Rn) → R+ (depending on k = dim(Wx)) given by the 
formula

λ(A) = Lk

(
A ∩

(
Rk × {0}n−k

))
, for all A ∈ B(Rn). (39)

Let πk denote the projection of Rn to the first k-coordinates. Notice that λ is the trivial 
extension to B(Rn) of the Lebesgue measure Lk on B(Rk).

Let us define

κ := κ(x) = Lk(Bk(0, 1))−1

⎛⎜⎝ ∫
Bk(0,1)

‖Ru‖2
‖u‖2 Lk(du)

⎞⎟⎠ . (40)

where Bk(0, r) = πk

(
B(0, r) ∩

(
Rk × {0}n−k

))
. We finally set n(x) := κ(x) dim(Wx)

and define the measure μx : B(Rn) → R+ as follows:
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μx(A) :=
∫

A−x

h(z)λ(dz) ≡
∫

πk((A−x)∩(Rk×{0}n−k))

hk(v)Lk(dv), for all A ∈ B(Rn).

(41)
This operation eliminates the last n − k coordinates (which are equal to 0 for all 

elements of (A − x) ∩
(
Rk × {0}n−k

)
), adjusting vectors to the right dimension for inte-

gration. By means of a change of variables induced by Ψ (see, e.g., [13, Theorem 3.9]), 
we deduce

μx(B(x, r)) =
∫

Bk(0,r)

hk(v)Lk(dv) =
∫

Bk(0,r)

hk(Ψ(u))JΨ(u)Lk(du)

= rk
∫

B(0,1)

‖Ru‖2
‖u‖2 Lk(du) = κLk(Bk(0, 1))rk = κLk(Bk(0, r)) .

Now, using the first-order Taylor approximation of f at x, we deduce from (33) that

Δf (x, y)2 =
[〈
∇f(x), y − x

‖y − x‖

〉
+ ε(‖y − x‖)

]2

, where lim
r→0

ε(r) = 0.

For any r > 0 we deduce from (41) that:

∫
B(x,r)

Δf (x, y)2μx(dy)

=
∫

B(0,r)

[
〈∇f(x), z

‖z‖〉 + ε(‖z‖)
]2

h(z)λ(dz)

=
∫

B(0,r)

〈∇f(x), z

‖z‖〉
2 h(z)λ(dz) +

+
∫

B(0,r)

2 〈∇f(x), z

‖z‖〉 ε(‖z‖)h(z)λ(dz) +
∫

B(0,r)

ε(‖z‖)2 h(z)λ(dz).

Let M > 0 be an upper bound of h on B(0, 1). Since μx(B(x, r)) = κLk(Bk(0, r)) and 
n(x) = k · κ, it follows that

2n(x)
μx(B(x, r))

∫
B(0,r)

〈
∇f(x), z

‖z‖

〉
ε(‖z‖)h(z)λ(dz) ≤ 2 kM ‖∇f(x)‖ ε(r) −→ 0 and

n(x)
μx(B(x, r)) .

∫
B(0,r)

ε(‖z‖)2h(z)λ(dz) ≤ kM ε(r)2 −→ 0 (as r → 0).
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Denoting by [∇f(x)]k ∈ Rk the vector consisting of the first k-coordinates of ∇f(x) and 
recalling the decomposition z = (v, w) ∈ Rk ×Rn−k we deduce from (38):

∫
B(0,r)

〈
∇f(x), z

‖z‖

〉2

h(z)λ(dz) =
∫

B(0,r)

〈
∇f(x), (v, w)

‖(v, w)‖

〉
hk(v)Lk(dv).

Using the change of variables v = Ψ(u) (recall that Ψ(B(0, r)) = B(0, r) for every r > 0) 
we obtain from (35) and (37)

∫
B(0,r)

〈
∇f(x), z

‖z‖

〉2

h(z)λ(dz)

=
∫

Bk(0,r)

〈
[∇f(x)]k,

Ψ(u)
||Ψ(u)||

〉2 ‖Ru‖2
‖u‖2 [JΨ(u)]−1JΨ(u)du

=
∫

Bk(0,r)

〈
[∇f(x)]k,

Ru

‖u‖

〉2

du =
∫

Bk(0,r)

〈
R[∇f(x)]k,

u

‖u‖

〉2

du.

Therefore we deduce from (31) and from the definitions of n(x) and μx:

Tμ[f ](x) = lim sup
r>0

n(x)
μx(B(x, r))

∫
Bk(0,r)

〈
R[∇f(x)]k,

u

‖u‖

〉2

du

= lim sup
r>0

k

Lk(Bk(0, r))

∫
Bk(0,r)

〈
R[∇f(x)]k,

u

‖u‖

〉2

du

= ‖R[∇f(x)]k‖2 ≡ ‖R(x)∇f(x)‖2.

The proof is complete. �
4.2. Oriented dispersion operators

The operator Tμ defined in (32) fails to determine continuous coercive functions, and 
consequently is not a descent modulus outside the differentiable setting. The reason for 
this failure will be illustrated in the following example.

Example 4.5. Let X = [−1, 1] and let m be its usual metric. For each x ∈ [−1, 1], let 
μ(x, ·) be the usual Lebesgue measure over [−1, 1] and n(x) = 1. Set p = 2.

f(x) = x2 and g(x) = −x2.

By (30), we have that
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∀x ∈ (−1, 1), Tμ[g](x) = Tμ[f ](x) = |2x|2.

Furthermore, it is not hard to see that at x = ±1, we have that

Tμ[g](x) = Tμ[f ](x) = lim
ε→0

1
ε

1∫
1−ε

(
1− t2

1− t

)2

dt = lim
ε→0

1
ε

1∫
1−ε

(1 + t)2dt = 4 .

Since the only T -critical point of g is 0, we deduce that T does not preserve global 
minima and so it is not a descent modulus. Furthermore, since the only T - critical point 
of f is 0 as well, we have constructed two different functions with Tμ[f ] = Tμ[g] and that 
coincide over ZT (f). In conclusion, T fails to determine continuous coercive functions in 
general metric spaces, in the sense of Theorem 3.5. �

In the above example, the points x = −1 and x = 1 should have been critical for the 
function g(x) = −x2, since they are global minimizers. However, this fails to be the case 
because the operator Tμ is not oriented. This leads to the following definition, which 
induces asymmetry between descent and ascent directions (by penalizing the latter). As 
we shall see, this is particularly relevant in nonsmooth settings.

Definition 4.6 (Oriented dispersion operator). Let μ, β, m, n and p be as in Definition 4.2. 
We define the oriented dispersion operator, denoted by T+

μ , as

T+
μ [f ](x) := lim sup

B∈βx

n(x)
μx(B)

∫
B∩[f≤f(x)]

[Δf (x, y)]p μ(x, dy)

= lim sup
B∈βx

n(x)
μx(B)

∫
B

[
Δ+

f (x, y)
]p

μ(x, dy),

where

Δ+
f (x, y) :=

⎧⎪⎨⎪⎩
(f(x)−f(y))+

m(x,y) if x �= y

0 if x = y.

(42)

The value T+
μ [f ](x) corresponds to the dispersion of f at x which is exclusively due 

to the directions of descent. In the smooth case, the value of the oriented dispersion 
T+
μ [f ](x) is the half of the value of the non-oriented dispersion Tμ[f ](x), as expected by 

symmetry. This is the content of the following proposition.

Proposition 4.7. Let X = Rn, n(x) ≡ n, βx = {B(x, ε) : ε > 0} and μx be the n-
dimensional Lebesgue measure for every x ∈ Rn. Take p = 2 and m(x, y) = ‖x − y‖. 
Then
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T+
μ [f ](x) = 1

2‖∇f(x)‖2, for every f ∈ C1(Rn).

Proof. If ‖∇f(x)‖ = 0, then 0 ≤ T+
μ [f ](x) ≤ Tμ[f ](x) = ‖∇f(x)‖2 = 0 and the conclu-

sion follows trivially.
Let us now consider the case ‖∇f(x)‖ �= 0. By a change of coordinates, we may 

assume that x = 0, f(0) = 0 and ∇f(0) = r en, where r = ‖∇f(0)‖ > 0 and en be the 
n-th vector of an orthonormal base of Rn. In this setting, we denote

S := [f ≤ f(0)] and Rn−1 := span{ej}n−1
j=1 ≡ {x ∈ Rn : 〈en, z〉 = 0}.

Following a similar development as in the proof of Proposition 4.4, for the particular 
case R(x) = In (the identity map on Rn), we deduce

T+
μ [f ](x) = lim sup

r>0

n

Ln(B(0, r))

∫
B(0,r)∩S

〈
∇f(0), u

‖u‖

〉2

du.

Consider the semispace H = {x ∈ Rn : 〈en, v〉 ≤ 0}. Then we have:

∣∣∣ ∫
B(0,r)∩S

〈
∇f(0), u

‖u‖

〉2

du −
∫

B(0,r)∩H

〈
∇f(0), u

‖u‖

〉2

du
∣∣∣

≤
∫

B(0,r)∩(S�H)

〈
∇f(0), u

‖u‖

〉2

du .

In what follows we show that Ln(B(0, r) ∩ (S�H)) is small, where S�H denotes the 
symmetric difference between S and H. To this end, it is easy to see that

B(0, r) ∩ (S�H) ⊂ Bn−1(0, r)× [−d(r), d(r)],

where d(r) stands for the maximal distance between the subspace Rn−1 × {0} and the 
elements of the following set (see Fig. 1)

D(r) = {(y, z) ∈ B(0, r) : y ∈ Bn−1(0, r) and f(y, z) = 0}
⋂

B(0, r).

Using the Implicit Function Theorem, we deduce the existence of an open subset 
U ⊂ Rn−1 containing 0, an open set V ⊂ Rn containing 0 and a function ϕ : U → R of 
class C1 such that its graph coincides with [f = 0] ∩ V and

∇ϕ(0) = −(∂nf(0))−1

⎛⎝ ∂1f(0)
...

⎞⎠ = 0n−1.
∂n−1f(0)
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Fig. 1. The gray area corresponds to the asymmetric difference S�H. The dashed line outlines the set 
Bn−1(0, r) × [−d(r), d(r)], where the dot depicts the farthest point of the set D(r) to the linear subspace 
Rn−1.

Therefore, for r > 0 sufficiently small, we have Bn−1(0, r) ⊂ U and B(0, r) ⊂ V, which 
yields

{(y, z) ∈ Bn−1(0, r)×R : f(y, z) = 0} = {(y, ϕ(y)) : y ∈ B(0, r)}.

Therefore d(r) = sup{|ϕ(y)| : y ∈ Bn−1(0, r)}. Evoking the mean value theorem we 
deduce

sup{|ϕ(y)| : y ∈ Bn−1(0, r)} ≤ r · sup{‖∇ϕ(y)‖ : y ∈ Bn−1(0, r)}.

By continuity of ∇ϕ and recalling that ∇ϕ(0) = 0 we deduce that d(r) = o(r). Recalling 
formula (7) for the volume of the (n − 1)-dimensional ball Bn−1(0, r), we set

K = 2π(n−1)/2

Γ
(
n−1

2 + 1
)

and we obtain:

Ln(B(0, r) ∩ (S�H)) ≤ Ln−1(Bn−1(0, r)) · 2d(r) = (K · rn−1) o(r) ≡ o(rn)

Therefore,

n

Ln(B(0, r))

∫
B(0,r)∩(S�H)

〈
∇f(0), u

‖u‖

〉2

du ≤ n ‖∇f(0)‖2 Ln(B(0, r) ∩ (SΔH))
Ln(B(0, r))

= n‖∇f(0)‖2
Kn

o(rn)
rn

r→0−−−→ 0.
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Since B(0, r) ∩H is the south–half of the ball B(0, r), a symmetry argument ensures

T+
μ [f ](0) = lim sup

r→0

n

Ln(B(0, r))

∫
B(0,r)∩H

〈
∇f(0), u

‖u‖

〉2

du

= 1
2 lim sup

r→0

n

Ln(B(0, r))

∫
B(0,r)

〈
∇f(0), u

‖u‖

〉2

du = 1
2‖∇f(0)‖2.

The proof is complete. �
Remark 4.8. The above arguments can be easily adapted to show that when μx and n(x)
are as in Proposition 4.4, then the oriented dispersion operator T+

μ (cf. Definition 4.6) 
satisfies:

T+
μ [f ](x) = 1

2‖R(x)∇f(x)‖2, for all f ∈ C1.

The following proposition justifies the introduction of the oriented dispersion in a 
nonsmooth setting. Given a metric space (X, d) we denote by Lip(X) the class of real-
valued Lipschitz continuous functions on X.

Theorem 4.9. Let (X, d) be a metric space and μ : X ×B(X) → R+ a measure mapping 
such that for every x ∈ X, μx is a locally finite measure with positive measure on open 
sets and β = {βx}x∈X be any family of neighborhood bases. Then, the oriented dispersion 
operator T+

μ is a descent modulus for K(X) and verifies that K(X) ∩Lip(X) ⊂ dom(T+
μ ).

Proof. The conditions over μ ensure that K(X) ∩ Lip(X) ⊂ dom(T+
μ ). Clearly the op-

erator T+
μ preserves global minima and is scalar-monotone. Let us now show that it is 

monotone. Let f, g ∈ K(X) and let x ∈ X such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+.

Then, Δ+
f (x, z) ≥ Δ+

g (x, z) for all z ∈ X and the conclusion follows. �
Remark 4.10. The measure map μ : X × B(X) → R+ is assumed to be locally finite, 
which yields in particular that each measure μx is finite on the compact sets of (X, τ). 
Apart from this assumption and the existence of a neighborhood system {βx}x∈X where 
μx takes nonzero values, no other property is required. In this setting, the superior 
limit in Definition 4.2 and Definition 4.6 are well-defined, yielding that the dispersion 
operators are descent moduli. Even less will be required to define nonlocal operators (see 
next section), namely, μx to be finite on compact sets.
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4.3. Oriented nonlocal operators

Apart from the diffusion operators, which are of local nature, one can also consider 
nonlocal operators. These latter serve to model jump dynamics, see e.g. [12]. We shall 
now define dispersion measures for these processes.

Definition 4.11 (Nonlocal dispersion operators). Let μ : X × B(X) → R+ be a measure 
mapping such that for every x ∈ X, μx is finite on all compact sets, and let φ : R+ → R+
be a strictly increasing function with φ(0) = 0. We define the nonlocal dispersion operator 
induced by φ and μ as

Tφ,μ[f ](x) =
∫
X

φ(|f(x)− f(y)|)μ(x, dy),

By construction, Tφ,μ is finite for every measurable bounded function with compact 
support. When X = V is a finite space, the nonlocal operators are particularly relevant, 
due to the fact that all points are isolated and so diffusion is not possible. In this setting, 
the measure map μ can be represented by a matrix L : V × V → R+, in the form of

Tφ,μ[f ](x) =
∑
y∈V

L(x, y)φ(|f(x)− f(y)|)

Remark 4.12. In the context of Markov generators, the nonlocal operators are of the 
form

L[f ](x) =
∫
X

(f(y)− f(x))μx(dy),

where μ is assumed to be regular in the sense that x �→ μx(A) is measurable for every 
A ∈ B(X). When φ(t) = t2 we are working with the dispersion operator Tφ,μ[f ] := Γ[f ], 
where Γ is the carré-du-champ operator associated to L, which in all generally is defined 
by the identity Γ[f ] = L[f2] − 2fL[f ] (as soon as f, f2 ∈ dom(L), see e.g. [3]).

In general, a nonlocal operator Tφ,μ might fail to be a descent modulus and to deter-
mine functions in the sense of Theorem 3.5.

Example 4.13. Let φ(t) := t2. Fix N ∈ N even, and set V := ZN ∪ {0̄}, where 0̄ /∈ ZN

and ZN = {0, 1, . . . , N − 1} stands for the usual cyclic additive group modulo N . We 
define a nonlocal operator L as follows:

L(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/2, if x ∈ ZN \ {0} and y = x± 1,
1/3, if x = 0 and y ∈ {0̄, 1,−1},
1, if x = 0̄ and y = 0,
0, otherwise.
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Fig. 2. Case N = 6.

The case N = 6 is illustrated in Fig. 2. Now, choose two functions f1, f2 ∈ RV satisfying 
that

fi(0̄) = fi(0) = 0 and |f(x± 1)− f(x)| = 1,∀x ∈ ZN .

There is at least 
(

N
N/2

)
> 1 functions verifying the above requirements, so we can take 

f1 �= f2. However, it is not hard to see that for the measure map μ associated with L, 
the nonlocal operator Tμ verifies that

Tμ[fi](x) =

⎧⎪⎪⎨⎪⎪⎩
0 if x = 0̄,
2/3 if x = 0,
1 otherwise.

for i = 1, 2. Thus, Tμ does not preserve the global minima since either argmin fi ⊇ {0, ̄0}
or argmin fi ⊂ V \ {0, ̄0}. Furthermore, Tμ fails the determination theorem even for 
functions with ZTμ

(f) �= ∅. �
Example 4.13 is very illustrative as concerns the following: when φ(t) = t2, nonlocal 

operators do not preserve global minima in general. Indeed, if V is a finite state space, 
Tμ[f ](x) measures the dispersion around point x ∈ V, when L(x, y) represents the prob-
ability to jump from the point x to the point y. Therefore it is natural for Tμ[f ](x) to 
be strictly positive. However, by imposing f(0) = f(0̄) in Example 4.13 we are forcing a 
point with no dispersion: starting from x = 0̄, the only possibility is to jump to 0.

Definition 4.14 (Oriented nonlocal operators). Let φ and μ be as in Definition 4.11. We 
define the oriented nonlocal operator induced by φ and μ as

T+
φ,μ[f ](x) =

∫
φ(f(x)− f(y))μx(dy) =

∫
φ((f(x)− f(y))+)μx(dy) (43)
[f≤f(x)] X
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Similarly to the (local) oriented dispersion operator, the above operator is a descent 
modulus for K(X), and always determines a suitable subclass of continuous coercive 
functions K(X). In the nonlocal case, we do not need to assume Lipschitz continuity, 
and consequently, X can be a mere topological space. The class is given by the strictly 
coercive functions, which is given by

Ks(X) = {f : X → R : ∀x ∈ X, [f ≤ f(x)] is compact} . (44)

The main difference between Ks(X) and K(X) is that the latter class admits functions 
attaining their maximum value since the set [f ≤ maxX f ] does not have to be compact. 
If X is compact, then the classes K(X) and Ks(X) coincide, however, if X is noncompact, 
then functions in Ks(X) cannot attain their supremum.

Theorem 4.15. Let μ : X × B(X) → R+ be a measure mapping such that μx is finite on 
all compact sets, for every x ∈ X. Then the oriented nonlocal operator T+

φ,μ is a descent 
modulus for K(X) and verifies that Ks(X) ⊂ dom(T+

φ,μ).

Proof. Since μx is finite on all compact sets, for each x ∈ X, we deduce that Ks(X) ⊂
dom(T+

φ,μ). Furthermore, since φ(0) = 0, it is clear that T+
φ,μ preserves global minima.

Let us show now that T+
φ,μ is monotone: let f, g ∈ K(X) and x ∈ X such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀z ∈ X.

Then, since φ is non-decreasing, we have that

T+
φ,μ[f ](x) =

∫
X

φ((f(x)− f(z))+)μx(dz) ≥
∫
X

φ((g(x)− g(z))+)μx(dz) = T+
φ,μ[g](x).

We conclude that T+
φ,μ is monotone.

Finally, let us show that T+
φ,μ is scalar-monotone. Let f ∈ K(X), let r > 1 and let 

x ∈ X such that 0 < T [f ](x) < +∞. By monotonicity, we have that T+
φ,μ[rf ](x) ≥

T+
φ,μ[f ](x) > 0. Let us now define the sets

An =
{
z ∈ X : f(x)− f(z) ≥ 1

n

}
⋂ {

z ∈ X : φ(r(f(x)− f(z)))− φ(f(x)− f(z)) ≥ 1
n

}
.

Clearly {An}n is an increasing sequence of μx-measurable sets satisfying:⋃
n≥1

An = [f < f(x)].

Thus, by monotone convergence theorem, we have that
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lim
n

∫
An

φ(f(x)− f(z))μx(dz) =
∫

[f<f(x)]

φ(f(x)− f(z))μx(dz) = T+
φ,μ[f ](x) > 0.

Choose then n ∈ N such that 
∫
An

φ(f(x) − f(z))μx(dz) > 0. Then, μ(x, An) > 0 and

T+
φ,μ[rf ](x) =

∫
X

φ(r(f(x)− f(z))+)μx(dz)

=
∫
An

φ(r(f(x)− f(z)))μx(dz) +
∫

X\An

φ(r(f(x)− f(z))+)μx(dz)

≥
∫
An

φ((f(x)− f(z))) + 1
n
μx(dz) +

∫
X\An

φ((f(x)− f(z))+)μ(x, dz)

=
∫
X

φ((f(x)− f(z))+)μ(x, dz) + 1
n
μ(An) > T+

φ,μ[f ](x).

All three properties of Definition 3.1 are satisfied and the proof is complete. �
Remark 4.16. Any Γ-operator (carré-du-champ operator) coming from a regular Markov 
generator in Rn (with the euclidean distance) has the form

Γ[f ](x) = lim sup
r→0

n(x)
μ1,x(B(x, r))

∫
B(x,r)

[Δf (x, y)]2 μ1,x(dy) +
∫
X

(f(x)− f(y))2μ2,x(dy).

The above operator measures the dispersion of the function f around a point x, when 
the point evolves following a local diffusion process linked to (μ1,x)x and a nonlocal jump 
process given by (μ2,x)x. The oriented dispersion is only taking into account the descent 
directions and has the form

Γ+[f ](x) = lim sup
ε→0

n(x)
μ1,x(B(x, ε))

∫
B(x,ε)

[
Δ+

f (x, y)
]2

μ1,x(dy)+
∫
X

[(f(x)−f(y))+]2μ2,x(dy)

The above oriented operator is a descent modulus for K(X). Thus, if we know the oriented 
dispersion of a continuous coercive function f (with finite oriented dispersion), and we 
know its values on the critical points (that is, points with zero oriented dispersion), we 
completely determine the function f , in the spirit of Theorem 3.5.

5. Descent moduli over finite sets

Finite state spaces provide a simple and experimental framework to investigate further 
properties of moduli of descent. We shall use the terminology “finite descent modulus” 
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to refer to a descent modulus over a finite set. In this section we study two particular 
features of finite descent moduli:

• an alternative proof, based on a probabilistic approach, of (an enhanced version of) 
the determination theorem for descent moduli mimicking Markov generators; and

• a characterization of homogeneous finite descent moduli, up to a natural equivalence 
relation based on the corresponding critical map.

We have already encountered a finite descent moduli in Example 4.13. Let us present 
a general procedure generating finite descent moduli: on a finite state space V (neither 
empty nor a singleton), consider a Markov generator L := (L(x, y))x,y∈V , namely a 
matrix satisfying {

∀x, y ∈ V : x �= y =⇒ L(x, y) ≥ 0

∀x ∈ V :
∑

y∈V L(x, y) = 0

Such a generator acts linearly on any function f ∈ RV (which coincides with K(V)) 
via

∀ x ∈ V, L[f ](x) =
∑
y∈V

L(x, y)(f(y)− f(x)) (45)

By analogy to Definition 4.6 and Definition 4.14, we consider the non-linear operator 
TL acting on any function f ∈ RV via

∀ x ∈ V, TL[f ](x) =
∑
y∈V

L(x, y)(f(x)− f(y))+ (46)

From Theorem 4.15, TL is a descent modulus. In Subsection 5.1, we will recover the 
determination theorem for this kind of descent modulus via a probabilistic approach.

More generally, for any m > 0, one can consider TL,m given by

∀ x ∈ V, TL,m[f ](x) =

⎛⎝∑
y∈V

L(x, y)((f(x)− f(y))+)m
⎞⎠1/m

(47)

as well as its limit TL,∞ as m goes to infinity:

∀ x ∈ V, TL,∞[f ](x) = max{(f(x)− f(y))+ : y ∈ Dx} (48)

where for every x ∈ V we set:

Dx := {x} 
 {y ∈ V : L(x, y) > 0} (49)
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Let us recall (see Definition 3.12 for p = 1) that a descent modulus T is said to be 
homogeneous (or 1–homogeneous) if for all r ≥ 0 and f ∈ RV we have: T [rf ] = rT [f ].

All the above operators TL,m, m ∈ (0, +∞], are homogeneous descent moduli. It 
should be noticed that there are many more homogeneous descent moduli: for instance 
in (47) we can allow the exponent m to depend on x ∈ V. Moreover, given n homoge-
neous descent moduli T1,..., Tn, and positive numbers a1, ..., an > 0, the weighted sum 
a1T1 + · · ·+anTn is again a homogeneous descent moduli. Even fancier constructions are 
possible. This being said, there exist non-homogeneous descent moduli. Indeed, for any 
non-decreasing mapping φ : R+ → R+ with φ(0) = 0, the descent modulus Tφ defined 
by

∀ x ∈ V, TL[f ](x) =
∑
y∈V

L(x, y)φ((f(x)− f(y))+)

is homogeneous if and only if φ is linear, as long as L �= 0.
Given a descent modulus T we recall from (21) the critical map ZT , which associates 

to every function f ∈ RV its set of critical points ZT (f) = (T [f ])−1(0). Notice that the 
critical maps ZTL,m

related to the moduli TL,m in (47)–(48) are all the same as m varies 
in (0, +∞].

In Subsection 5.2 we introduce an equivalence relation among homogeneous descent 
moduli, using the critical maps. Under this relation, all moduli TL,m in (47) turn out to 
be equivalent to each other (for different values of m ∈ N) and also equivalent to TL,∞. 
The main result of this section is to show that every homogeneous descent modulus on 
a general finite set V (without generator L) is still of the form (48) for some family 
D = {Dx} which is naturally associated to T , provided it satisfies a (necessary and 
sufficient) mild condition.

5.1. A probabilistic approach

Let L := (L(x, y))x,y∈V be a Markov generator on the finite set V.
For every f ∈ RV the associated f -oriented Markov generator Lf := (Lf (x, y))x,y∈V

is defined for x, y ∈ V with x �= y as follows:

Lf (x, y) :=
{

L(x, y), if f(y) ≤ f(x)

0, otherwise.

The values Lf (x, x) on the diagonal are determined by the fact that the sum of the rows ∑
x∈V L(x, y) should vanish.
Let T : RV → RV be defined for every f ∈ RV and x ∈ V as follows:

T [f ](x) := −Lf [f ](x) = −
∑

Lf (x, y)(f(y)− f(x)) =
∑

L(x, y)(f(x)− f(y))+.

y∈V y∈V
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Fig. 3. Node 0 has been replicated at the beginning and end of the representation. Only connections (x, y)
with L(x, y) > 0 have been drawn.

This non-linear operator T coincides with TL defined in (46) and is a descent modulus. 
For every f ∈ RV the set of T -critical points is given by the formula

ZT (f) := {x ∈ V : T [f ](x) = 0}. (50)

Given x, y ∈ V, an L-path from x to y is a finite sequence {xk}0≤k≤N with N ≥ 0, 
x0 = x, xN = y and such that for all 0 ≤ k < N , L(xk, xk+1) > 0. This path is called 
an Lf -path from x to y if in addition {f(xk)}0≤k≤N is a non-increasing finite sequence. 
We write x 

f→ y to indicate that there exists a Lf -path from x to y. We set:

x  f y ⇐⇒ x
f→ y and x ≈f y ⇐⇒

{
x

f→ y

y
f→ x

It is straighforward to check that  f is an order relation on V and ≈f is its corresponding 
equivalence relation (x ≈f y if and only if x  f y and y  f x). The set of minima of  f

is defined as follows:

M(f) := {x̄ ∈ V : ∀x ∈ V, (x̄  f x ⇒ x̄ ≈f x)} . (51)

Notice that x̄ ∈ M(f) if and only if for any y ∈ V with f(y) < f(x̄) and any L-path 
{xk}0≤k≤N from x̄ to y, we have max0≤k≤N f(xk) > f(x̄). Moreover, we always have 
M(f) ⊂ ZT (f) and the inclusion may be strict.

Example 5.1. Let V = Z9, and set L such that

L(x, y) > 0 ⇐⇒ y = x± 1.

Consider f = (1, 0, 0, 1, 2, 1, 1, 2, 1). The set V, its connections through L and the level 
sets of f are depicted in Fig. 3.

Here, M(f) = {1, 2, 5, 6} and ZT (f) = {1, 2, 5, 6, 8}. The node 8 is critical since L
does not allow to jump to any node with smaller value in one step. However, the path 
8 → 0 → 1 is an Lf -path leading to a point with smaller f -value. Note that 5 and 6 are 
in M(f) since there is no Lf -path emanating from any of them and landing at a different 
node with smaller f -value. �
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For x ∈ V, let Xf
x := (Xf

x (t))t≥0 stand for a Markov process starting from x and 
whose generator is Lf . For such a process, the function

R+ � t �→ f(Xf
x (t))

is almost surely non-increasing and bounded, thus converging. Furthermore, the finite 
Markov process Xf

x (t) is converging in law for large t ≥ 0 toward a distribution which 
may depend on the initial point x and whose support is included into the set M(f).

Fix f, g ∈ RV . Since V is finite, the functions f, g are trivially continuous and coercive. 
Therefore, Theorem 3.5 directly yields:

T [f ] = T [g]
f = g on ZT (f)

}
=⇒ f = g. (52)

In what follows, we obtain (52) via a probabilistic approach, in a slightly enhanced 
version, namely replacing the set ZT (f) = ZT (g) (where f and g are assumed to be 
equal) by the (potentially smaller) set M(f) ∪M(g). The technical ingredient of the 
proof is contained in the following lemma.

Lemma 5.2. For any f, g ∈ RV with T [f ] ≥ T [g], we have Lf [g] ≥ Lf [f ].

Proof. Indeed, for any x ∈ V, we have

−Lf [g](x) =
∑

y : f(y)≤f(x)

L(x, y)(g(x)− g(y)) =

=
∑

y : f(y)≤f(x), g(y)≤g(x)

L(x, y)(g(x)− g(y)) +
∑

y : f(y)≤f(x), g(y)>g(x)

L(x, y)(g(x)− g(y))

≤
∑

y : f(y)≤f(x), g(y)≤g(x)

L(x, y)(g(x)− g(y)) ≤
∑

y : g(y)≤g(x)

L(x, y)(g(x)− g(y))

= T [g](x) ≤ T [f ](x) = −Lf [f ](x). �
We are now ready to give a probabilistic proof of the following comparison result. 

(Recall from (51) the definition of M(f).)

Proposition 5.3. Let f, g ∈ RV be two functions satisfying:
(i). T [f ](x) ≥ T [g](x), for all x ∈ V; and
(ii). f(x) ≥ g(x), for all x ∈M(f).

Then f ≥ g.

Proof. Due to the martingale problem characterization of Xf
x (see [12] e.g.), there exists 

a martingale {Mf
g (t)}t≥0 starting from 0 such that
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g(Xf
x (t)) = g(x) +

t∫
0

Lf [g](Xf
x (s)) ds + Mf

g (t), for all t ≥ 0.

Taking expectations we get

E[g(Xf
x (t))] = g(x) +

t∫
0

E[Lf [g](Xf
x (s))] ds, for all t ≥ 0. (53)

Denote by πf
x the limit law of the distributions of Xf

x (t) for large t ≥ 0. Then πf
x is 

supported on M(f) and

lim
t→+∞

E[g(Xf
x (t))] = πf

x [g]. (54)

Recall that to get this convergence, one must decompose the state space V into its 
recurrent and transient sets R and V \ R with respect to Lf . The recurrent set is itself 
decomposed into its irreducible components, say R1,..., Rl. In finite and random time, 
the process (Xx(t))t≥0 ends up entering in one of these sets R1,..., Rl and stays there 
forever. Consider for instance the case where (Xx(t))t≥0 enters Rk, with k ∈ {1, ..., l}. 
Once in Rk, this process behaves as the irreducible Markov process whose generator is 
the restriction of Lf to Rk. Denote πf

(k) the corresponding invariant probability on Rk. 
Let us also introduce

τ � inf{t ≥ 0 : Xx(t) ∈ R}

∀ k ∈ {1, ..., l}, px(k) � P [Xx(τ) ∈ Rk]

Conditioned on {Xx(τ) ∈ Rk}, with k ∈ {1, ..., l}, the law of Xx(τ + t) converges for 
large t ≥ 0 toward πf

(k). Therefore (54) holds for

πf
x �

l∑
k=1

px(k)πf
(k)

We refer to Norris [17, Sections 3.4-3.6] for additional details about the decomposition 
of the state space and the convergence in law toward the invariant measure of the finite 
irreducible Markov processes.

Let us now notice that the integral of the right hand side of (53) converges for large 
t ≥ 0 and it holds:

πf
x [g] = g(x) +

+∞∫
E[Lf [g](Xf

x (s))] ds. (55)

0
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Applying the above arguments with g replaced by f , we also obtain

πf [f ] = f(x) +
+∞∫
0

E[Lf [f ](Xf
x (s))] ds. (56)

The assumption (ii) yields πf
x [f ] ≥ πf

x [g]. On the other hand, from Lemma 5.2, we 
have

E[Lf [g](Xf
x (s))] ≥ E[Lf [f ](Xf

x (s))], for all s ≥ 0.

Combining the above with (55) we deduce

πf
x [f ] ≥ πf

x [g] = g(x) +
+∞∫
0

E[Lf [g](Xf
x (s))] ≥ g(x) +

+∞∫
0

E[Lf [f ](Xf
x (s))] ds.

Comparing the above inequality with (56) yields f(x) ≥ g(x) and the result follows. �
By symmetry we obtain the following corollary:

Corollary 5.4. Let f, g ∈ RV be such that
(i). T [f ](x) = T [g](x), for all x ∈ V; and
(ii). f(x) = g(x), for all x ∈M(f) ∪M(g).

Then f = g.

5.2. Classification of descent moduli on RV

Denote P(V)∗ the family of nonempty subsets of V. Given a descent modulus T on V
we recall from (50) the critical map

ZT : RV → P(V)∗.

In the context of the determination of functions, Theorem 3.5 shows that the critical map 
is an important object. In what follows, we shall further investigate this map through 
the equivalence relation induced by the mapping T �→ ZT .

Definition 5.5 (zero-equivalence of descent moduli). Let T , S be two descent moduli on 
V. We say that the moduli T and S are zero-equivalent (and denote T ∼ S) if ZT = ZS .

A family D := {Dx}x∈V is called an active neighborhood system, provided x ∈ Dx ⊂ V
for every x ∈ V. An example of such system has been defined in (49) in the particular 
case where the set V is equipped with a generator L.
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We henceforth denote by E(V) the set of active neighborhood systems on V. Then for 
any such system D ∈ E(V) we associate a descent modulus TD defined for f ∈ RV and 
x ∈ V as follows (compare with (25) in Proposition 3.7):

TD[f ](x) := max
y∈Dx

(f(x)− f(y))+ (57)

Conversely, given any (abstract) descent modulus T we set:{
Kx(T ) � {K ⊂ V : x ∈ K ∩ ZT (1K)}

Dx(T ) �
⋂

K∈Kx(T ) K
(58)

where 1K denotes the characteristic function of the set K, that is:

1K(x) =
{

1, if x ∈ K

0, if x /∈ K.

The interest of these notions is illustrated by the following result:

Theorem 5.6 (classification of moduli). If a homogeneous descent modulus T satisfies

∀ x ∈ V : Dx(T ) ∈ Kx(T ) (H)

then there exists a family D ∈ E(V) such that T is zero-equivalent to TD given in (57).

Before we proceed, let us introduce the following definition.

Definition 5.7. For a critical map Z : RV → P(V)∗ and for each x ∈ V, we define{
Kx(Z) � {K ⊂ V : x ∈ K ∩ Z(1K)}

Dx(Z) �
⋂

K∈Kx
K

(59)

If there is no confusion, we might simply write Kx and Dx, respectively. Therefore, we 
can extend (H) from the class of homogeneous descent moduli to the class of critical 
maps Z as follows:

∀ x ∈ V : Dx(Z) ∈ Kx(Z) (H)

Notice that the underlining condition is the same for a homogeneous descent modulus T
and for its corresponding critical map ZT .

The proof of Theorem 5.6 is based on a characterization of those maps Z : RV →
P(V)∗ for which there exists a descent modulus T such that Z = ZT . More precisely, let 
Z : RV → P(V)∗ be an abstract critical map satisfying the following conditions:
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(Z1) for every f ∈ RV and r ∈ R: Z[f + r] = Z[f ]

(Z2) for every f ∈ RV and r > 0: Z[rf ] = Z[f ]

(Z3) for every f ∈ RV and r ∈ R: Z[f ] = (Z[φr(f)] ∩ [f ≤ r]) 
 (Z[ϕr(f)] ∩ [f > r])
where

∀ r ∈ R, ∀ s ∈ R,

{
φr(s) � r ∧ s

ϕr(s) � r ∨ s.

We also assume

(Z4) for every K ⊂ V we have: Kc ⊂ Z(1K); and

(Z5) for every x ∈ V:

Kx = {K ⊂ V : Dx ⊂ K}.

The announced characterization of critical maps is the following:

Theorem 5.8 (characterization of critical maps). An abstract critical map Z : RV →
P(V)∗ is associated to some homogeneous descent modulus T verifying (H) (that is, 
Z = ZT ) if and only if conditions (Z1)–(Z5) hold.

In this case Z = ZTD , where TD is defined by (57) for D := {Dx}x∈V constructed 
in (59).

The last assertion of Theorem 5.8 is implicitly assuming that D ∈ E(V). The following 
lemma confirms that this is indeed the case:

Lemma 5.9. Let Z : RV → P(V)∗ be an abstract critical mapping that satisfies conditions 
(Z1)–(Z4). Let further D := {Dx}x∈V be constructed as in (59). Then Z[1V ] = V and 
D ∈ E(V).

Proof. Applying (Z4) with K = ∅, we get V ⊂ Z(1∅) = Z[0], where 0 denotes the null 
function on V. We deduce from (Z1) (for r = 1) that Z[1V ] = Z[0] = V. Recall that the 
family D := (Dx)x∈V belongs to E(V) if and only if it satisfies

x ∈ Dx, ∀x ∈ V.

Fix x ∈ V. Since Z[1V ] = V, we have x ∈ Z[1V ], which in conjunction with x ∈ V yields 
V ∈ Kx. It follows that Kx �= ∅. By definition of Kx, for any K ∈ Kx, we have x ∈ K, so 
that x ∈

⋂
K∈Kx

K = Dx. Therefore D ∈ E(V). �
Let us postpone for a while the proof of Theorem 5.8 and show instead that Theo-

rem 5.8 implies Theorem 5.6. To this end, let T be a homogeneous descent modulus on 
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V. Then using Theorem 5.8, it is easy to see that T is zero-equivalent to TD for some 
active neighborhood system D ∈ E(V) provided the following proposition is proven:

Proposition 5.10. Under Assumption (H), the critical map ZT satisfies (Z1)–(Z5).

Proof. We verify successively that conditions (Z1)–(Z5) hold. Indeed, condition (Z1) 
comes from the translation invariance property of T , see Proposition 3.2, while (Z2) is 
consequence of the homogeneity assumption for T .

Verifying (Z3) requires some extra work: fix f ∈ RV and r ∈ R. Since (Z3) holds 
trivially for constant functions, we may assume that f takes at least two different values. 
Then for any s, s′ ∈ R we have

(φr(s)− φr(s′))+ ≤ (s− s′)+
(ϕr(s)− ϕr(s′))+ ≤ (s− s′)+

and monotonicity yields

T [φr(f)] ≤ T [f ]

T [ϕr(f)] ≤ T [f ]

Consequently:

ZT [f ] ⊂ ZT [φr(f)] ∩ ZT [ϕr(f)]

so that

ZT [f ] = (ZT [f ] ∩ [f ≤ r]) 
 (ZT [f ] ∩ [f > r])

⊂ (ZT [φr(f)] ∩ [f ≤ r]) 
 (ZT [ϕr(f)] ∩ [f > r]) .

To get the reserved inclusion, consider x ∈ V with f(x) ≤ r, in particular φr(f(x)) =
f(x). For any z ∈ V with φr(f(z)) < φr(f(x)), we have φr(f(z)) = f(z), so that

(φr(f(x))− φr(f(z)))+ = (f(x)− f(z))+

For any z ∈ V with φr(f(z)) ≥ φr(f(x)), we must have f(z) ≥ f(x), thus

(φr(f(x))− φr(f(z)))+ = 0 = (f(x)− f(z))+

From the monotonicity property, we deduce T [φr(f)](x) = T [f ](x). These considera-
tions show that

ZT [φr(f)] ∩ [f ≤ r] ⊂ ZT [f ] (60)
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Finally, consider x ∈ V with f(x) > r, in particular ϕr(f(x)) = f(x). Since f is not 
constant, we can define

a := f(x)− (r ∨min f)
max f −min f

> 0.

Now, on the one hand, for any z ∈ V with ϕr(f(z)) ≥ ϕr(f(x)), we must have 
f(z) ≥ f(x), thus

(ϕr(f(x))− ϕr(f(z)))+ = 0 = (f(x)− f(z))+ = (af(x)− af(z))+

On the other hand, for any z ∈ V with ϕr(f(z)) < ϕr(f(x)), we have

ϕr(f(x))− ϕr(f(z)) ≥ f(x)− (r ∨min f) ≥ a(f(x)− f(z))

We deduce that

∀ z ∈ V, (ϕr(f(x))− ϕr(f(z))+ ≥ (af(x)− af(z))+

and by monotonicity T [ϕr(f)](x) ≥ T [af ](x) = aT [f ](x), by homogeneity. It follows 
that

ZT [ϕr(f)] ∩ [f > r] ⊂ ZT [f ].

Combining with (60), we get the reverse inclusion

ZT [f ] ⊃ (ZT [φr(f)] ∩ [f ≤ r]) 
 (ZT [ϕr(f)] ∩ [f > r]) ,

therefore (Z3) holds.
Condition (Z4) is a consequence of the preservation of global minima, since the set of 
global minima of 1K coincides with Kc.

It remains to show (Z5). Set

K̃x = {K ⊂ V : Dx ⊂ K}.

Then for every K ∈ Kx we have Dx ⊂ K, that is, K ∈ K̃x and Kx ⊂ K̃x. To prove the 
reverse inclusion, consider K ⊂ V with Dx ⊂ K. We need to verify that K ∈ Kx. Since 
x ∈ Dx, we get x ∈ K. Furthermore, for every z ∈ V we have:

(1K(x)− 1K(z))+ = 1− 1K(z) ≤ 1− 1Dx
(z) = (1Dx

(x)− 1Dx
(z))+

and thus by monotonicity, T [1K ](x) ≤ T [1Dx
](x) = 0, where the last equality is obtained 

via (H). It follows that x ∈ ZT (K) whence K ∈ Kx.
The proof is complete. �
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For D ∈ E(V), denote for simplicity by ZD the critical map ZTD associated to the 
homogeneous descent modulus TD. The following lemma shows how to recover the active 
neighborhood system D ={Dx}x from ZD:

Lemma 5.11. For any x ∈ V, we have

Dx = Dx(ZD) :=
⋂

K∈Kx(ZD)

K

where Dx(ZD) and Kx(ZD) are given as in (59).

Proof. For any f ∈ RV , recall that

ZD[f ] = {x ∈ V : TD[f ](x) = 0} = {x ∈ V : max
y∈Dx

(f(x)− f(y))+ = 0}

= {x ∈ V : ∀ y ∈ Dx, f(y) ≥ f(x)}.

In particular taking f = 1K with K ∈ P(V)∗, we get

ZD(1K) = {x ∈ V : ∀ y ∈ Dx, 1K(y) ≥ 1K(x)} = {x ∈ K : Dx ⊂ K} ∪Kc.

Fix x ∈ V and consider K ∈ Kx(ZD). Since x ∈ K and x ∈ ZD(1K), we deduce that 
Dx ⊂ K. It follows that

Dx ⊂ Dx(ZD) :=
⋂

K∈Kx(ZD)

K .

To get the reverse implication, it is sufficient to check that Dx ∈ Kx(ZD). Note that

ZD[1Dx
] = {y ∈ Dx : Dy ⊂ Dx} ∪ Dc

x.

Therefore, x ∈ ZD[1Dx
]. Since we also have x ∈ Dx, we deduce that Dx ∈ Kx(ZD). �

The above lemma justifies the introduction of the objects Kx, Dx, for x ∈ V, for any 
mapping Z : RV → P(V)∗ in (59) by analogy to (58). Denote by Ẑ the set of mappings 
Z : RV → P(V)∗ satisfying Z[1] = V and by ẐE the set of critical maps ZD associated 
to TD with D ∈ E(V). Let Q be the mapping Ẑ � Z �→ ZD ∈ ẐE where D = {Dx(Z)}x. 
Lemma 5.11 shows that Q2 = Q, that is, Q is a kind of non-linear projection.

Let us show that in Proposition 5.10 we don’t need to assume (H) if the critical map 
is of the form ZD:

Lemma 5.12. For any D ∈ E(V), ZD satisfies (H) and thus (Z5).
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Proof. Thanks to Lemma 5.11, the family {
⋂

K∈Kx
K}x∈V constructed in (59) coincides 

with the active neighborhood system D ={Dx}x∈V in the definition of ZD. Thus to check 
(H), it suffices to show that x ∈ ZD[1Dx

], for any x ∈ V, or equivalently TD[1Dx
](x) = 0. 

A direct computation gives:

TD[1Dx
](x) = max

z∈Dx

1Dx
(x)− 1Dx

(z) = 0

Condition (Z5) then follows from Proposition 5.10. �
Here is the first step towards Theorem 5.8:

Proposition 5.13. Let Z : RV → P(V)∗ satisfying (Z1)–(Z3) and Z[1V] = V. Let D be 
constructed as in (59) and define ZD the critical map associated to TD given in (57). 
Assume that

∀ K ⊂ V, Z(1K) = ZD(1K)

Then we have Z = ZD.

Proof. From Proposition 5.10 and Lemma 5.9, ZD also satisfies (Z1)–(Z3) and 
ZD[1V] = V.

Let f ∈ RV . We prove that Z[f ] = ZD[f ] via induction over the number n ∈ N of 
values taken by f .
• We begin with the case where n = 1, that is, f is constant. Denote by a ∈ R the 

value of f . Taking into account condition (Z1) and the fact that Z[1V] = V, we obtain

Z[f ] = Z[f − a + 1] = Z[1V ] = ZD[1V ] = V = ZD[f ]

• Consider the case where n = 2 and let f(V) = {a, b} with a < b. Set K := [f = b]. 
Using (Z1) and (Z2), we get

Z[f ] = Z
[
f − a

b− a

]
= Z(1K) = ZD(1K) = ZD[f ].

• Consider the case where n > 2, assuming that Z[g] = ZD[g] for all g ∈ RV taking 
at most n − 1 values. Write f1 < f2 < · · · < fn the values taken by f . Take k = #n+1

2 $
(integer part), set r = fk and

g− � φr ◦ f

g+ � ϕr ◦ f

By the choice of r, both g− and g+ take at most n − 1 values.
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Condition (Z3) then yields

Z[f ] = (Z[g−] ∩ [f ≤ r]) 
 (Z[g+] ∩ [f > r])

= (ZD[g−] ∩ [f ≤ r]) 
 (ZD[g+] ∩ [f > r]) = ZD[f ].

as desired. �
Having established Proposition 5.13, the following result finishes the proof of Theo-

rem 5.8:

Proposition 5.14. Let Z : RV → P(V)∗ be a mapping satisfying (Z1)–(Z5) and let 
D = (Dx)x∈V ∈ E(V) be as in (59). Then we have

∀ K ⊂ V : Z[1K ] = ZD[1K ]

Proof. From (Z4), we have

Kc ∩ Z(1K) = Kc = Kc ∩ ZD(1K).

Now, let K ′ = {x ∈ K : Dx ⊂ K}. For every x ∈ K ′, due to (Z5), we have K ∈ Kx, so 
x ∈ Z[1K ]. Since this is true for any x ∈ K ′, we get K ′ ⊂ Z[1K ].

According to Lemma 5.12, ZD also satisfies (Z5), and it follows as above that K ′ ⊂
ZD[1K ]. We deduce

K ′ ∩ Z(1K) = K ′ = K ′ ∩ ZD(1K).

Finally, let K�K ′ = {x ∈ K : Dx \K �= ∅}. For every x ∈ K�K ′, since Dx �⊂ K, 
we have K /∈ Kx, due to the definition of Kx in (59). Since x ∈ K, the only possibility 
is that x /∈ Z(1K).

The same reasoning applies to ZD (recalling Lemma 5.11) and we get

K�K ′ ∩ Z(1K) = ∅ = K�K ′ ∩ ZD(1K)

Since V = Kc 
K ′ 
 (K�K ′), we conclude that

Z(1K) = Kc 
K ′ = ZD(1K),

finishing the proof. �
Remark 5.15. Note that (Z5) was only used to prove that K ′ ⊂ Z(1K). Thus, when (Z5) 
is not verified, the constructed modulus of descent TD might enlarge the critical map 
ZD with respect to Z, as illustrated by Example 5.17 below.
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The following two examples show that homogeneity and (H) are necessary assump-
tions.

Example 5.16 (A non-homogeneous descent modulus failing (Z2)). Let ε > 0 and consider 
the operator Tε : RV → RV

+ given by

Tε[f ](x) �
{

f(x)−min f if f(x) > min f + ε

0 if f(x) ≤ min f + ε.
= φε(f(x)−min f)

where the mapping φε is defined for r ≥ 0 by

φε(r) �
{

0, if r ∈ [0, ε]
r, if r > ε.

We claim that Tε is a descent modulus.

• Let f ∈ RV . For every x ∈ argmin f , we have that Tε[f ](x) = 0, and so Tε preserves 
global minima.

• Let f, g ∈ RV and x ∈ V such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀z ∈ V.

On the one hand, if f(x) ≤ min f + ε, we have that

ε ≥ (f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀z ∈ V,

and so, g(x) ≤ min g + ε as well. Then Tε[f ](x) = Tε[g](x). On the other hand, if 
f(x) ≥ min f + ε, by taking z∗ ∈ argmin g, we have that

Tε[f ](x) = f(x)−min f ≥ (f(x)− f(z∗))+
≥ (g(x)− g(z∗))+ = g(x)−min g ≥ Tε[g](x).

Thus, Tε is monotone.
• Let f ∈ RV and r > 1. Then, for every x ∈ V,

Tε[f ](x) > 0 =⇒
ε ≤ Tε[f ](x) = f(x)−min f < r(f(x)−min f) = rf(x)−min rf = Tε[rf ](x).

Thus, Tε is scalar-monotone.

Then, by definition, Tε is a descent modulus. However, choose f ∈ RV such that 
α = max f −min f > ε, and choose r = ε . Then, we have that ZT (f) �= V but
α
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∀x ∈ V, rf(x)−min rf ≤ r(max f −min f) = ε =⇒ ZT (rf) = V. �

Example 5.17 (A family of homogeneous descent moduli not verifying (H) and fail-
ing (Z5)). Let D′ = (D′

x)x∈V ∈ E(V) such that there exists x̄ ∈ V where |D′
x̄| ≥ 3, 

and let T : RV → RV
+ be the operator given by

T [f ](x) �

⎧⎨⎩
(
f(x)− max

y∈D′
x\{x}

f(y)
)

+
if D′

x �= {x}

0 if D′
x = {x}.

Clearly T is homogeneous and preserves global minima. Let us prove that T is monotone: 
let f, g ∈ RV and x ∈ V such that

(f(x)− f(z))+ ≥ (g(x)− g(z))+, ∀z ∈ V.

If D′
x = {x}, then T [f ](x) = 0 ≥ 0 = T [g](x). If D′

x �= {x}, then there exist y∗ ∈ D′
x\{x}

such that f(y∗) = maxy∈D′
x\{x} f(y). Then,

T [f ](x) = (f(x)− f(y∗))+ ≥ (g(x)− g(y∗))+ ≥
(
g(x)− max

y∈D′
x\{x}

g(y)
)

+
= T [g](x).

Thus, T is monotone and therefore it is a descent modulus. Now, let (Kx)x∈V and D =
(Dx)x∈V constructed as in (59) for ZT . Then:

• If D′
x = {x}, then Kx = {K ∈ P(V)∗ : x ∈ K} and so Dx = D′

x.
• If D′

x = {x, y} for some y �= x, then Kx = {K ∈ V : {x, y} ⊂ K}. Indeed, consider 
K ∈ Kx, we have x ∈ K and x ∈ ZT (K). We compute

T (1K)(x) = (1K(x)− 1K(y))+ = 1− 1K(y)

so for this expression to vanish, we must have y ∈ K. Conversely, if {x, y} ⊂ K, then 
x ∈ K and

T (1K)(x) = (1K(x)− 1K(y))+ = 0

so K ∈ Kx. We deduce Dx = {x, y} and so Dx = D′
x.

• If |D′
x| ≥ 3, we have that there is y, z ∈ D′

x \{x} with y �= z such that {x, y}, {x, z} ∈
Kx. Thus, Dx ⊂ {x, y} ∩ {x, z} = {x} �= D′

x, it follows that Dx = {x}. Furthermore, 
{x} /∈ Kx since T [1{x}](x) = 1.

Thus, since |D′
x̄| ≥ 3, T does not verify (H) and fails (Z5). �
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