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Abstract
We establish existence of steepest descent curves emanating from almost every point of a
regular locally Lipschitz quasiconvex functions, where regularity means that the sweeping
process flow induced by the sublevel sets is reversible. We then use max-convolution to
regularize general quasiconvex functions and obtain a result of the same nature in a more
general setting.

Keywords Steepest descent curves · Quasiconvex functions · Max-convolution · Sweeping
process
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1 Introduction

Steepest descent curves are at the core of the theory of variational analysis, differential equa-
tions and optimization. Given a C1-smooth function f : Rd → R we call steepest descent
curve the solution of the gradient flow equation{

ẋ(t) = −∇f (x(t)), a.e. t ∈ [0, T ],
x(0) = x0.

(1.1)

It is well-known that the above differential equation has a solution (as a direct application of
the Picard-Lindelöf theorem). When the assumption of smoothness is missing, the existence
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of steepest descent curves can still be established for convex functions. Indeed, if the func-
tion f :Rd → R is convex, its steepest descent curves are solutions of the subdifferential
inclusion {

ẋ(t) ∈ −∂f (x(t)), a.e. t ∈ [0, T ],
x(0) = x0.

(1.2)

It is well-known that the above differential inclusion admits a (unique) solution (see, e.g.,
[3]). Similarly, existence of solutions for several gradient descent and proximal methods are
often based on convexity (see, e.g., [20]).

In the setting of metric analysis, a steepest descent curve is a 1-Lipschitz curve verifying
the metric equation {

(f ◦ x)′(t) = −|∇f |(x(t)), a.e. t ∈ [0, T ],
x(0) = x0,

(1.3)

where |∇f | denotes the (metric) slope of f introduced in [12]. This last formulation coin-
cides with (1.1) in the smooth case and with (1.2) in the convex case after performing the
usual arc-length reparametrization. The metric gradient flow given by (1.3) has been studied
in detail (we refer to [1] for a comprehensive exposition). Remarkable families of functions
also admit steepest descent curves in the above cases: geodesically convex functions in met-
ric spaces [1] and smooth functions on Riemannian manifolds (see, e.g., [25]). However,
existence of steepest descent curves is in general hard to verify, even for Lipschitz functions
in R

d (see comments of [16, Sect. 9.3.5]). Due to this obstruction, the authors in [11, 17]
consider the more general notion of trajectories of a convex foliation (terminology intro-
duced in [10]) and establish existence of such orbits (see, e.g., [11, Theorem 2.6]). In case
the foliation is given by the sublevel set of a quasiconvex function, the above orbits are call
orbits of geometric descent. Their connection with steepest descent orbits has been explored
in [13, 16]: these curves fail to be steepest descent curves in general, but instead correspond
to what the authors in [13] called curves of near-steepest descent. One of the main diffi-
culties is in the fact that the slope mapping x �→ |∇f |(x) fails to be lower-semicontinuous,
inducing a gap with respect to its closure x �→ |∇f |(x). Curves of near-steepest descent lie,
in some sense, within this gap.

In this work, we are interested in steepest descent curves for the class of locally Lipschitz
quasiconvex functions. This is another very important family in the context of optimization
with amenable properties (see, e.g., [4]). Even though the desired existence result seems to
fail for this class as well (it is not yet clear if this is the case or not), we have been able
to provide a positive existence result for the class of regular quasiconvex functions, where
regularity ensures that the sweeping process flow induced by the sublevel sets is reversible.
Then, for the general case of locally Lipschitz quasiconvex functions, we consider a reg-
ularization scheme using the max-convolution operator (see, e.g., [22] and the references
therein). Indeed, we define for any locally Lipschitz quasiconvex function f : Rd → R and
ε > 0, a regularization function fε satisfying the following properties:

(i). fε admits steepest descent curves for almost every initial data on its domain.
(ii). Every critical point of fε is at distance at most ε of a critical point of f .

Our work borrows heavily from the geometric approach of [11, 13]. We look at curves of
geometric descent. Then, under regularity assumptions we are able to reverting the (unilat-
eral) sweeping process and deduce that almost every curve of geometric descent is in fact a
steepest descent curve.
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The rest of the paper is organized as follows: In Sect. 2 we fix our terminology and
quote some preliminary results. In Sect. 3, under adequate assumptions of the quasiconvex
function (ensuring the reversibility of its sweeping process flow), we directly relate steepest
descent curves as solutions of the sweeping process induced by the sublevel sets. In Sect. 4,
we extend the results of the preceding section to general quasiconvex function, by means of
regularization and localization.

2 Preliminaries

Throughout this work, we consider the Euclidean space R
d endowed with its usual inner

product 〈·, ·〉 and its induced norm ‖ · ‖. We denote by B(x, r) (respectively, B̄(x, r)) the
open (respectively, closed) ball centered at x of radius r > 0 and by Bd (respectively, Sd )
the unit closed ball (respectively, the unit sphere). For a set A ⊂ R

d , we denote by int(A),
A, bd(A) and A◦ its interior, closure, boundary and (negative) polar set, respectively.

For a function f :Rd → R∪ {+∞} and α ∈R, we denote by [f ≤ α], the α-sublevel set
of f , that is,

[f ≤ α] = {x ∈ R
d | f (x) ≤ α}. (2.1)

Similarly, we define the strict α-sublevel set [f < α], and the corresponding sets [f = α],
[f > α] and [f ≥ α]. We denote its (effective) domain by domf , that is, domf = {x ∈R

d |
f (x) < +∞}. A function f :Rd → R∪ {+∞} is called coercive if for every α < supf the
sublevel set [f ≤ α] is compact.

A function f :Rd →R∪ {+∞} is said to be quasiconvex if

∀x, y ∈ R
d , ∀t ∈ [0,1], f (tx + (1 − t)y) ≤ max{f (x), f (y)}. (2.2)

It is well-known that f is quasiconvex if and only if every sublevel set [f ≤ α] is convex.
Recall that a function is lower semicontinuous (lsc, for short) if the sublevel sets are closed.

For a function f :Rd →R∪ {+∞} we define the metric slope |∇f | as

|∇f |(x) :=
⎧⎨
⎩ lim sup

y→x

(f (x) − f (y))+

‖x − y‖ , if x ∈ domf

+∞, otherwise,
(2.3)

where a+ = max{a,0}. The metric slope enjoys several interesting properties (see, e.g.,
[1, 5]), but it is well-known that it might fail to be lower semicontinuous (see, e.g., [13]).
Thus, we consider the limiting slope |∇f | as the lower semicontinuous closure of |∇f |, that
is,

|∇f |(x) = lim inf
y→f x

|∇f |(y), (2.4)

where y →f x means (y, f (y)) → (x, f (x)). A point x ∈ R
d is called critical for f if

|∇f |(x) = 0.
In what follows, we denote by either dS(x) or d(x,S) the distance of x ∈ R

d to the set
S ⊂ R

d and by ProjS(x) or Proj(x;S) the set of nearest points from x in S. Whenever this
set is a singleton, we call this unique nearest point as metric projection and we denote it by
projS(x).
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A set S is said to be prox-regular if there exists a continuous function ρ : S → (0,+∞]
such that the enlargement of S given by

Uρ(·)(S) = {u ∈R
d : ∃y ∈ ProjS(u) with dS(u) < ρ(y)} (2.5)

is open and the projection projS is well-defined on Uρ(·)(S) (equivalently, d2
S is C1 on

Uρ(·)(S), see, e.g, [6, Prop. 4 and Prop. 11]). For r > 0, we say that S is r-prox-regular
if the function ρ(·) can be taken as ρ ≡ r . Every convex set is (+∞)-prox-regular.

It is well-known (see, e.g., [24]) that for a prox-regular set, Bouligand and Clarke tangent
cones coincide at every point (this is known as tangential regularity) and the same applies
to the classical notions of normal cones (proximal, Fréchet, limiting, Clarke). Since we are
going to work only with convex and prox-regular sets, the notions of tangent and normal
cones are unambiguously defined, that is, if S ⊂ R

d is prox-regular and x ∈ S, we define the
(Clarke) tangent cone and the (Clarke) normal cone of S at x by the formulae

T (S;x) := Liminf
S�y→x;t↓0

1

t
(S − y) and N(S;x) := [T (S;x)]◦, (2.6)

where Liminf is the inferior limit of sets in the sense of Painlevé-Kuratowski (see, e.g., [24]).
A set-valued map M : A⇒B is a mapping that assigns to each a ∈ A a subset M(a) of B .

We denote the domain of M and the graph of M as the sets domM = {a ∈ A : M(a) �= ∅}
and gphM = {(a, b) : b ∈ M(a)}. In the particular case when A = [0, T ] and B = R

d , we
say that the set-valued map is a moving set map (also called sweeping process map, see [8]).

For two sets A,B ⊂ R
d , the Hausdorff distance between A and B is given by

dH (A,B) = max

{
sup
a∈A

dB(a), sup
b∈B

dA(b)

}
∈ [0,+∞]. (2.7)

A set-valued map M : A ⊂ R
p ⇒R

q is said to be Lipschitz-continuous if there exists L > 0
such that

∀x, y ∈ A, dH (M(x),M(y)) ≤ L‖x − y‖. (2.8)

Let K : [0, T ]⇒R
d be a moving set with prox-regular values. We define the sweeping

process differential inclusion of K as

{
u̇(t) ∈ −N(K(t);u(t)), a.e. t ∈ [0, T ]
u(0) = x0 ∈ K(0),

(2.9)

It is well known that if K is Lipschitz continuous and uniformly r-prox-regular for some
r > 0 (that is, K(t) is r-prox-regular for every t ∈ [0, T ]), the sweeping process admits a
unique solution for every initial condition x0 ∈ K(0) (see, e.g., [23]). The following propo-
sition surveys the main properties of such a solution in the case of the sublevel moving set
K : [0, T ]⇒R

d given by K(t) = [f ≤ f (x0) − t]. The first statement is a classical fact in
the sweeping process theory (see, e.g., [23]). The second and third statements follow directly
from the fact that the process K : [0, T ]⇒R

d is parametrized with respect to the values of
the function f , while the fourth statement follows from [13, Theorem 3.4 and Claim 3.6].
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Proposition 2.1 Let f : Rd → R be a locally Lipschitz function and let α ∈ R and T > 0
be such that α − T > inff . Let K : [0, T ]⇒R

d be the sublevel moving set starting from α,
that is,

K(t) = [f ≤ α − t], ∀t ∈ [0, T ].
If K is Lipschitz-continuous and uniformly r-prox-regular, then for every x0 ∈ K(0) \
int(K(T )), the sweeping process (2.9) has a unique solution u : [0, T ] → R

d , satisfying
that

(i) u(·) is Lipschitz-continuous on [0, T ].
(ii) For each t ∈ [0, α − f (x0)], u(t) = x0 and

u(t) ∈ bdK(t), ∀t ∈ [α − f (x0), T ].
(iii) (f ◦ u)′(t) = −1 for a.e. t ∈ [α − f (x0), T ], and
(iv) u(·) is a curve of near-maximal slope of f , in the sense that

1

|∇f |(u(t))
≤ ‖u̇(t)‖ ≤ 1

|∇f |(u(t))
, for a.e. t ∈ [α − f (x0), T ].

Last but not least, following [14], we denote by DF(x) the derivative of a Lipschitz
function F :Rd → R

d at each point of differentiability x ∈R
d and by

JF(x) = |det(DF(x))|, (2.10)

the Jacobian determinant of F . We finally denote by Hm the m-dimensional Hausdorff
measure.

3 Reversible Geometric Descent for Regular Quasiconvex Functions

This section is devoted to the study of geometrical curves of descent for a lower semicontin-
uous quasiconvex function f : Rd → R ∪ {+∞} which is continuous on the interior of its
domain. We further consider functions that satisfy the following regularity hypotheses:

(H1) f is coercive and int[f ≤ α] �= ∅, for every α > inff .
(H2) The slope of f is bounded away from zero around every x ∈ domf \ argminf , that

is, there exist δ, � > 0 such that

|∇f |(y) > �, ∀y ∈ B(x, δ) ∩ domf.

(H3) For every α ∈ (inff, supf ), there exist η, r > 0 such that for every β ∈ (α−η,α+η),
the set Rd \ int([f ≤ β]) is r-prox-regular.

Remark 3.1 While (H1) is a common assumption, (H2)–(H3) are rather strong regularity
conditions. Hypothesis (H2) is equivalent to saying that the only critical points of f are its
minimizers. (Such functions are often called pseudoconvex, see e.g. [9]). Hypothesis (H3)
entails the smoothness of the level sets (see Lemma 3.3 below). We shall show in Sect. 4
that every locally Lipschitz quasiconvex function can be regularized in a way that (H1)-(H3)
are fulfilled.
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Fig. 1 Boundary of S(s) for
s = 0.75, s = 1.25 and s = 1.5

Notice that hypothesis (H2) together with continuity of f on the interior of its domain
yield that for every x ∈ int(domf ) and δ > 0 such that B(x, δ) ⊂ domf , setting f (x) = r

it holds:

bd[f ≤ r] ∩ B(x, δ) = [f = r] ∩ B(x, δ). (3.1)

Indeed, continuity of f entails directly the left-to-right inclusion. If the reverse inclusion
does not hold, then there would exist z ∈R

d and ε > 0 small enough such that

B(z, ε) ⊂ [f = f (x)] ∩ B(x, δ).

This would yield |∇f |(z) = 0 contradicting (H2).
Let us also mention that it is easy to construct a quasiconvex function f : Rd → R ∪

{+∞} whose sublevel sets have smooth boundaries, yet failing the reversibility hypothe-
sis (H3).

Example 3.2 Let S : [0,2]⇒R
2 be a convex valued function defined by

S(s) :=
⎧⎨
⎩

B(0, s), if s ∈ [0,1).

co
(
B(0, s)

⋃
B

(
(0,2s − 1), s − 1

))
, if s ∈ [1,2],

We set f (x) = inf{s : x ∈ S(s)}. Then f is lower semicontinuous, quasiconvex and
locally Lipschitz on the interior of its domain. Moreover, for every s ∈ [0,2], the set
[f = s] ≡ bdS(s) is a smooth manifold, whose minimal value of the internal curvature
is s − 1 for s ∈ [1,2], and s for s ∈ [0,1] (see Fig. 1). ♦

Let α1, α2 ∈ R such that inff < α1 < α2 < supf . The goal of this section is to show
that under (H1)–(H3), the function f admits steepest descent curves, which locally induce
a foliation of the annulus [α1 ≤ f ≤ α2].

The first step is the following proposition that shows that prox-regularity of the boundary
entails in fact smoothness of it.

Lemma 3.3 (Smoothness of the boundaries) Under (H1)–(H3), for every α ∈ (inff, supf ),
the set M = bd([f ≤ α]) ∩ int(domf ) is a C1,1-submanifold.

Proof Let S = [f ≤ α] and U = R
d \ int(S). Since U is r-prox-regular, using [21, The-

orem 6.42] (and noting that prox-regularity entails regularity in the sense of [21, Defini-
tion 6.4]), we get that

TbdS(x) = TS(x) ∩ TU(x) ∀x ∈ bdS.
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Fig. 2 Each sublevel set has a
smooth boundary which does not
coincide with the corresponding
level set

Moreover, since S is convex with nonempty interior, we can apply [7, Proposition 2.3] to
deduce that

TS(x) = −TU(x), ∀x ∈ bdS.

Combining the above equations we deduce that TbdS(x) is a vector space. Using [24, Propo-
sition 2.113 (a5)], we get Rd \ TS(x) ⊂ TU(x) and consequently bdTS(x) ⊂ TbdS(x). We
conclude that TbdS(x) is of codimension 1. Therefore, for every x ∈ bdS, there exists a
unique unit vector n̂(x) ∈ Sd such that

N(S,x) = −N(U,x) = R+n̂(x).

Thus, N(bdS,x) = Rn̂(x). Since S is convex, the mapping n̂ : bdS → Sd is continuous.
Furthermore, since U is r-prox-regular for some r > 0, then the set U−ε = {z : dS(x) ≥ ε}
must be (r + ε)-prox-regular. By noting that

n̂(x) = 1

ε
(proj(x,U−ε) − x), ∀x ∈ int(domf ) ∩ bdS,

we deduce that n̂ : int(domf ) ∩ bdS → Sd is also Lipschitz-continuous and the proof is
complete. �

Remark 3.4 An alternative proof of the above lemma can be derived using the enhanced
Baillon-Haddad theorem of [19], by representing the convex set [f ≤ α] as the epigraph of
a convex function over an appropriate subspace of codimension 1. The above presentation
aims at further describing the behavior of the tangent and normal cones of S = [f ≤ α] and
U = R

d \ int(S).

Example 3.5 Smoothness of bd[f ≤ α] does not entail that this set coincides with the cor-
responding level set [f = α]. Discrepancies may appear due to the cutting effect of the
boundary of the domain as illustrated in the following example:

Set D = co
(
B2 ∪ (

(3,0) +B2

)) ⊂R
2 and define f :R2 → {+∞} given by

f (x, y) =
{

min{t : (x, y) ∈ (t,0) +B2}, if (x, y) ∈ D

+ ∞, otherwise.
(3.2)

The above function is quasiconvex and its sublevel sets are given by [f ≤ t] = co(B2 ∪ ((t,

0)+B2)), for t ∈ [0,3], [f ≤ t] = domf = D if t ≥ 3, and [f ≤ t] = ∅ if t < 0 (see Fig. 2).
It is easy to see that f satisfies (H1), (H2) and (H3). The second one follows from the

remark that for every angle θ ∈ [−π/2,π/2] one has that

f (cos(θ) + t, sin(θ)) = t, ∀t ∈ [0,3],
and consequently |∇f |(x, y) ≥ 1 for all (x, y) ∈ domf \ argminf = D \ B2. The first and
third hypotheses follows from the construction. ♦
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In what follows, let α1, α2 ∈R be such that α1 < α2 and set

T := α2 − α1 > 0.

We consider the annulus set

R(α1, α2) = [α1 ≤ f ≤ α2]

as well as the decreasing moving set maps Ŝ , Û given by

⎧⎪⎨
⎪⎩

Ŝ : [0, T ]⇒R
d

Ŝ(t) := [f ≤ α2 − t]
and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Û : [−T ,0]⇒R
d

Û(τ ) :=R
d \ int([f ≤ α2 + τ ])︸ ︷︷ ︸

[int(Ŝ(−τ))]c
.

(3.3)

The following lemma establishes the variational regularity of the sublevel sets of f ,
under hypotheses (H1)-(H3). Namely, we prove the Lipschitz continuity of the set-valued
maps given in (3.3). Similar results involving metric regularity can be obtained as well using
the metric slope (see, e.g., [5, 16]).

Lemma 3.6 The moving set maps Ŝ and Û are Lipschitz continuous provided (H1)-(H2)
hold. Moreover, Û is uniformly r-prox-regular for some r > 0, provided (H3) holds.

Proof Thanks to (H2) for each x ∈ R(α1, α2), there exist δx > 0 and �x > 0 such that

|∇f |(z) ≥ �x, for all z ∈ B(x, δx).

Since R(α1, α2) is compact due to the coercivity of f , we deduce that there is � > 0 such
that |∇f |(x) ≥ � for all x ∈ R(α1, α2). By [5, Theorem 2.1], for all x ∈ R(α1, α2) and
α ∈ [α1, α2] we have:

d(x, [f ≤ α]) ≤ 1

�
(f (x) − α)+.

Now, choose s, t ∈ [0, T ] and suppose that s < t . Then,

dH (Ŝ(t), Ŝ(s)) = sup
x∈Ŝ(s)

d(x, Ŝ(t)) = sup
x∈Ŝ(s)

d(x, [f ≤ α2 − t])

≤ sup
x∈Ŝ(s)

1

�
(f (x) − α2 + t)+ = 1

�
|t − s|.

Thus, Ŝ is a (1/�)-Lipschitz set-valued map. Now take

x ∈ Û(−t) \ Û(−s) = [int(Ŝ(t))]c \ [int(Ŝ(s))]c = Û(−t) ∩ int(Ŝ(s))

(notice that by (H1) the above set is nonempty) and let n̂ the exterior unit vector of Ŝ(t) at
projŜ(t)(x). Then, since f is coercive, there exists ζ > 0 such that

projŜ(t)(x) + ζ n̂ ∈ bd Ŝ(s) = bd Û(−s).
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Clearly

d(x, Û(−s)) ≤ ζ = d(projŜ(t)(x) + ζ n̂, Ŝ(t)) ≤ sup
y∈Ŝ(s)

d(y, Ŝ(t)).

With this in mind, we can write

dH (Û(−t), Û(−s)) = sup
x∈Û(−t)∩ Ŝ(s)

d(x, Û(−s)) ≤ sup
y∈Ŝ(s)

d(y, Ŝ(t)) ≤ 1

�
|t − s|.

Thus, Û is also 1
�
-Lipschitz. The last assertion of the statement is straightforward. �

In what follows, we consider the sweeping process (2.9) for the moving set maps
Ŝ : [0, T ]⇒R

d and Û : [−T ,0]⇒R
d , that is,{

u̇(t) ∈ −N(Ŝ(t);u(t)), t ∈ [0, T ]
u(0) = x0 ∈ Ŝ(0)

and

{
v̇(τ ) ∈ −N(Û(τ );v(τ)), τ ∈ [−T ,0]
v(−T ) = y0 ∈ Û(−T )

(3.4)

We now set

M = bd([f ≤ α2]) and R = [f ≤ α2] \ int([f ≤ α1]), (3.5)

and consider the mapping

u : [0, T ] × M → R (3.6)

(t,m) �→ u(t,m),

where u(·,m) is the unique solution of the first sweeping process differential inclusion of
(3.4) with initial condition x0 = m. In what follows, we endow the set [0, T ] × M with the
distance:

D ((t1,m1), (t2,m2)) := |t1 − t2| + ‖m1 − m2‖, ∀t1, t2 ∈ [0, T ], ∀m1,m2 ∈ M. (3.7)

Proposition 3.7 (Inversion of the sweeping flow) Let m ∈ M
⋂

int(domf ). Suppose that
f is Lipschitz-continuous around m ∈ M . Then, under (H1)–(H3), the mapping u : [0, T ] ×
M → R is one-to-one and bi-Lipschitz around (0,m).

Proof Let us first show that u is (globally) Lipschitz. Let us denote by K the (common)
Lipschitz constant of the moving set maps Ŝ(·) and Û(·), given by Lemma 3.6. Notice that
every trajectory of a K-Lipschitz sweeping process map is a Lipschitz curve with the same
constant K (see e.g. [23]), that is, for every m ∈ M and t1, t2 ∈ [0, T ] it holds

‖u(t1,m) − u(t2,m)‖ ≤ K|t1 − t2|.
Recall also (see [18]) that since Ŝ has convex values, the distance between two different
trajectories is decreasing in time. We deduce directly that for (t1,m1), (t2,m2) ∈ [0, T ]× M

it holds:

‖u(t1,m1) − u(t2,m2)‖ ≤ ‖u(t1,m1) − u(t2,m1)‖ + ‖u(t2,m1) − u(t2,m2)‖
≤

(
max{1,K}

)
D ((t1,m1), (t2,m2))
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Take δ > 0 so that B(m, δ) ⊂ int(domf ). Recalling the definition of the set M from (3.5),
since f is continuous on B(m, δ), we deduce that

� := M ∩ B(m, δ) = [f = α2] ∩ B(m, δ).

Moreover, by continuity of the mapping u (given in (3.6)), we get that there exists ε > 0
such that

u([0, ε] × �) ⊂ int(domf ).

Shrinking δ and ε if necessary, we can assume that f is Lipschitz-continuous on
u([0, ε] × �). Evoking Proposition 2.1 we deduce that for every (t,m) ∈ (0, ε] × �, we
have f (u(t,m)) = α2 − t , that is, the mapping u takes values in R, given in (3.5). More-
over,

|t1 − t2| = |f (u1) − f (u2)| ≤ L‖u1 − u2‖, (3.8)

where L is the Lipschitz constant of f on the compact set u([0, ε] × �) ⊂ int(domf ).
Let us now show that u(·, ·) is one-to-one on [0, ε] × �.
To this end, let (t1,m1), (t2,m2) ∈ [0, ε] × � be such that u(t1,m1) = u(t2,m2). Since

f (m1) = f (m2) = α2,

we get that

α2 − t1 = f (u(t1,m1)) = f (u(t2,m2)) = α2 − t2,

which yields that t1 = t2. Let us denote by t̄ the common value of t1 = t2, and by ū the
common value of u(t1,m1) = u(t2,m2). Consider the differential inclusion{

v̇(t) ∈ −N(Û(t);v(t)), t ∈ [−t̄ ,0],
v(−t̄ ) = ū.

(3.9)

Hypotheses (H1)–(H3) ensure that Û : [−t̄ ,0]⇒R
d is uniformly prox-regular and Lip-

schitz continuous, entailing that the above differential inclusion has a unique solution
v : [−t̄ ,0] → R

d (c.f. Proposition 2.1). Noting that both t �→ u(−t,m1) and t �→ u(−t,m2)

are solutions of the above differential inclusion, we deduce that

m1 = u(0,m1) = v(0) = u(0,m2) = m2,

and consequently (t1,m1) = (t2,m2), proving that u(·, ·) is one-to-one.
Let us now show that the flow can be reversed, and that the expansion of the reversed

flow can be controlled: to this end, let (t1,m1), (t2,m2) ∈ [0, ε] × �, with t1 ≤ t2, and set
ūi = u(ti ,mi), for i ∈ {1,2}. Consider the differential inclusions, for i ∈ {1,2}:{

v̇i (t) ∈ −N(vi(t), Û(t)), t ∈ [−t2,0],
vi(−t2) = ūi .

Thanks to Lemma 3.6 (see, e.g., [23]) and Proposition 2.1, the above differential inclusions
have unique solutions, v1, v2 : [−t2,0] →R

d . It is not hard to see that v2(t) = u(−t,m2) for
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every t ∈ [−t2,0] and that

v1(t) =
{

ū1, if t ∈ [−t2,−t1]
u(−t,m1), if t ∈ [−t1,0].

Let Pk := {s0, . . . , sk} be a uniform partition of the interval [−t2,0] with width

|Pk| := |sj − sj−1| = t2

k
, for all j ∈ {1, . . . , k}.

Let r > 0 be such that the sets Û(t) are r-uniformly prox-regular for all t ∈ [−t2,0] and take
k sufficiently large such that

θ := K |Pk|
r

= K t2

r k
< 1. (3.10)

Then for i ∈ {1,2}, we define the polygonal curve vi,k emanating from ui associated to Pk

as follows:

vi,k(sj ) =
{

ūi , if j = 0

proj(vi,k(sj−1); Û(sj )), if j ∈ {1, . . . , k}.

Notice that all projections as well-defined. In particular, for every j ∈ {1, . . . , k}

v1,k(sj−1), v2,k(sj−1) ∈ Û(sj ) + (
K|sj − sj−1|︸ ︷︷ ︸

θ r

)
Bd = Û(sj ) + θ r Bd .

Since the projection proj(·, Û(sj )) is Lipschitz with constant (1 − θ)−1 on the set

Û(sj ) + K|sj − sj−1|Bd ≡ Û(sj ) + θ r Bd

(see, e.g., [6]) we obtain

‖v1,k(sj ) − v2,k(sj )‖ ≤ (1 − θ)−1 ‖v1,k(sj−1) − v2,k(sj−1)‖, j ∈ {1, . . . , k}

and we deduce ‖v1,k(0) − v2,k(0)‖ ≤ (1 − θ)−k ‖u1 − u2‖.
Setting γ := r−1K t2 and recalling (3.10)), we obtain

‖v1,k(0) − v2,k(0)‖ ≤
(

1 − γ

k

)−k ‖u1 − u2‖.

Since vi,k converges uniformly to vi as k → ∞ (see, e.g., [6]), we conclude that

‖m1 − m2‖ = ‖v1(0) − v2(0)‖ ≤ er−1Kt2‖u1 − u2‖.

Recalling (3.8) we conclude that

D((t1,m1), (t2,m2)) ≤
(
L + er−1KT

)
‖u(t1,m1) − u(t2,m2)‖.

This shows that u is bi-Lipschitz and the proof is complete. �
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Fig. 3 Illustration of foliation induced by u : [0, T ] × M → R. Left: In blue, the part of M , corresponding to
M

⋂
int(domf ), which is injectively transported; In red, the part M

⋂
bd(domf ), where u fails injectivity.

Right: The case where domf = R
d and u induces a complete foliation. (Color figure online)

The above proposition shows that the mapping u : [0, T ] × M → R locally induces a
foliation of the annulus R = [α1 ≤ f ≤ α2], near every point m ∈ M ∩ int(domf ) satisfying
that f is Lipschitz-continuous on a neighborhood of m. The problem appears at points
in bd(domf ) that belong to the boundary of several sublevel sets, since at these points
the mapping u loses injectivity. However, if domf = R

d and f is locally Lipschitz, the
neighborhood [0, ε] × � can be taken to be [0, T ] × M and u : [0, T ] × M → R induces a
(complete) foliation of the whole annulus R. This is illustrated in Fig. 3.

Recall that for every m ∈ M
⋂

int(domf ) the set � = M ∩ B(m, δ) is a C1,1-
submanifold of codimension 1 (see Lemma 3.3) and can naturally be endowed with its
Hausdorff measure Hd−1. Consequently, we can consider the measure μ := L1 × Hd−1

over [0, T ] × �, where L1 is the Lebesgue measure over [0, T ]. We further endow the set
R = [f ≤ 0] \ int[f ≤ T ] with the usual Lebesgue measure Ld of Rd .

Theorem 3.8 (control of null sets) Let N ⊂ R
d be a null measure set, and assume (H1)–(H3)

hold. Let m̄ ∈ M ∩ int(domf ) such that f is Lipschitz-continuous near m̄. Then, there exist
ε, δ > 0 and a subset A ⊂ � := B(m̄, δ) ∩ M of full measure (i.e. Hd−1(A) = Hd−1(�))

such that

(i) � ⊂ int(domf ) and u(� × [0, ε]) ⊂ int(domf ).
(ii) f is Lipschitz on u(� × [0, ε]).

(iii) for every m ∈ A, one has

L1({t ∈ [0, ε] : u(t,m) ∈ N }) = 0.

If domf = R
d and f is locally Lipschitz, then [0, ε] × � can be taken to be [0, T ] × M .

Proof Let ε > 0 such that [0, ε] × � is the neighborhood that appears in the proof of Propo-
sition 3.7 so that assertions (i), (ii) hold. Without loss of generality, let us assume that
N ⊂ O := u([0, ε] × �). Note first that μ = L1 ×Hd−1 is a Borel measure over [0, ε] × �.
This yields that u : [0, ε] × � → R is measurable, and therefore so is 1N ◦ u. Furthermore,
since 1N ◦ u is integrable, we can apply Fubini’s theorem (see, e.g., [14, Theorem 1.22]) to
get that the mapping γ ∈ � �→ ∫ ε

0 1N (u(t, γ ))dt is Hd−1-measurable and that

μ(u−1(N ))) ≡
∫

u−1(N )

1dμ =
∫

[0,ε]×�

1N (u(t, γ ))dμ(t, γ )



Steepest Geometric Descent for Regularized Quasiconvex Functions Page 13 of 20    28 

=
∫

�

∫ ε

0
1N (u(t, γ ))dt dHd−1(γ ).

Since u is Lipschitz-continuous, its Jacobian determinant Ju(t, γ ) = |det(Du(t, γ ))| is
well-defined μ–a.e. in [0, ε] × �. Thus, we can apply the co-area formula (see, e.g., [14,
Theorem 3.10]) to write∫

u−1(N )

Ju(t, γ ) dμ(t, γ ) =
∫
O
H0

(
u−1(N )

⋂
u−1(x)

)
︸ ︷︷ ︸

∈{0,1}

dx =
∫
N

dx = Ld(N ) = 0,

where the last equality comes from the fact that u is a bijection between [0, ε] × � and
O and consequently, H0

(
u−1(N )

⋂
u−1(x)

) = 1N (x), for all x ∈ O. Finally, since u is bi-
Lipschitz, there exists a constant c > 0 such that Ju(t, γ ) ≥ c for μ-almost every (t, γ ) ∈
[0, ε] × �. Thus,

c

∫
�

∫ ε

0
1N (u(t, γ )) dt dHd−1(γ ) =

∫
u−1(N )

cdμ ≤
∫

u−1(N )

Ju(t, γ )μ(t, γ ) =
∫
N

dx = 0.

Then, the mapping γ �→ ∫ ε

0 1N (u(t, γ ))dt is zero Hd−1-almost everywhere in �, and so

L1({t ∈ [0, ε] : u(t, γ ) ∈ N }) = 0, for Hd−1– a.e. γ ∈ �.

The proof is complete. �

Combining Proposition 3.7 with Theorem 3.8, we will show that, for locally Lipschitz
functions, the mapping u : [0, T ] × M → R induces steepest descent curves almost every-
where. Indeed, for the special case where domf = R

d the argument goes as follows: let N
be the set of non-differentiability points of f . Then by Rademacher theorem Ld(N ) = 0.
For every m ∈ A (the full measure set given by Theorem 3.8) the set

Im = {t ∈ [0, T ] : u(·,m) is differentiable at t and f is differentiable at u(t,m)}
must be of full measure. Applying chain rule at every point t ∈ Im we deduce:

−1 = (f ◦ u(·,m))′(t) = |∇f |(u(t,m))u′(t,m).

Thus, u′(t,m) = −|∇f |(u(t,m))−1 for almost every t ∈ [0, T ], yielding that u(·,m) is a
steepest descent curve. The following theorem deals with the general case. The proof follows
the same idea together with a localization argument.

Theorem 3.9 (Existence of steepest descent curves) Let f : Rd → R ∪ {+∞} be a lower
semicontinuous quasiconvex, which is locally Lipschitz on an open set O ⊂ domf . Assume
further that f satisfies (H1)–(H3). Then, for almost every x ∈ O, the function f admits a
steepest descent curve emanating from x.

Proof Without loss of generality, we may assume that O is convex and 0 ∈ O. Let Ñ be
the set of all x ∈ O for which f does not admit a steepest descent curve emanating from x.
(Notice that Ñ ∩ argminf is trivially empty.)

Let further N be the set of all x ∈ O for which f is not differentiable at x. By
Rademacher’s theorem Ld(N ) = 0. We shall show that the set Ñ is also null.
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To this end, for every j ∈ N, let us define

Bj =
(

1 − 1
j

)
O.

Clearly, Bj ⊂ O and O = ⋃
j∈N Bj . Now, fix α ∈ (infO f, supO f ) and set

Kα,n,j = (Bj ∩ [f ≤ α]) \ int([f ≤ inf
O

f + 1
n
]); and

Ñα,n,j = Ñ ∩ Kα,n,j

Notice that Kα,n,j is compact and does not intersect argminf . Consequently, by hypothe-
sis (H2) we deduce that there exists c > 0 such that ‖∇f (x)‖ > c for every x ∈ Kα,n,j \N .

Denote by hα,n,j :Rd →R any Lipschitz extension of f from Kα,n,j to R
d . Applying the

co-area formula, we deduce∫ ∞

−∞
Hd−1(Ñα,n,j ∩ h−1

α,n,j (t))dt =
∫
Ñα,n,j

‖∇hα,n,j (x)‖dx

=
∫
Ñα,n,j

‖∇f (x)‖dx ≥ cLd(Ñα,n,j ).

Therefore

Ld(Ñα,n,j ) ≤ 1

c

∫ ∞

−∞
Hd−1(Ñα,n,j ∩ h−1

α,n,j (t)) dt = 1

c

∫ α

infO f + 1
n

Hd−1(Ñα,n,j ∩ f −1(t)) dt.

Let us fix t ∈ [infO f +1/n,α], set M = f −1(t) and choose m ∈ f −1(t)
⋂

O. There exist
δ > 0 and ε > 0 such that �m := M ∩ B(m, δ) ⊂ int(dom)f and u([0, ε] × �m) ⊂ O. Let
further Am ⊂ �m be the full measure subset given by Theorem 3.8 for � = �m and the null
measure set N . Then, for every γ ∈ Am and almost every t ∈ [0, ε], u(·, γ ) is differentiable
at t and f is differentiable at u(t, γ ).

Recall that the boundary of the set S := [f ≤ f (u(t, γ ))] is a C1,1-manifold around
u(t, γ ) for every t ∈ [0, ε] (cf. Lemma 3.3). We deduce that N(S,u(t, γ )) = R+{∇f (u(t,

γ ))} whenever f is differentiable at u(t, γ ). Then, for almost all t ∈ [0, ε], we have that
d
dt

u(y, γ ) ∈ R+{∇f (u(t, γ ))}. Using this fact and Proposition 2.1, we can apply chain rule
to deduce that for almost all t ∈ [0, ε]

1 = −(f ◦ u(·, γ ))′(t) =
∥∥∥∥ d

dt
u(t, γ )

∥∥∥∥‖∇f (u(t, γ ))‖ =
∥∥∥∥ d

dt
u(t, γ )

∥∥∥∥ |∇f |(u(t, γ )).

We conclude that for every γ ∈ Am, u(·, γ ) is a steepest descent curve of f emanating from
γ , and so Ñα,n,j ∩ Am = ∅. Since M ∩O = f −1(t) ∩O is σ -compact, it can be covered by
countably many sets {�mk

: k ∈N}, yielding

Hd−1(Ñα,n,j ∩ f −1(t)) ≤ Hd−1(f −1(t) \
⋃

Amk
) = 0.

Since the latter conclusion holds for every t ∈ [infO f + 1/n,α], we deduce that
Ld(Ñα,n,j ) = 0. Taking n → ∞, j → ∞ and α ↗ supO f , we deduce that

Ld(Ñ \ (argminO f ∪ argmaxO f )) = 0.
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Note that (H2) yields that all level sets of f (except possibly argminf ) must have
empty interior. Thus, argmaxO f = [f = supO f ] ∩ O has null measure. Moreover, if
infO f > minf , then argminO f also has null measure, while if infO f = minf , then
Ñ ∩ argminO f = ∅. Thus,

Ld(Ñ ) = Ld(Ñ \ (argminO f ∪ argmaxO f )) +Ld(Ñ ∩ argmaxO f )

+Ld(Ñ ∩ argminO f ) = 0.

The proof is complete. �

4 Regularizing Locally Lipschitz Quasiconvex

In order to apply the results of Sect. 3, we present a regularization scheme based on the
max-convolution operator (see, e.g., [22]). Given two functions f,g : Rd → R the max-
convolution (or sublevel-convolution) of f and g, denoted by f � g, is defined as

(f � g)(x) := inf
w∈Rd

max{f (x − w),g(w)}. (4.1)

Notice that whenever the infimum of (4.1) is exact, we have

[f � g ≤ α] = [f ≤ α] + [g ≤ α] and [f � g < α] = [f < α] + [g < α], (4.2)

for every α ∈ R.
In what follows we simply denote by B ≡ Bd the closed unit ball of Rd . Let us assume

inff = 0. Let ε > 0 and let us denote by IεB the indicator function of εB, that is,

IεB(x) =
{

0, if x ∈ εB

+∞, if x /∈ εB.

We focus on a particular max-convolution with g ≡ IεB, namely, we study the function
fε = f � IεB defined by

fε(x) = (f � IεB)(x) = inf
w∈B

f (x − εw) , ∀x ∈R
d . (4.3)

If inff > −∞, we can easily adapt the definition of fε bysetting

fε = inff + (f − inff ) � IεB.

In both cases, the formulae of the sublevel sets is preserved:

[fε ≤ α] = [f ≤ α] + εB, for every α ∈R.

However, if f is not bounded from below, the max-convolution loses that key property.
Thus, for the general case, we consider the following definition.

Definition 4.1 For a lower semicontinuous function f : Rd → R ∪ {+∞} and ε > 0 we
define the regularized function fε : Rd → R∪ {+∞} as follows:

fε(x) = inf
w∈B

f (x − εw).

Notice that fε is the unique function satisfying [fε ≤ α] = [f ≤ α] + εB, for every α ∈ R.
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In this section we will study the class

Q = {f : Rd → R | f is quasiconvex and locally Lipschitz}. (4.4)

Let us first focus our attention on quasiconvex functions satisfying minf = 0. The general
case will be treated in forthcoming Theorem 4.5. The next proposition surveys some relevant
properties of the above max-convolution that we will use in the subsequent development.

Proposition 4.2 Assume that f :Rd →R∪{+∞} is lower semicontinuous, quasiconvex and
minf = 0. Let ε > 0 and consider the max-convolution fε = f � IεB. Then, the following
properties hold:

(i) [fε ≤ α] = [f ≤ α] + εB, for every α ≥ 0; therefore bd[fε ≤ α] is an ε-prox-regular
C1,1-submanifold.

(ii) For ε1, ε2 > 0 such that ε1 + ε2 = ε, one has that

fε = fε1 � Iε2B = fε2 � Iε1B.

(iii) For each x ∈ R
d , fε(x) = f (z), where z = proj(x; [f ≤ fε(x)]). Moreover, one has

that

|∇fε|(x) ≥ |∇f |(z).

(iv) If f is finite-valued and locally Lipschitz-continuous, then fε is also locally Lipschitz-
continuous.

Proof Assertion (i) follows from the fact that the infimum in (4.3) is exact and by the C1,1-
smoothness of the distance function d(·, [f ≤ α]) on the set Rn \[f ≤ α], which is due to the
convexity of [f ≤ α]: indeed, it suffices to notice that bd([fε ≤ α]) = [d(·, [f ≤ α]) = ε].

To establish (ii), we consider the following straightforward computation:

(fε1 � Iε2B)(x) = inf
w2∈B

fε1(x − ε2w2)

= inf
w2∈B

inf
w1∈B

f (x − ε1w1 − ε2w2) = inf
w∈B

f (x − εw) = fε(x).

The assertion follows by interchanging the roles of ε1 and ε2.
Let us now deal with (iii). The first part of this assertion is straightforward. Indeed,

since z ∈ [f ≤ fε(α)], one has that f (z) ≤ fε(x). On the other hand, since the infimum
in (4.1) is exact, there exists w ∈ εB such that fε(x) = f (x − w). Thus, the distance of x to
[f ≤ fε(α)] is smaller than ε. This yields that ‖x − z‖ ≤ ε, and so fε(x) ≤ f (z).

Now, let x ∈ domfε and let z = proj(x; [f ≤ fε(x)]). Set w = x − z and notice (as
mentioned before) that ‖w‖ ≤ ε. Therefore, for every y ∈ domf , fε(y + w) ≤ f (y). Let us
also notice that

{y + w : y ∈ [f ≤ f (z)]} ⊂ [fε ≤ fε(x)].

It follows that

|∇f |(z) = lim sup
[f ≤f (z)]�y→z

f (z) − f (y)

d(z, y)
= lim sup

[f ≤f (z)]�y→z

fε(x) − f (y)

d(x, y + w)
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≤ lim sup
[f ≤f (z)]�y→z

fε(x) − fε(y + w)

d(x, y + w)

≤ lim sup
[fε≤fε(x)]�y→x

fε(x) − fε(y)

d(x, y)
= |∇fε|(x).

It remains to establish (iv). This follows from a minor adaptation of [22, Proposition 3.1].
Choose x ∈R

d and δ > 0, and take B = B(x, δ+ε) = B(0, δ)+εB. Since B is compact, the
function f is Lipschitz continuous on B . Let us denote by LB > 0 this Lipschitz constant and
take y, z ∈ B(x, δ). Let w ∈ εB be such that fε(y) = f (y+w). Then, since y+w,z+w ∈ B

we deduce

fε(z) ≤ f (z + w) ≤ f (y + w) + LB‖y − z‖ = fε(y) + LB‖y − z‖.
Interchanging the roles of y and z in the above development, we obtain

|fε(z) − fε(y)| ≤ LB‖y − z‖,
which yields that fε is Lipschitz continuous on B(x, δ). The proof is complete. �

Let us now choose x0 ∈R
d such that |∇f |(x0) > � (recall definition in (2.4)). Pick δ > 0

sufficiently small such that

|∇f |(y) > �, for every y ∈ B̄(x0, δ) ⊂ domf (4.5)

and consider the function

h := f + IB̄(x0,δ). (4.6)

Notice that since minf = 0, one has that minh ≥ 0.

Lemma 4.3 Assume that (4.5) holds and h is given by (4.6). Then the limiting slope |∇h| is
strictly positive on domh \ argminh.

Proof Set C := domh = B̄(x0, δ). Choose z ∈ domh \ argminh set α = f (z) and β ∈
(minh,α). Note that the set [minh < f < β] ∩ C has nonempty interior and consequently,
by construction,

sup
y∈[f ≤β]∩C

d(y,Rd \ C) ≥ d(proj(x0; [f ≤ β]),Rd \ C)

= δ − d(x0, [f ≤ β]) > 0.

Thus, applying [15, Lemma 1], we deduce

d(z, [h ≤ β]) = d(z, [f ≤ β] ∩ C) ≤ δ + d(x0, [f ≤ β])
δ − d(x0, [f ≤ β])d(z, [f ≤ β]).

Taking the limit β ↗ α = f (z), we obtain

|∇h|(z) = lim sup
β↗α

α − β

d(z, [h ≤ β]) ≥ lim sup
β↗α

δ − d(x0, [f ≤ β])
δ + d(x0, [f ≤ β])

α − β

d(z, [f ≤ β])
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= δ − d(x0, [f ≤ α])
δ + d(x0, [f ≤ α]) |∇f |(z) ≥ δ − d(x0, [f ≤ α])

δ + d(x0, [f ≤ α])�︸ ︷︷ ︸
:=φ(α)

.

Since the function z �→ φ(h(z)) is continuous and strictly positive on domh \ argminh the
assertion follows. �

Lemma 4.4 For every ε > 0, the function hε = h � IεB is quasiconvex, coercive, and satis-
fies (H1)–(H3).

Proof Since f is quasiconvex, it is straightforward that h is quasiconvex. Moreover, by
construction domh ≡ B̄(x0, δ). Thus, Proposition 4.2 entails that hε is quasiconvex and
coercive, where the last property follows from the fact that the domain domhε coincides
with the compact ball B̄(x0, δ) + εB.

Notice further that coercivity and Proposition 4.2 (i) yield that the function hε veri-
fies (H1) and (H3), with r = ε, while (H2) follows by Lemma 4.3 and Proposition 4.2 (iii).

The proof is complete. �

We are now ready to establish the main result of this section, which provides steepest
descent curves for almost every point of the regularized function fε (where f ∈ Q is not
necessarily assumed to be bounded from below) stemming from non-critical points, in the
sense of (4.7) below. Let us set:

Uε := {x ∈R
d : |∇f |(proj(x; [f ≤ fε(x)])) > 0} (4.7)

Theorem 4.5 Let f ∈ Q (not necessarily bounded from below) and ε > 0. The regularized
function fε admits steepest descent curves emanating from almost every x ∈ Uε . In particu-
lar, if f verifies (H2), then fε admits steepest descent curves emanating from almost every
x ∈ R

d .

Proof Let x ∈ Uε , and let z = proj(x, [f ≤ fε(x)]). Then, there exist δ, � > 0 such that for
all z′ ∈ B(z,2δ), we have |∇f |(z′) > �.

Take r = minB̄(z,2δ) f and note that f and g = max{f, r} coincide over B(z,2δ), and
so fε and gε coincide on a neighborhood of x. Thus, we can replace f by g and assume,
without losing any generality, that r = ming = 0.

Take h = g + IB̄(z,δ). Then, by Lemma 4.3, h verifies (H2). By invoking [2, Example 4.1]
and Lemma 3.6, we deduce that the mapping y �→ proj(y, [h ≤ gε(y)]) is continuous over
the set [gε > minh]. This yields that there exists η > 0 such that

proj(y, [h ≤ gε(y)]) ⊂ z + δ

2
B, ∀y ∈ B(x,η).

In particular, for all y ∈ B(x,η) one has that proj(y, [g ≤ gε(y)]) = proj(y, [h ≤ gε(y)]) and
consequently

gε(y) ≥ hε(y) = inf
w∈y+εB

h(y − w)

≥ inf
w∈y+εB

g(y − w) = gε(y).

Thus, gε and hε coincide in B(x,η) and since gε is finite, B(x,η) ⊂ domhε . In particular,
hε is locally Lipschitz on B(x,η). Now, applying Lemma 4.4 and Theorem 3.9, we deduce
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that hε , and so gε , admits steepest descent curves emanating from almost every point in
B(x,η). The proof is complete. �

(Open questions) The question of characterizing locally Lipschitz functions that admit
steepest descent curves on their domains is challenging. This is open even for the class of
quasiconvex functions, where a sufficient condition was obtained in [13]: namely, this hap-
pens whenever the slope mapping x �→ |∇f |(x) is lower semicontinuous, since in this case,
every near-steepest descent curve is also a steepest descent curve. Concurrently, it is not
known if Theorem 4.5 presented hereby is tight, or if the regularized quasiconvex functions
fε admits steepest descent curves at every point. In addition, it is still unclear if Theorem 4.5
holds true for extended-valued quasiconvex functions that are locally Lipschitz on their do-
mains. The main obstruction seems to be the max-convolution fε does not directly inherit
the Lipschitz continuity near the boundary of the regularized domain domfε . Last, but not
least, we do not dispose a satisfactory characterization for the slope to be lower semicon-
tinuous. In particular, it is not known if the slope of a regularized function x �→ |∇fε|(x) is
lower semicontinuous or not.
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