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Abstract Existence and asymptotic stability of the periodic solutions of the Lipschitz system
2'(t) = eF(t,x,¢) is hereby studied via the averaging method. The traditional C!' dependence
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1 Introduction

We consider the following differential system
2'(t) = eF(t,z,¢e) (1.1)

where F': RxQx [0, 1] — R" is a continuous function, T-periodic in the first variable and locally
Lipschitz with respect to = (uniformly with respect to the other two variables). The set {2 is an
open connected subset of R™. In this paper we are interested in the problem of existence and
stability of T—periodic solutions of system (1.1). For sufficiently small values of the parameter
g, the system (1.1) is usually studied via the averaging method, see for example [13, 7, 6, 14, 8].
According to this method, we consider the function f : Q2 — R" defined by

T
f(z):/o F(s,z,0)ds. (1.2)

Roughly speaking, the existence of a “non-degenerate” zero zy € f~!(0) of the function f
ensures, for all small values of ¢ > 0, the existence of a T—periodic solution of the system (1.1).
A typical assumption is that z +— F(s, z,¢) is of class C* (k > 1) (see for instance [13, 7, 6]).
In this case, the aforementioned non-degenerancy condition simply means that the determinant
of the Jacobian of f at zp does not vanish, that is, det Jf(z9) # 0. Moreover, when JF has a
continuous dependence on the parameter €, a study of the asymptotic stability of the periodic
solutions (depending on the eigenvalues of the Jacobian matrix of f at zg) can be carried out: for
example, if all the spectral pseudo-abscissa values of J f(zp) are negative, the periodic solutions
are asymptotically stable.

The result on the existence of periodic solutions via the averaging method can be extended
also to nonsmooth systems (that is, F' is merely continuous on z), like in [9, Theorem IV.13]. In
such case, the condition det Jf(z9) # 0 is replaced by the more general assumption that the
Brouwer degree of f is non—vanishing in some neighborhood of zy. Since nonsmooth systems ap-
pear frequently in applications (simple operations as the max-operator or existence of constrains
lead inevitably to a loss of differentiability) it is important to study the corresponding stability
problem. In [15], it has been assumed that the nonsmooth system (1.1) admits the constant
solution = zp and that F' is (Lipschitz on z and) independent of €. In that case, a study of



stability of the constant solution has been carried out, via the global asymptotic stability of the
averaged system y' = ef(y), see [15, Theorem 2|. In [10, Theorem 3.1] it has been proved that
the same result holds when F' is continuous and degree zero homogeneous. Both approaches
make use of Lyapunov functions and converse Lyapunov theorems.

In this work we study the stability of the nontrivial periodic solutions of (1.1) and we show
that the assumption that the function z — F(s, z,¢) is C* (for all s € [0,T] and ¢ € [0,1]) can
be relaxed to the mere strict differentiability of z — F'(s, z,0) at z = 2z for almost all s € [0, 7.
In this case we show in particular that f will be differentiable at zy (Proposition 3), hence the
study of stability of the periodic solution can again be carried out via the eigenvalues (spectral
pseudo-abscissa) of the Jacobian matrix of f at zo (Theorem 8).

The proof of our main result can be roughly summarized as follows: We study the Poincaré—
Andronov operator, P(-,¢), of the system (1.1). This operator is locally Lipschitz, but not
differentiable. Instead of the classical derivative we work with the generalized Jacobian (see [5,
Section 2.6] and (3.9) below). We prove that, for ¢ > 0 sufficiently small, all the generalized
Jacobian matrices at a fixed point z. of P(-, &) are close to the Jacobian matrix of I +¢f at 2.
This simple fact yields for example the asymptotic stability of the system (1.1) in the case that
J f(zp) is normal (thus diagonalizable in C) with negative pseudo-abscissa values (Theorem 8)
or the instability in case that Jf(zp) is normal and all its eigenvalues have positive real part
(Theorem 10).

Let us finally mention, without entering in details, that our main results can potentially be
applied to the study of stability of limit cycles of the nonsmooth system considered in [4]. As
an illustration, we study a simplified planar system at the end of Section 3.

2 Notation and preliminaries

In this section we fix our notation and present some useful basic results. Throughout this work
we shall deal with the system (1.1) and we shall assume that zy € € is a zero of the function
f given in (1.2). Unless otherwise stated, we shall always consider the Euclidean norm || - ||
on R™ and the corresponding operator norm on the space of n x n matrices. Let us fix a ball
B(zp,70) C § centered at zp with radius 79 > 0. Then for each z € B(zp,79) we denote by
x(-, 2,€) 1 [0,t(.¢)) — R the solution of (1.1) with initial point (0, 2,¢) = z. Using the local
existence and uniqueness theorem (see [7, Section 1.3], for example) we deduce that there exists
eo € (0,1] (sufficiently small) such that t(, .,y > T for all z € B(20,79) and all ¢ € [0, o]

We define the Poincaré—Andronov operator as follows:
P : B(zo,70) x [0,e0] — R" with P(z,e) :=x(T, z,¢€). (2.3)

We recall that a solution z(-, z,¢) of (1.1) satisfying x(0, z,¢) = x(T), z,€) is T—periodic. Thus,
ze is a fixed point of P(-,¢) if, and only if, z(-, zc,¢) is a T—periodic solution of (1.1).

Definition 1 (asymptotic stability). (i) A fixed point z* of the operator P(-,¢) is called
stable if for each n > 0 there exists § > 0 such that ||z — z*|| < § implies ||P"(z,¢) — z*|| < n for
all n > 0. A stable fixed point for which there exists 6 > 0 such that for all z € B(z*, )

lim ||P"(z,e) — z*|| =0,

n—-+o0o

is called asymptotically stable.



(ii) A periodic solution z(-, z*, €) of the system (1.1) is called stable (in the sense of Lyapunov)
if for each 1 > 0 there exists § > 0 such that ||z — z*|| < § implies ||z (¢, z,&) —x(t, 2%, €)|| < n for
all £ > 0. A stable periodic solution for which there exists § > 0 such that for all z € B(z*, )

lim H(L‘(t,z,€) - CL'(t,Z*,c?)H = O’
t—+o00

is called asymptotically stable.

The following result shows that the study of asymptotical stability of the periodic solutions
of (1.1) can be reduced to the study of the Poincaré—Andronov operator (see [6], for example).

Theorem 2 (periodic solutions vs Poincaré-Andronov operator). For fized € > 0, z. is
an asymptotically stable fized point of P(-,€) if, and only if, x(-, zc,€) is an asymptotically stable
periodic solution of (1.1).

In view of this theorem and the above definitions, it is easy to see that if there exists § > 0
and 0 < p < 1 such that

||P(z1,€) — P(22,¢)|| < pllz1 — 22| for all z1, 20 € B(2",0)

then the fixed point z* of P(-,e) will be asymptotically stable, thus the same holds for the
periodic solution z(-, z*, &) of (1.1) as well.

Using the continuous dependence of the solution with respect to initial condition z € B(zg, ro)
and parameter € € [0,eq] (see [7, Section 1.3], for example), we deduce that there exists a com-
pact set K with B(zg,r9) C K C § such that for all (¢, z,¢) € [0,T] x B(zo,70) X [0, 0]

x(t, z,¢) € K. (2.4)
Let M > 0 be such that for all t € [0,T], x € K and ¢ € [0, ]
1F(t,2,6)]| < M. (25

Using compactness of K we also deduce the existence of a uniform Lipschitz constant L > 0 of
F such that for all ¢ € [0, 7] and € € [0, &¢]

|F(t, 2, e) = F(ty,e)|| < Lljx —yl], forall z,y € K. (2.6)

Let us finally mention the equivalent to (1.1) integral equation for x(, z,):
t
x(t,z,e) = 2z + 5/ F(s,x(s,2,¢),¢e)ds (2.7)
0

for all t € [0,T], z € B(z0,70) and ¢ € [0,e9]. Combining (2.6) with (2.7) and applying the
classical Gronwall Lemma, we obtain for each ¢t € [0,7] and ¢ € [0, g¢] that

|z (t, z,€) — 2(t,w,e)|| < e[|z —w||, for all z,w € B(z0,70). (2.8)



3 Main results

We shall now study the stability of the periodic solutions of (1.1) (or equivalently of (2.7)). In
this work the C'!' assumption on F is relaxed as follows:

(H1) F(s,-,0) is strictly differentiable at zp, for almost all s € [0, T].

In other words, for almost all s € [0, 77, there exists A(s) := JF(s, zp,0) such that

lim  |ju]] " || F (s, 2 +u,0) — F(s,2,0) — A(s)u|| = 0.
z—zo u—0

Note that the existence of the Jacobian JF' is no more required for points (s, z,¢) with
either ¢ > 0 or z # zg. For given (fixed) values of s € [0,7] and ¢ € [0,e¢], we shall consider
instead, the generalized Jacobian OF(s, z,¢), which is defined as the closed convex envelope
of all possible limits of Jacobians of points (s, z,,¢) of differentiability of F'(s,-,¢) as z, — 2
([5, Definition2.6.1]). An even more general description can be found in [12, Theorem 9.62].
More precisely, if Dp(s,e) denotes the points of differentiability of F'(s,-,¢), it follows by the
Rademacher theorem that R"\ Dp(s, ¢) is of Lebesgue measure zero. Then given any null subset
N of R” the following formula holds:

Zn—2

0F(s,z,e) = ¢o {Bg = lim JF(s,zn,€); 2zn € Dp(s,e N\ NN } (3.9)

We shall also need make the following mild assumption, which can be seen as a relaxation
of the continuous dependence of the Jacobian JF on the parameter ¢ € [0, 0] in the C! case.

(H2) For all n > 0, there exists § > 0 such that for all z € B(zp,0), € € [0,0]
and s € [0,T]: 0OF(s,z,e) C OF(s,z0,0)+ B(0,7n)

Before we proceed, let us observe that (H;) has the following useful consequence (the inter-
ested reader might want to compare this result with [5, Theorem 7.4.1]):

Proposition 3 (strict differentiability of f). Under the assumption (H1), the function f
defined in (1.2) is strictly differentiable at zy with derivative

T
J f(20) :/0 A(s)ds.

Proof. Set A(s) := JF\(s, z0,0) for all s € [0, 7] where the Jacobian exists and note that the set
{A(s) : s € [0,T] a.e.} is bounded by the Lipschitz constant L of F. Thus A = fOT A(s)ds is
well-defined. We need to prove the equality

lim ful| 7Y (2 +w) = £(2) = Aul| = 0.

z—zo u—0

To this end, consider the sequences z, — zg, u, — 0. The conclusion follows using the inequality

|[f(2n + un) = f(2n) — Auy| < /T | F(s, 2 + up, 0) — F(8,2,,0) — A(8)un|| ds
[|unl| ~Jo [|un]| ’
assumption (H;) and the Lebesgue dominated convergence theorem. ]



Let us introduce for every € > 0 the functions g, he : B(zg,79) — R"™ defined by

T
ge(z)—/o F(s,x(s,z,¢),¢€)ds, (3.10)

and -
he(z) = /0 [F(s,x(s,2,¢),e) — F(s,2,0)]ds. (3.11)

Observe that h.(z) = g-(2) — f(2) and go(2) = f(2).

Proposition 4 (Lipschitz estimation of h. around zy). Under the assumptions (H1) and
(Hz), for every n > 0 there exists 6 > 0 such that for all € < 6, the function h. is Lipschitz on
B(z0,0) with a Lipschitz constant at most equal to n, that is

[|he(w) — he(2)]] < nllw—z|| for all w,z € B(zo,9).
Proof. Set
T
M, = LTeLT/ A(s)[[ds  and My = T (14 e7) (3.12)
0

and fix any n > 0. Using (H2), choose 0 < §; < rg such that for all z € B(zp, 1) alle € (0,071) and
all s € [0,T] the following relation holds:

OF (s, z,€) C OF (s, 20,0) + B(0, ——). (3.13)
2Mo
Let 5 5
. o1 1 n
0 = min {50, 5 ’2MT’2M1} (3.14)

and fix any 0 < € < 4. By (2.7) we deduce that
S
||z(s, z,e) — z|| < E/ ||F(t,z(t, z,€),e) || dt <eMT < §,/2,
0

thus for every z € B(z0,91/2) and s € [0,T] we get
x(s, z,€) € B(z0,01). (3.15)

Let now z,w € B(zp,01/2), with z # w. To simplify notation we shall write in the sequel x
instead of x(s, z,¢) and y instead of z(s,w,e). Applying [5, Proposition 2.6.5] (generalized mean
value theorem) we obtain £*(s) € codF (s, [x,y],€), p*(s) € coOF (s,[z,w],0) such that

F(S7y75) —F(S,:C,S) = <€*(S)7y_$> (316)
and

F(s,w,0) — F(s,2,0) = (p*(s), w — 2). (3.17)
Since z,w, x,y € B(zp,d1), using (3.13) and the convexity of the norm we deduce that for almost
all s € 0,77,

€(s). () € BIA(s), 5) (3.18)

Note that

T
Hhé(w) _h‘&(z)” S/0 HF(S,y,z’;‘) —F(s,x,e) - (F(S,U},O) _F(57270>)Hd5

5



thus in view of (3.16), (3.17) and (3.18)

T 77 T
[lhe(w) = he(2)]] S/O 1€A(),y =@ = (w = 2))llds + 537 (Hy—xHJer—ZH)dS (3.19)

In view of (2.8), we get ||y —z|| < e°%*||z —w]|, thus since ¢ < 1 and s < T it follows from (3.12)
that

n T
2Mg/0 (ly =[] + lw — 2[)ds < (1/2)[[w — 2]]. (3.20)

On the other hand, since
/ ||F(t,y,e) — F(t,z,¢e)||dt < L/ [ly — z||dt < L||jw — zH/ et < LTelT ||w — 2|),

it follows from (2.7) and (3.14) that

T T
L
/0 ||<A<s>,y—x—<w—z>>r|dss6<LTe T/0 |A<s>|ds)Hw—zusm/muw—zn.

Combining this last relation with (3.19) and (3.20) the assertion follows. O

Using Proposition 4 we obtain the following result.

Proposition 5 (persistence of generalized Jacobians around zj). Under the assumptions
(H1) and (Ha), for every n > 0 there exists 6 > 0 such that for all e <9, all z € B(z,9) and
all generalized Jacobians I'c € 0g-(z) we have

I — All <, (3.21)
where A = J f(20) (cf. Proposition 3).

Proof. Note that g-(z) = f(z) + he(z) and that all three functions are locally Lipschitz, thus
differentiable almost everywhere. Let us denote by D; (respectively, Dy, D) the points of
differentiability of f (respectively, g., he), and N = R™\ (D N Dy,) . Note that N is a Lebesgue
null set, thus the generalized Jacobian of g. is given by the formula:

Zn—2

dg-(z) = ©o {BE = lim (Jf(zn) + Jhe(2p)); 2n € Dy N Dy, } .

Fix n > 0 and let B; be defined as in the above formula. Then applying Proposition 4 for n; = 7/2
we obtain d; > 0 such that for all 0 < € < §;, the function h.(-) is Lipschitz with constant at most
n/2 on B(zp,01). This yields ||Jh:(w)|| < n/2 for all ¢ < §; and all w € Dy, N B(zp,d1). Since
Of is upper semicontinuous and 9f(zg) = { A}, there exists d2 > 0 such that df(w) C B(A,n/4)
for all w € B(zp,02). Let § = min{d;,d2} and fix z € B(29,6/2). Let ny > 0 be such that for
all n > ny we have || Be — (Jf(2zn) + Jhe(zn)) || < n/4 and z, € B(z,0/2). In particular, since
zn € B(20,01) for n > ny we obtain

[ Jhe(zn)ll <m/2  and  [[Jf(zn) — Al < n/4.
This yields
1Be = All < [|Be = (Jf(zn) + The(zn)) [| + || f (20) = All + [[The(z0)|] <,

thus for all ¢ < 6 and all z € B(zp,0) we get ||B: — A|| < n and the result follows from the
convexity of the ball B(A4,n). O



We further denote by spec (I') the (complex) eigenvalues of the matrix I'. Using the continuity
of the spectral mapping we obtain directly the following corollary.

Corollary 6 (Spectral stability of generalized Jacobians). Fiz any n > 0 and assume
spec (A) = {A1,..., \x} for A= Jf(z0). Then there exists oo > 0 such that for all € € [0, dy],
z € B(z0,00) and I'c € 0g-(2), and for alli € {1,...,k}

k

spec (T'¢) ﬂ B(\i,n) # 0 and  spec([:) C UB()\Z-,n)
i=1

Let us discuss an application of the above result. Let us consider the set of zeros of the
mapping (z,€) — g-(z), or equivalently, the set of fixed points of the Poincaré-Andronov operator
P defined in (2.3), that is,

Z ={(ze,€) € B(z20,9) x [0,20] : ge(2ze) =0}
= {(ze,¢€) € B(20,0) x [0,e0] : P(ze,6) = 2}

In the C! case, (existence and) asymptotic stability of the periodic solutions is ensured if the
Jacobian of f has negative spectral pseudo-abscissa values. In fact, the C! assumption can be
replaced by the assumption that for each ¢ > 0 the Poincaré—Andronov operator P(-,¢) has a
fixed point z. and is differentiable there. Indeed, in such a case, shrinking ¢ if necessary, we
deduce from the above corollary that the matrix JP(z.,¢) will have all its eigenvalues inside the
unit disk of the complex plain. Let us extend this result to the nonsmooth case.

Theorem 7 (existence and asymptotic stability of periodic solutions - I). Let zy € f~1(0)
(f is defined in (1.2)) and let (H1), (H2) hold true. Assume det(Jf(29)) # 0 and that for some
equivalent norm | - | of R™ (that does not depend on ¢) :

[(z+ef(2) —(w+ef(w)] < (I —we) |z —wl, (3.22)

for all z,w around zy, where w > 0. Then for every ¢ > 0 sufficiently small the system (1.1)
has a unique and asymptotically stable periodic solution near zg with initial value z. satisfying
liII(l] Ze = 20.

E—>

Proof. Let us observe that the assumption zyp € f~1(0) simply means that (zg,0) € Z, while the
fact that det(A) # 0 yields that z is isolated in f~1(0) and its topological index with respect
to f does not vanish. Thus from the theory of topological degree we deduce (see also [3]) that
for all € > 0 small enough there exists z. with (z.,e) € Z and il_I)% Ze = 2.

Fix € > 0 and apply Proposition 4 (which remains true for the equivalent norm |- |) for
n < w/2. We conclude that the | - |-norm of any generalized Jacobian 0h.(z) around zy is
bounded by w/2. Since P(-,e) = I +cf + ch,, it follows easily that

[P(z,e) = P(w,e)| < (1 — (w/2)e)|z — w],
which for € > 0 sufficiently small guarantees uniqueness and asymptotic stability of the fixed
point z.. ]
In what follows, we denote by 7(I') the spectral radius of the matrix I, that is,

r(I') = max { |\ : X € spec(')}.



Theorem 8 (existence and asymptotic stability of periodic solutions - IT). Let zg € f~1(0)
and assume (Hi1) and (Hz). Then the conclusion of Theorem T remains true provided that the
matriz A = J f(zo) is normal (thus diagonalizable in C) and

a =max{Re(\) : A € spec(4)} < 0. (3.23)

Proof. Since the eigenvalues of the matrix I + €A are of the form 1 + e\ for A € spec (A4), it
follows that

r(I +eA) < /1— 2lale + || A%

On the other hand, the assumption that A is normal implies that the matrix I + €A has n-
orthonormal eigenvectors in C", which guarantees that

max { || (I +A)z||e : 2 € T [l2l| =1} = r(I +¢4),

thus
| +eA|| =r(I+cA).

Let dg < |a|/||Al|? and shrink it further if necessary to ensure that for all e € (0, §y] we have the
estimate:
1T+ Al <1 = (Ja| =27 |A]Pe)e <1 —(Ja|/2)e.

From the strictly differentiability of f at zy we deduce that, for all z, w around =y,

1 f(2) = f(w) = A(z —w) || < (la]/4) ||z — w]].

Then
Iz +<7 () — (et ef@)I| < llf(2) = Fw) = Az = w)l| +1IT + Al [l2 — ]
< (= (lal/4)e) [|z = wl].
Hence (3.22) is valid around zp, thus the conclusion follows from Theorem 7. O

Remark 9. In the above theorem, the assumption that A is normal has been used to ensure
that ||[I +cA|| = r(I + eA) for all € > 0. In fact, for any matrix A satisfying (3.23) and any
r(I+eA) < p < 1, one can always define an equivalent norm |-| in R™ for which the corresponding
operator norm satisfies |I +cA| < p. However, this norm depends on ¢ and eventually becomes
large as € — 0.

The following result concerns instability of the periodic solutions.

Theorem 10 (Unstable periodic solutions). Let zg be a zero of the function f defined in
(1.2) and assume that (H1), (H2) hold true and that the matriz A = J f(z0) is normal and

B = min {Re()) : A € spec (4)} > 0. (3.24)

Then for all € > 0 sufficiently small, (1.1) has an unstable periodic solution with initial value
near zo.



Proof. The existence of (at least one) periodic solution with initial point near zy follows in the
same way as in Theorem 7. Let us apply Corollary 6 for n < 3/2. Then there exists 9 > 0 such
that for all € € (0, dp] and z € B(zg, do), every generalized Jacobian matrix I'c € Jg.(z) satisfies
[|A—T.|| < B/2. It follows that

ep

min (|7 + L)@ x € B} > min (|7 + L)) 22 € € 2 1+

which guarantees the invertibility of the mapping P(-, &) around any z € B(zg,dp), see [5,
Section 7.1] for details. Moreover, the inverse function Q(-,¢) is Lipschitz with constant at most
(14 ¢e3/2)~L. Thus, if 2. € B(z0,dp) is the initial point of a periodic solution of (1.1), then for
every z € B(zp,dp) we have

|z =zl = [lQ(P(z,€),€) — z|| < (1 + %)_IHP(Z,)S) — 2|l

This shows that z. is a repelling fixed point of P(-,e) and the conclusion follows. O

Let us give an application to the existence and stability of limit cycles of a (nonsmooth)
planar system, which is studied by essentially the same technique, after transformation to polar
coordinates.

Example. Consider the following planar system

41 = —xo +ex1(1 — 20(x% + 22))

. (3.25)
T2 = 11,
where € > 0 is a small parameter and ¢ : Ry — R is defined as follows:
B xz, forx €]0,1],
olz) = { 1, forz e (1,00). (3.26)
Passing to polar coordinates x1 = 7 cosf, xo = rsin @, differentiating the relations r? = CC% + a:%

and 6 = arctan(ze/x;) and eliminating the parameter ¢t we get from (3.25) a one-dimensional
equation of the form (1.1), that is,

7(0) = e F(0,r,¢),
where

rcos? 6 (1 —2p(r?))
1 —e271sin260(1 — 2p(r?))’

FO,re) =

Then F : R x (0,00) x [0,1] — R is continuous, 2r—periodic with respect to 6, and locally
Lipschitz with respect to r. Moreover it satisfies (H1) and (H2) (note that F(6,-,0) is strictly
differentiable at every r > 0 provided r # 1. Then (1.2) gives

2T 2T
f(r) —/0 F(0,r,0)do = /0 rcosf (1 —2p(r?))dr = nr(1 —2p(r?)).

It is easily seen that f has a unique zero at rg € (0,00) and f’(rg) < 0 (cf. Proposition3). We
conclude that (3.25) has a unique limit cycle that is asymptotically stable. 0



Let us conclude with the following remark. Nonsmoothness appears naturally in most con-
crete problems, and leads to the development of the so-called nonsmooth analysis (see for example
[1] and references therein, as well as the classical textbooks [5], [12] and [11]). Here, instead
of the classical C'-assumption, F is assumed to be strictly differentiable only at points of the
form (s, 29, 0), which enlarges the domain of applicability of the theory: in fact, nonsmoothness
seldom occurs in a random manner, but instead it is often well-structured: this is the case for
instance in problems involving semialgebraic or subanalytic structures, see [2] for example.
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