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Abstract. In this work we are interested in the Demyanov–Ryabova conjecture for a finite
family of polytopes. The conjecture asserts that after a finite number of iterations (successive
dualizations), either a 1-cycle or a 2-cycle eventually comes up. In this work we establish a
strong version of this conjecture under the assumption that the initial family contains “enough
minimal polytopes” whose extreme points are “well placed”.
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1 Introduction

We call polytope any convex compact subset of RN with a finite number of extreme points.
Throughout this work we consider a finite family < = {Ω1, . . . ,Ω`} of polytopes of RN to-
gether with an operation which transforms the initial family < to a dual family of polytopes
that we denote F(<). (Motivation and origin of this operation will be given at the end of the
introduction).

Let us now describe the operation F : let ext(Ω) stand for the set of extreme points of the
polytope Ω and let S denote the unit sphere of RN . Then given a family < as before, for any
direction d ∈ S and polytope Ωi ∈ < (i ∈ {1, . . . , `}) we consider the set of d-active extreme
points of Ωi

E(Ωi, d) := {x ∈ ext(Ωi) : 〈x, d〉 = max〈Ωi, d〉}.

We associate to d ∈ S the polytope

Ω(d) := conv

 ⋃
Ωi∈<

E(Ωi, d)

 , (1.1)

that is, the polytope obtained as convex hull of the set of all d-active extreme points (when Ωi

is taken throughout <). Since the set of extreme points of all polytopes of the family <

E< =
⋃

Ωi∈<
ext(Ωi) (1.2)

is finite, the family of polytopes

F(<) := {Ω(d) : d ∈ S} (1.3)

is also finite, hence of the same nature as <. We call F(<) the dual family of <.
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Now starting from a given family of polytopes <0, we define successively a sequence of
families {<n}n by applying repeatedly this duality operation (transformation) F , that is, setting
<n+1 := F(<n), for all n ∈ N. Since the transformation F cannot create new extreme points,
the sequence

E<n =
⋃

Ω∈<n

ext(Ω) (extreme points of polytopes in <n) n ∈ N

is nested (decreasing) and eventually becomes stable, equal to a finite set E. By a standard
combinatorial argument, we now deduce that for some k ≥ 1 and n0 ≥ 0 we necessarily get
<n = <n+k (and E<n = E), for all n ≥ n0. Therefore, a k-cycle (<n0 ,<n0+1, · · · ,<n0+k−1) is
always formed. We are now ready to announce the conjecture of Demyanov and Ryabova:

• Conjecture (Demyanov–Ryabova, [1]). Let <0 be a finite family of polytopes in RN .
Then for some n0 ∈ N we shall have <n0 = <n0+2.

In other words, after some threshold n0 the sequence

<0, <1 = F(<0), · · · , <n+1 = F(<n), · · ·

stabilizes to either a 1-cycle (self-dual family <n = F(<n) = <n+1) or to a 2-cycle (reflexive
family <n = F(F(<n)) = <n+2) for n ≥ n0. In [1], the authors carried out generic numerical
experiments over two hundred families of polytopes, where only 2-cycles eventually arise. Notice
however that one can construct particular examples where a 1-cycle is formed. In all known
cases, the initial family <0 ends up, after finite iterations, to a reflexive one.

Besides the recorded numerical evidence, there is still no proof of this conjecture. The only
known result in this direction is due to [7]. In that work, the author establishes the conjecture
under the additional assumption that the set E<0 of extreme points of the initial family <0 is
affinely independent.

Before we state and prove our main result, let us mention that in 1–dimension the conjecture
is trivially true.

Proposition 1.1 (The conjecture is true in 1–dim). Let <0 be a finite family of closed bounded
intervals of R. Then <1 = <3.

Proof. Let us denote {I1, . . . , I`} the elements of <0 with Ij = [aj , bj ], j ∈ {1, . . . , `}. Since
the unit sphere S = SR = {1,−1} consists of only two directions, the construction of the dual
family <1 = F(<0) is very simple. To this end, we set a− := mini∈{1..`} ai, a+ := maxi∈{1..`} ai,
b− := mini∈{1..`} bi, b+ := maxi∈{1..`} bi. This leads to the family

<1 = {Ω1(−1),Ω1(1)} = {[a−, a+], [b−, b+]}.

The construction of <2 = F(<1) is even simpler, since we only have two intervals (polytopes)
to consider. We actually have

<2 = {Ω2(−1),Ω2(1)} = {[a−, b−], [a+, b+]}.

It now suffices to compute <3 and obtain directly that <1 = <3. (Notice that if it happens
a+ = b− then we actually get a 1-cycle: <1 = <2.) �
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The extreme simplicity of the problem in dimension 1 is due to the fact that the family
that arises after any new iteration has at most 2 elements (corresponding to the directions 1
and −1 of the unit sphere SR). The problem gets much more complicated though in higher
dimensions, where no prior efficient control on the cardinality of the iterated families can be
obtained (apart from an absolute combinatorial bound on the number of all possible polytopes
that can be obtained by convexifying subsets of the prescribed set of extreme points E). We
shall now treat this general case.

Let <0 be a finite family of polytopes in RN (N ≥ 2). We denote by E := E<0 the set of
extreme points of all polytopes of the family, see (1.2), by R = card(E) its cardinality and we
set

C := conv(E)

its convex hull. Notice that every polytope Ω of the family <0 (or of any family <n obtained
after n-iterations, for every n ∈ N), is contained in C. Let further

r(Ω) := card(Ω ∩ E)

denote the number of extreme points of the polytope Ω ∈ <0 and set

rmin := min
Ω∈<0

r(Ω). (1.4)

We now state the main result of the paper.

Theorem 1.2 (Main result). Let <0 be a finite family of polytopes in RN and rmin ∈ {1, . . . , R}
as in (1.4). Then <1 = <3 (i.e. a reflexive family occurs after one iteration) provided:

(H1) ∀x ∈ E, x 6∈ conv(E\{x}) (i.e. each x ∈ E is extreme in C.)

(H2) <0 contains all rmin-polytopes (that is, all polytopes made up of rmin points of E).

Remark 1.3. (i) Assumption (H1) easily yields that the set of extreme points remains stable
from the very beginning, that is,

E<n = E<0 = E, for all n ∈ N.

Indeed pick x ∈ E and ex ∈ S which exposes x in C. Let Ω ∈ <0 be such that x ∈ ext(Ω) (there
is clearly at least one such a polytope in <0). Then ex exposes x in Ω, that is x ∈ E(Ω, ex).
It follows readily that x ∈ Ω(ex) ⊂ E<1 (see the definition in (1.1)) and by a simple induction,
x ∈ E<n , for every n ≥ 1.

(ii) Assumption (H2) will be weakened in the sequel.

Origin of the conjecture. The initial motivation which eventually led to the formulation
of the above conjecture stems from the problem of stable representation of positively homoge-
neous polyhedral functions as finite minima of sublinear ones, or its geometric counterpart, the
representation of a closed polyhedral cone as finite union of closed convex polyhedral cones. Let
us recall that a function f : RN → R is called positively homogeneous provided f(λx) = λf(x)
for every x ∈ RN and λ > 0. It is called sublinear (respectively, superlinear) if it is positively
homogeneous and convex (respectively, concave).
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Following [5], a sublinear function g : RN → R is called an upper convex approximation of f
if g majorizes f on RN , that is, g(x) ≥ f(x), for every x ∈ RN . In the same way, a superlinear
function g: RN → R is called a lower concave approximation of f if g minorizes f on RN , that

is, g(x) ≤ f(x) for all x ∈ RN . Then we say that a set of sublinear functions E∗ is an upper

exhaustive family for f if the following equality holds for every x ∈ RN :

f(x) = inf
g∈E∗

g(x). (1.5)

Similarly, we say that a set of superlinear functions E∗ is a lower exhaustive family for f if the
following equality holds for every x ∈ RN :

f(x) = sup
g∈E∗

g(x). (1.6)

In [2] the authors established the existence of an upper exhaustive family of upper convex
approximations (respectively lower exhaustive family of lower concave approximations) when
f is upper semicontinuous on RN (respectively lower semicontinuous). In particular, if f is
continuous, the existence of both such families is guaranteed.

It is well known (see [3, 4] e.g.) that a function g: RN → R is sublinear if and only if
g(x) = maxh∈∂g(0)〈x, h〉. Using this fact we are able to restate (1.5) in the following way:

f(x) = inf
g∈E∗

g(x) = inf
g∈E∗

max
h∈∂g(0)

〈x, h〉 = inf
Ω̄∈<

max
h∈Ω̄

〈x, h〉,

where < = {∂g(0) : g ∈ E∗} is the family of subdifferentials of the sublinear functions g that
represent f and Ω̄ = ∂g(0). In a similar way, considering superlinear functions g (lower concave
approximations of f) and denoting by < = {−∂(−g)(0) : g ∈ E∗} the family of superdifferentials
Ω = −∂(−g)(0), we can restate (1.6) as follows:

f(x) = sup
Ω∈<

min
h∈Ω
〈x, h〉.

In case of a polyhedral function f the exhaustive families E∗ and E∗ can be taken to be finite,
with elements being polyhedral functions (g and g respectively). In this case, the corresponding

families < and < —called upper (respectively lower) exhausters— are made up of finite poly-
topes. In [1], the authors presented a procedure —that they called converter— which permits
to define from a given lower exhauster < an upper exhauster < = F(<) and vice-versa (this is
actually the same procedure and coincides with the described operator F in the beginning of
the introduction). A lower (respectively, an upper) exhauster < (respectively, <) is called stable
or reflexive, if

< = F (F(<)) (respectively, < = F
(
F(<)

)
).

An equivalent way to formulate the Demyanov–Ryabova conjecture is to assert that starting
with any finite (upper or lower) exhaustive family of polyhedral functions, we eventually end up
to a stable one.
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2 Preliminary results

Notation.
<0 is a finite set of polytopes in RN with N ≥ 2.
S denotes the unit sphere of RN .
ext(Ω) is the set of extreme points of a given polytope Ω ∈ <0.
E =

⋃
Ω∈<0

ext(Ω) is the set of extreme points of all polytopes in <0.
R := card(E)
C := conv(E)
We assume throughout the paper that E satisfies the assumption (H1) of Theorem 1.2. For the
proof of Theorem 1.2, we shall need the two following notions.

Definition 2.1.

• (d-compatible enumeration) An enumeration {xi}Ri=1 of E is called d-compatible with
respect to a direction d ∈ S, provided

〈x1, d〉 ≤ 〈x2, d〉 ≤ · · · ≤ 〈xR, d〉. (2.1)

Notice that a d-compatible enumeration is not necessarily unique: indeed, whenever 〈xi, d〉 =
〈xj , d〉, for 1 ≤ i < j ≤ R the elements xi and xj can be interchanged in the above enumeration.

• (strict p-location) A direction d ∈ S is said to locate strictly an element x̄ ∈ E at the
p-position (where p ∈ {1, . . . , R}), if there exists a d-compatible enumeration {xi}Ri=1 of E for
which xp = x̄ and

. . . ≤ 〈xp−1, d〉 < 〈xp, d〉 < 〈xp+1, d〉 ≤ . . .

In case p = 1 (resp. p = R) the left strict inequality 〈xp−1, d〉 < 〈xp, d〉 (resp. the right strict
inequality 〈xp, d〉 < 〈xp+1, d〉) is vacuous. Notice further that since C is a polytope, assumption
(H1) yields that for every x̄ ∈ E the normal cone

NC(x̄) = {d ∈ RN : 〈d, y − x̄〉 ≤ 0, ∀y ∈ C}

of C at x̄ has nonempty interior (see [3, 6] e.g.), and every d ∈ S ∩ intNC(x̄) strictly locates x̄
in the R-position, under any d-compatible enumeration {xi}Ri=1 of E.

• (selection) A map x ∈ E 7→ ex ∈ S is called a selection of exposing directions if

∀x ∈ E, ex ∈ S ∩ intNC(x).

Thus, for every x ∈ E, ex is a direction that strictly exposes x in C.

We now begin a series of “reordering results”. The main goal is the following. Given a
d-compatible enumeration of E which locates an element x at some position, say i, we construct
a direction d′ ∈ S and a d′-compatible enumeration of E which locates strictly x to a possibly
different position p ≥ i. To construct such a d′, the general idea is to do small perturbations on
d using other well chosen directions. These perturbations need to be quantified and adequately
controlled. We start with the following simple lemma.

Lemma 2.2 (Uniform control). Let d ∈ S and fix x ∈ E 7→ ex ∈ S ∩ intNC(x) a selection.
Then, there exist constants M > 0 and m > 0 such that, for every x ∈ E, the map Dx: R→ RN

defined for every t ∈ R by Dx(t) = d+ tex satisfies the following properties:
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(i) Dx is continuous and Dx(0) = d.

(ii) For t > 0 (resp. t < 0) large enough in absolute value, any (Dx(t)/‖Dx(t)‖)-compatible
enumeration (xi)

R
i=1 of E strictly locates x at the R-position (resp. at the 1-position).

That is, for every y ∈ E, y 6= x: 〈x,Dx(t)〉 > 〈y,Dx(t)〉 (resp. 〈x,Dx(t)〉 < 〈y,Dx(t)〉).
(iii) For every y1, y2 ∈ E: |〈y1 − y2, Dx(t)−Dx(0)〉| ≤M |t|.
(iv) For every y ∈ E, y 6= x: |〈x− y,Dx(t)−Dx(0)〉| ≥ m|t|.

Proof. The first assertion is obvious. The second assertion is a simple consequence of the fact
that ex ∈ intNC(x) exposes x in C and this latter set is bounded.

Now let us prove (iii). Set M = max{‖y1−y2‖ : y1, y2 ∈ E} > 0. Then, for every y1, y2 ∈ E,

|〈y1 − y2, Dx(t)−Dx(0)〉| = |〈y1 − y2, tex〉| ≤ |t| ‖y1 − y2‖ ‖ex‖ ≤M |t|.

In the same way we prove (iv). Set m = min{|〈x − y, ex〉| : x, y ∈ E, x 6= y} > 0. Then for
every x, y ∈ E with y 6= x,

|〈x− y,Dx(t)−Dx(0)〉| = |t| |〈x− y, ex〉| ≥ m|t|.

�

Remark 2.3. Whenever a selection x ∈ E 7→ ex ∈ S ∩ intNC(x) is fixed, the constants m,M of
the previous lemma hold for every function Dx (and do not depend neither on d, nor on x).

The next lemma will play a key role in the sequel.

Lemma 2.4 (Strict location in the very next position). Let {xj}Rj=1 be a d-compatible enumer-
ation of E such that for some 1 ≤ i ≤ R− 1 we have:

. . . ≤ 〈xi−1, d〉 < 〈xi, d〉 ≤ 〈xi+1, d〉 ≤ . . .

Then there exist a direction d′ ∈ S and a d′-compatible enumeration {yj}Rj=1 satisfying

{x1, · · · , xi−1} ⊂ {y1 · · · , yi}

and locating strictly xi at the i+ 1-position, that is,{
yi+1 = xi

. . . ≤ 〈yi, d′〉 < 〈yi+1, d
′〉 < 〈yi+2, d

′〉 ≤ . . .

Proof. Throughout the proof, we fix x ∈ E 7→ ex ∈ S ∩ intNC(x) a selection and m,M > 0
the universal constants given in Lemma 2.2 (c.f. Remark 2.3).

Case 1: xi is not strictly located in the i-position, that is the d-compatible enumeration {xj}Rj=1

verifies
. . . ≤ 〈xi−1, d〉 < 〈xi, d〉 = 〈xi+1, d〉 ≤ . . .

Notice that it may exist more than one y ∈ E such that 〈xi, d〉 = 〈y, d〉 (xi+1 may not be the
unique point with this property). Let k ∈ {i − 1, . . . , R} be the maximum index such that
〈xi, d〉 = 〈xk, d〉. Our strategy will be to do a small perturbation on d with a good control in
order to put xi at the i-position strictly. This creates a new direction d′ together with a new
ordering of elements in E through d′. Then, we consider an element y which comes right after
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xi in the d′-ordering. We apply again a small perturbation of d′, with a good control, in order
to reverse the order of xi and y. The key point is that the uniform control of the employed
perturbations ensures that the element xi reaches exactly at the i+ 1-position and not a further
position.

Let us write a = 〈xi − xi−1, d〉 > 0, c = M/m and let ε > 0 such that a − 2cε > a/2 > 0.
Let us summarize our notations with the following picture

-

〈·, d〉x1 · · · xi−1 xi
xi+1

· · · xR

-� a

Step 1: We locate xi strictly in the i-position but in a controlled way. Consider the map
Dxi(t) = d+ texi defined in Lemma 2.2, and then define the function

Φ : t ∈ R 7→ min
j∈{i+1,...,R}

〈xj − xi, Dxi(t)〉.

The map Φ is continuous, satisfies Φ(0) = 0 and lim
t→−∞

Φ(t) = +∞. Thus, by the intermediate

value theorem, there exists t0 < 0 such that Φ(t0) = ε. That is

min
j∈{i+1,...,R}

〈xj , Dxi(t0)〉 = 〈xi, Dxi(t0)〉+ ε.

Taking ε > 0 small enough we ensure that if y ∈ (xi)
R
j=i+1 is such that 〈y − xi, Dxi(t0)〉 = ε,

then y ∈ {xi+1, . . . , xk}. Pick such a y ∈ (xi)
k
j=i+1. By assertion (iv) of Lemma 2.2, we have

ε = |〈y − xi, Dxi(t0)−Dxi(0)〉| ≥ m|t0|.

Thus |t0| ≤ ε/m. Next, thanks to the assertion (iii) of Lemma 2.2, for every j ∈ {1, . . . , i− 1}
we have:

|〈xi − xj , Dxi(t0)−Dxi(0)〉| ≤M |t0| ≤ cε.

This implies that
〈xi − xj , Dxi(t0)〉 ≥ 〈xi − xj , Dxi(0)〉 − cε ≥ a− cε. (2.2)

Therefore we obtain a (Dxi(t0)/‖Dxi(t0)‖)-compatible enumeration {x′i}Ri=1 satisfying

{x1, . . . , xi−1} = {x′1, . . . , x′i−1}, xi = x′i and y = x′i+1 ∈ {xi+1, . . . , xk}.

We resume the situation in the following picture:

-

〈·, Dxi(t0)〉x′1 · · · x′i−1 x′i x′i+1 · · · x′R

-�
≥ a− cε

-�
ε

Step 2: We define a new direction d̃ together with a d̃-enumeration which locates xi at the
(i+ 1)-position and such that there is only one element y in E, y 6= xi, verifying 〈xi, d̃〉 = 〈y, d̃〉.
Consider Dx′i+1

(t) = Dxi(t0) + tex′i+1
. Reasoning as before, by the intermediate value theorem,

there exists t1 < 0 such that 〈x′i+1 − x′i, Dx′i+1
(t1)〉 = 0. By assertion (iv) of Lemma 2.2, we

deduce
ε = |〈x′i+1 − x′i, Dx′i+1

(t1)−Dx′i+1
(0)〉| ≥ m|t1|.
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Thus |t1| ≤ ε/m. Next, thanks to the assertion (iii) of Lemma 2.2, evoking (2.2) under the new
enumeration {x′i}Ri=1, for every j ∈ {1, . . . , i− 1} we deduce:

〈x′i − x′j , Dx′i+1
(t1)〉 ≥ 〈x′i − x′j , Dx′i+1

(0)〉 −M |t1| ≥ (a− cε)− cε = a− 2cε.

Note that we also have 〈x′j − x′i+1, Dx′i+1
(t1)〉 ≥ m|t1| for j ≥ i + 2. Therefore, denot-

ing d̃ := Dx′i+1
(t1)/‖Dx′i+1

(t1)‖, we may fix (x′′i )Ri=1 a d̃-compatible enumeration satisfying

{x′′1, . . . , x′′i−1} = {x1, . . . , xi−1}, x′′i = x′i+1 and x′′i+1 = x′i = xi. This leads us to the following
configuration:

-

〈·, Dxi+1(t1)〉x′′1 · · · x′′i−1 x′′i
x′′i+1

x′′i+2 · · · x′′R

-�
≥ a− 2cε

-�
≥ m|t1|

Step 3: Conclusion. To complete the proof, it suffices to evoke a continuity argument and take
t2 ∈ (−∞, t1) such that:

〈x′′i , Dx′i+1
(t2)〉 > 〈x′′j , Dx′i+1

(t2)〉, ∀ j ∈ {1, . . . , i− 1}

〈x′′i+1, Dx′i+1
(t2)〉 > 〈x′′i , Dx′i+1

(t2)〉

〈x′′` , Dx′i+1
(t2)〉 > 〈x′′i+1, Dx′i+1

(t2)〉, ∀ ` ∈ {i+ 2, . . . , R}.

Setting d′ = Dx′i+1
(t2)/‖Dx′i+1

(t2)‖, we deduce the existence of a d′-compatible enumer-

ation {yj}Rj=1 satisfying the desired conditions. That is {y1 · · · , yi−1} = {x′′1, · · · , x′′i−1} =
{x1, · · · , xi−1}, yi = x′′i , yi+1 = x′′i+1 = xi and

. . . ≤ 〈yi, d′〉 < 〈yi+1, d
′〉 < 〈yi+2, d

′〉 ≤ . . .

This finishes the first part of the proof.

Case 2: xi is strictly located in the i-position, that is 〈xi, d〉 < 〈xi+1, d〉. We prove that this
case reduces to the first case. Indeed, consider Dxi : t 7→ d+ texi the map given by Lemma 2.2.
Applying again the intermediate value theorem we deduce the existence of t0 > 0 such that

〈xi, Dxi(t0)〉 = min
j∈{i+1,...,R}

〈xj , Dxi(t0)〉.

Thus, replacing d by d̃ := Dxi(t0)/‖Dxi(t0)‖ we obtain a d̃-compatible enumeration (yj)
R
i=1 of E

verifying {x1, . . . , xi−1} ⊂ {y1, . . . , yi−1}, yi = xi and 〈yi, d′〉 = 〈yi+1, d
′〉. Therefore we rejoined

the first case. �

Remark 2.5. In the previous proof, in Case 2, this backtrack to the first case might seem strange
at a first sight, as long as the first step of the latter was precisely to apply a perturbation that
strictly locates xi in the i-position. However, as we pointed out in the proof, this strict relocation
of xi should be done in a controlled way.

The following corollary is an easy consequence of the previous lemma and will be recalled in
several occasion in the proof of Theorem 1.2.
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Corollary 2.6 (Reordering lemma). Let {xi}Ri=1 be a d-compatible enumeration of E and
assume that 〈xi, d〉 < 〈xp, d〉 for 1 ≤ i < p ≤ R. Then there exist a direction d′ ∈ S and a d′-
compatible enumeration {yj}Rj=1 satisfying {x1, · · · , xi−1} ⊆ {y1, · · · , yp−1} and strictly locating
xi at the p-position, that is,{

yp = xi
. . . ≤ 〈yp−1, d

′〉 < 〈yp, d′〉 < 〈yp+1, d
′〉 ≤ . . .

Proof. If 〈xi−1, d〉 < 〈xi, d〉, then the result follows from Lemma 2.4 applied successively p− i
times. So let us assume that 〈xi−1, d〉 = 〈xi, d〉. Fix exi ∈ intNC(xi) and consider the map Dxi :
t ∈ R 7→ d + texi given by Lemma 2.2. Recall that Dxi is continuous with Dxi(0) = d. Since
〈xi, d〉 < 〈xp, d〉, there exists t0 > 0 such that 〈xi, Dxi(t0)〉 < 〈xp, Dxi(t0)〉 and xi is strictly
located at some position, say k, in every (Dxi(t0)/‖Dxi(t0)‖)-compatible enumeration. Thus we
set d̃ := Dxi(t0)/‖Dxi(t0)‖ and we fix (x′i)

R
i=1 a d̃-compatible enumeration. Of course we have

{x1, · · · , xi−1} ⊆ {x′1, · · · , x′k−1} and xi is strictly located at the k-position in this d̃-compatible
enumeration. Now the result follows from Lemma 2.4 applied p− k times. �

3 Proof of the main result (Theorem 1.2)

Some extra notation. We keep the notation introduced at the beginning of Section 2. For
the needs of the proof, we introduce some extra notation.
Given E1 ⊂ E we shall often use the abbreviate notation [E1] = conv(E1). Under this notation
we trivially have C = [E].
Starting from a finite family of polytopes R0, we recall that Rn = Fn(R0) (n ≥ 1) where Fn

means applying the operator F defined in (1.3) n times. For d ∈ S and n ≥ 1 we denote

Ωn(d) = [
⋃

P∈<n−1

E(P, d) ],

where E(P, d) = {x ∈ ext(P ) : 〈x, d〉 = max〈P, d〉}. Under this notation,

Rn = F(Rn−1) = {Ωn(d) : d ∈ S}. (3.1)

We recall that a subset F of a polytope Ω is called a face of Ω if there exists a direction d ∈ S
such that

F = {x ∈ Ω : 〈x, d〉 = min
z∈Ω
〈z, d〉}. (3.2)

In this case we denote the face by F (Ω, d). Notice that for any d ∈ S it holds:

F (C, d) = [E(C,−d)].

We are ready to proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. In view of Proposition 1.1 we may assume N ≥ 2. Let us first treat
the case rmin = 1, that is, the case where the initial family <0 contains all singletons. In this
case, pick any x ∈ E and d ∈ S. Since Ωx = [x] ∈ <0, we deduce that E(Ωx, d) = {x} and
consequently, x ∈ Ω1(d). It follows that Ω1(d) = [E] = C for all d ∈ S, that is, <1 = {C}.
Consequently, the family <2 consists of all faces of C, that is,

<2 = {[E(C, d)] : d ∈ S} ≡ {F (C, d) : d ∈ S}.
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In particular, for x̄ ∈ E and d ∈ int NC(x̄) (direction that exposes x̄ in C) we get F (C,−d) = [x̄],
therefore <2 contains all singletons and <3 = {C} = <1.
Let us now treat the case rmin = R. In this case <0 = {C} and we deduce, as before, that <1 is
the family of all faces of C and <2 = {C} = <0.

It remains to treat the case rmin /∈ {1, R} which is what we assume in the sequel. In this
case, we show that <1 = <3 which in view of (3.1) yields F(<0) = F(<2)), i.e.

Ω1(d) = Ω3(d) for every d ∈ S. (3.3)

To establish (3.3) we shall proceed in three steps (Subsections 3.1–3.3), characterizing respec-
tively, the polytopes belonging to the families <1, <2 and respectively <3.

3.1 Characterization of polytopes in <1.

In this step, by means of geometric conditions on C we characterize membership of a given
polytope to the family <1. We start with the biggest possible polytope, namely C.

Proposition 3.1. Assume <0 satisfies (H1), (H2). Then the following are equivalent:

(i) C = Ω1(d0), for some d0 ∈ S (that is, C ∈ <1 = F(<0)) ;

(ii) card (F (C, d0) ∩ E) ≥ rmin (that is, C has a face containing at least rmin points).

Proof. [(ii)=⇒(i)] Let us first assume that for d0 ∈ S assertion (ii) holds and let us prove that

Ω1(d0) = [
⋃

Ω∈<0

E(Ω, d0)] = C. (3.4)

It suffices to prove that for each x̄ ∈ E there exists a polytope Ω ∈ <0 such that x̄ ∈ E(Ω, d0).
Since F (C, d0) contains at least rmin − 1 extreme points different than x̄, by assumption (H2)
the family <0 contains the polytope Ω obtained by convexification of x̄ and the aforementioned
rmin − 1 points. Recalling (3.2) we deduce

E(Ω, d0) =

{
{x̄}, if x̄ /∈ F (C, d0)
Ω ∩ E, if x̄ ∈ F (C, d0).

In all cases x̄ ∈ E(Ω, d0) ⊂ Ω1(d0), which shows that (3.4) holds true.

[(i)=⇒(ii)] Let us now assume that C = Ω1(d0), for some d0 ∈ S, and let {xi}Ri=1 be a
d0-compatible enumeration. Let k = max{i : 〈xi, d0〉 = 〈x1, d0〉} so that

F (C, d0) = [x1, . . . , xk].

Assume towards a contradiction, that k < rmin, and fix i0 ∈ {1, . . . , k}. Then (in view of the
definition of rmin, see (1.4)) any polytope Ω ∈ <0 that contains xi0 should necessarily contain
some element xj with j > k. In particular, 〈xi0 , d0〉 < 〈xj , d0〉, hence xi0 /∈ E(Ω, d0). Thus
xi0 /∈ Ω1(d0), contradicting (i). �

Let us now characterize membership of smaller polytopes to <1.
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Proposition 3.2. Assume <0 satisfies (H1), (H2). Let x1, x2, . . . , xk be distinct points in E
with 1 ≤ k < rmin. The following are equivalent:

(i) Ck := [E�{x1, . . . , xk}] = Ω1(dk), for some dk ∈ S (that is, [E�{x1, . . . , xk}] ∈ <1 = F(<0));

(ii) There exists a dk-compatible enumeration {x′i}Ri=1 of E such that

〈x′1, dk〉 ≤ . . . ≤ 〈x′k, dk〉 < 〈x′k+1, dk〉 = · · · = 〈x′rmin
, dk〉 ≤ . . . ≤ 〈xR, dk〉, (3.5)

and
{x1, . . . , xk} = {x′1, . . . , x′k}. (3.6)

Proof. [(ii)=⇒(i)] The proof is very similar to the previous one. Let us first assume that (ii)
holds for any 1 ≤ k < rmin and distinct points x1, x2, . . . , xk ∈ E. We shall prove⋃

Ω∈<0

E(Ω, dk) = E�{x1, . . . , xk},

which obviously yields Ω1(dk) = Ck. Pick any i ∈ {1, . . . , k}. Then by (3.6) there exists i0 ∈
{1, . . . , k} with xi = x′i0 . Let Ω ∈ <0 be such that xi ∈ Ω. Then since card (Ω) ≥ rmin > k, Ω
should contain some x′j ∈ E with 〈xi, dk〉 < 〈x′j , dk〉 (see (3.5)). Thus xi /∈ E(Ω, dk). This shows
that ⋃

Ω∈<0

E(Ω, dk) ⊂ E�{x1, . . . , xk}.

Let now x̄ ∈ E�{x1, . . . , xk}. Then 〈x̄, dk〉 ≥ 〈x′rmin
, dk〉 := α and by assumption, there exist

at least rmin − 1 extreme points with values less or equal to α, forming, together with x̄ an
rmin-polytope Ω ∈ <0 for which x̄ ∈ E(Ω, dk). This shows that

Ck := [E�{x1, . . . , xk}] = Ω1(dk) ∈ <1,

that is (i) holds.

[(i)=⇒(ii)]. Assume now that for some dk ∈ S we have [E�{x1, . . . , xk}] = Ω1(dk), con-
sider a dk-compatible enumeration {x′i}Ri=1 of E, set α := 〈x′rmin

, dk〉 and let i1 ∈ {1, . . . , rmin}
(respectively, i2 ∈ {rmin, . . . , R}) be the minimum (respectively, maximum) integer i such that
〈x′i, dk〉 = α. If i1 = 1, then in view of (3.2) the face F (C, dk) contains i2 ≥ rmin extreme points
{x′1, . . . , x′i2}. Then, according to Proposition 3.1, Ω1(dk) = C which is a contradiction. It
follows that i1 > 1. Then the dk-compatible enumeration satisfies

〈x′1, dk〉 ≤ . . . ≤ 〈x′i1−1, dk〉 < 〈x′i1 , dk〉 = · · · = 〈x′rmin
, dk〉

(
. . . = 〈x′i2 , dk〉 < . . . ≤ 〈xR, dk〉

)
.

Applying [(ii)=⇒(i)] for k = i1−1 ∈ {1, . . . , rmin−1}, we deduce that Ck := [E�{x′1, . . . , x′i1−1}],
whence i1 − 1 = k and {x′1, . . . , x′i1−1} = {x1, . . . , xk}. The proof is complete.

�

Let us complete this part with the following result.

Proposition 3.3. Assume <0 satisfies (H1), (H2). Then <1 does not contain any polytope of
the form [E�{x1, . . . , xk}] where x1, . . . , xk ∈ E are distinct and k ≥ rmin.
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Proof. This fact is obvious since <0 contains all possible rmin-polytopes. In particular, there
exists a polytope Ω entirely contained in [x1, . . . , xk], and consequently for every d ∈ S it holds

E(Ω, d) ∩ [x1, . . . , xk] 6= ∅.

The proof is complete. �

To resume the above results, we have established that a polytope Ω belongs to the family
<1 if and only if there is a dk-compatible enumeration {x′i}Ri=1 of E such that

Ω = [E�{x′1, . . . , x′k}] (0 ≤ k < rmin)

with the obvious abuse of notation: k = 0 =⇒ {x′1, . . . , x′k} = ∅.

3.2 Characterization of polytopes in <2.

In this step, we shall describe the elements of the family

<2 = F(<1) = {Ω2(d) : d ∈ S}

where as usual,

Ω2(d) = [
⋃

Ω∈<1

E(Ω, d)].

Let us proceed to a complete description of the above elements. To this end, let us fix a direction
d0 ∈ S. By the previous step (Subsection 3.1), there exists a d0-compatible enumeration {x′i}Ri=1

of E and k ∈ {0, . . . , rmin − 1} such that

Ω1(d0) = [
⋃

Ω∈<0

E(Ω, d0)] = [E�{x′1, . . . , x′k}] ∈ <1. (3.7)

Proposition 3.4. Let {x′i}Ri=1 denote the above d0-compatible enumeration of E for which (3.7)
holds. Then

Ω2(−d0) := [
⋃

Ω∈<1

E(Ω,−d0)] = [x′1, . . . , x
′
`] ∈ <2,

where
` = max{i : 〈x′i, d0〉 = 〈x′rmin

, d0〉} (∈ {rmin, . . . , R}) . (3.8)

Proof. Let us first assume k ≥ 1. According to Proposition 3.2, we have

〈x′k, d0〉 < 〈x′k+1, d0〉 = 〈x′rmin
, d0〉 = 〈x′`, d0〉 = a.

Since Ω1(d0) ∈ <1 the above yields

E(Ω1(d0),−d0) = {x′k+1, . . . , x
′
`},

therefore
{x′k+1, . . . , x

′
`} ⊂ Ω2(−d0).

Let further m ∈ {1, . . . , k} be such that

F (C, d0) = [x′1, . . . , x
′
m].
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It follows easily that
{x′1, . . . , x′m} = E(C,−d0) ⊂ Ω2(−d0).

Finally, let i ∈ {m + 1, . . . , k} and let us show that x′i ∈ Ω2(−d0). To this end, we need to
exhibit a direction d′ ∈ S such that the polytope Ω1(d′) ∈ <1 contains x′i but does not contain
any x′j for 1 ≤ j < i. (In such a case we would get x′i ∈ E(Ω1(d′),−d0) ⊂ Ω2(−d0) and we are
done.) Indeed, let d′ be given by Corollary 2.6 for p = rmin. Then there exists a d′-compatible
enumeration {yi}Ri=1 of E locating strictly x′i in the p = rmin position (i.e. yrmin = x′i) and
{x′1, · · · , x′i−1} ⊆ {y1, · · · , yrmin−1}. Applying Proposition 3.2 [(ii) =⇒ (i)] for d′ we deduce

Ω1(d′) = [E�{y1, . . . , yrmin−1}] ∈ <1

and consequently
x′i ∈ Ω1(d′) and {x′1, · · · , x′i−1} ∩ Ω1(d′) = ∅.

This proves that {x′1, . . . , x′`} ⊂ Ω2(−d0). It remains to show that if j > ` then x′j /∈ Ω2(−d0).
Indeed, since ` ≥ rmin, it follows from Proposition 3.3 that any polytope of <1 should contain at
least one of the elements {x′i : 1 ≤ i ≤ `}. Therefore x′j /∈ E(Ω1,−d0) for all Ω1 ∈ <1. It follows
that Ω2(−d0) = [x1, . . . , x`], as asserted.

Let us now assume k = 0, that is, Ω1(d0) = C. Then according to Proposition 3.1 the face
F (C, d0) contains at least rmin points of E. In view of (3.8) we deduce that

[x′1, . . . , x
′
`] = F (C, d0) = E(C,−d0) ⊂ Ω2(−d0).

Using the same argument as before, we get that x′j /∈ Ω2(−d0) whenever j ≥ ` + 1. Indeed,
according to Proposition 3.3, since l ≥ rmin any polytope of <1 should contain at least one
of the elements {x′i : 1 ≤ i ≤ `}. Thus for any polytope Ω1 in R1 containing xj we have
xj 6∈ E(Ω1,−d0). The proof is complete. �

Since Proposition 3.4 can be applied to all directions d ∈ S we eventually recover a full
description of polytopes in <2.

3.3 Construction of <3 and conclusion.

In this part we prove the following assertion: For every d ∈ S, we have Ω1(d) = Ω3(d). This last
statement trivially implies that <1 = <3 and finishes the proof of the theorem.
Let us proceed to the proof of the assertion. Fix any direction d0 ∈ S. According to Subsec-
tion 3.1, we can fix a d0-compatible enumeration (x′i)

R
i=1 such that

Ω1(d0) = [E�{x′1, . . . , x′k}] ∈ <1,

where k ∈ {0, . . . , rmin} (under the convention that {x′1, . . . , x′k} = ∅ for k = 0). Then, according
to Proposition 3.2,

Ω2(−d0) = [x′1, . . . , x
′
`] ∈ <2,

where ` ≥ rmin being defined in (3.8). Thus, we are in the following configuration:

. . . ≤ 〈x′k, d0〉 < 〈x′k+1, d0〉 = . . . = 〈x′`, d0〉 < 〈x′`+1, d0〉 ≤ . . .
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The above readily yields that

E(Ω2(−d0), d0) = {x′k+1, · · · , x′`} ⊂ Ω3(d0).

Let m ∈ {`+ 1, . . . , R} be such that

[x′m, . . . , x
′
R] = F (C,−d0) = E(C, d0).

It follows that
{x′k+1, · · · , x′`} ∪ {x′m, · · · , x′R} ⊂ Ω3(d0).

Let us prove that x′j ∈ Ω3(d0) for all j ∈ {`+ 1, . . . ,m− 1}. Notice that x′j is located in the
(R− j)-position in the inverse (−d)-compatible enumeration. Applying Corollary 2.6 we obtain
a direction (−d′) that pushes forward xj to the (R− rmin)-position, locating it there strictly. So
we obtain a d′-compatible enumeration {yj}Rj=1 such that

〈yR,−d′〉 ≤ · · · ≤ 〈yrmin ,−d′〉 < 〈yrmin−1,−d′〉 < · · · ≤ 〈y1,−d′〉
yrmin = x′j
{x′j+1, . . . , x

′
R} ⊆ {yrmin+1, . . . , yR}

Writing the above assertion in reverse order yields

〈y1, d
′〉 ≤ · · · < 〈yrmin−1 , d

′〉 < 〈yrmin , d
′〉 < · · · ≤ 〈yR, d′〉.

It follows by Proposition 3.2 [(ii) =⇒ (i)] that

Ω1(d′) = [E\{y1, . . . , yrmin−1}] ∈ <1

and consequently, yrmin = x′j ∈ E(Ω1(d′), d0) ⊂ Ω3(d0).
It remains to prove that x′j 6∈ Ω3(d0) whenever j ∈ {1, . . . , k}. Indeed, if this were not

the case, then there would exist a polytope Ω ∈ <2 such that x′j ∈ E(Ω, d0) and consequently
the polytope Ω cannot contain any other element x ∈ E with 〈x, d0〉 > 〈x′j , d0〉. In particular
{x′k+1, . . . , x

′
R}∩Ω = ∅. Thus such a polytope could contain at most k points of E with k < rmin,

which is impossible according to Proposition 3.4 (every polytope of <2 contains at least rmin

points of E). It follows that

Ω3(d0) = [E\{x′1, . . . , x′k}] = Ω1(d0),

which proves the assertion and the theorem. �

3.4 Weakening assumption (H2)

A careful inspection of the previous proof reveals that some rmin-polytopes do not intervene in
the construction of the family <1 = F(<0) and consequently assumption (H2) can be relaxed as
follows (we leave the details to the reader):

(H′2) The family <0 contains all rmin-polytopes of the form [x1, . . . , xrmin ] for which there exists
a direction d ∈ S and a d-compatible enumeration {x′i}Ri=1 such that

{x1, . . . , xrmin} = {x′1, . . . , x′rmin
} and 〈x′rmin

, d〉 < 〈x′rmin+1, d〉.
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[3] J.-B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of convex analysis, Grundlehren
Text Editions. (Springer, 2001).

[4] R. R. Phelps, Convex functions, monotone operators and differentiability, Second, Lectures
Notes in Mathematics, vol. 1364, (Springer, 1993).

[5] B. N. Pshenichnyi, Convex Analysis and Extremal Problems, (Nauka, Moscou, 1980).

[6] T. R. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, (Princeton,
N.J. 1970).

[7] T. Sang, On the conjecture by Demyanov-Ryabova in converting finite exhausters, ArXiv
e-prints (2016).

Aris Daniilidis

DIM–CMM, UMI CNRS 2807
Beauchef 851 (Torre Norte, piso 5), Universidad de Chile, 8370459, Santiago, Chile

E-mail: arisd@dim.uchile.cl
http://www.dim.uchile.cl/∼arisd

Research supported by the grants ECOS C14E06, BASAL PFB-03, FONDECYT 1171854
(Chile) and MTM2014-59179-C2-1-P (MINECO-ERDF, Spain and EU).

Colin Petitjean
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