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1 Introduction

By the term integration of a multivalued operator T : R = R? we mean the problem
of finding a lower semicontinuous (in short lsc) function f such that T C Jf, where Of
corresponds to some notion of subdifferential for the function f. This problem has recently
attracted researchers interest, see for instance [3], [5], [6], [9] and references therein.

If we impose the further restriction that df is the Fenchel subdifferential (see defini-
tion below), then a complete answer (even in infinite dimensions) to the aforementioned
problem has been established by Rockafellar [7], with the introduction of the class of
cyclically monotone operators. Indeed, as shown in [7] (see also [4]), every such operator
T is included in the subdifferential 0 f of a lsc convex function f. In particular T coincides
with 0f if and only if it is maximal, and in such a case f is unique up to a constant.

Dealing with the above problem Rockafellar used a certain technique consisting on a
formal construction of a Isc convex function fr started from a given cyclically monotone
operator T. The function fr is further called the convex integral of T. Let us recall
that Fenchel subdifferentials are particular cases of cyclically monotone operators. Con-
sequently for every lsc function f with domdf # (), the convex integral fs; (also denoted
fin this paper) of its subdifferential df defines naturally a Isc convex function minorizing
f. If in particular f is convex, then the convex integral fis equal to f up to a constant

([7])- In the general case, a natural question arises:
(Q) Given a lsc function f, is fequal to the closed convex hull ¢o f of f 7

This question has first been considered in [1, Proposition 2.6], where the authors
provide a positive answer (in finite dimensions) for the class of strongly coercive functions,
that is functions satisfying
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In this paper we improve the above result by establishing the same conclusion for the
larger class of epi-pointed functions introduced in [2] (see definition below). Moreover,
we shall give an easy example of a non epi-pointed function for which (Q) is no more
valid. However, for the one-dimensional case (d = 1), we shall show that (Q) holds true
for every lsc function defined on R.

The paper is organized as follows. In the following section, we fix our notation and
give some preliminaries concerning Fenchel duality and convex integration of the (Fenchel)
subdifferential of a non convex function. The result of [1] for the class of strongly coercive
functions is recalled and an example where the convex integration does not yield the
closed convex hull of the function is illustrated. Finally in Section 3 we state and prove
the main result of this article, concerning the class of epi-pointed functions.

2 Convex integration

Throughout this paper, we consider the Euclidean space R? equipped with the usual
scalar product (-,-). In the sequel, we denote by f : R? — RU{+00} a lsc function which
is proper, that is dom f := {z € R? : f(z) € R} is nonempty. We also denote by epi f
the epigraph of f, that is the set {(z,t) € R? x R: f(x) < t}. We recall that the second
conjugate ©o f (also denoted by f**) of f is given by

o f(z) = sup {{@*2) = [ (")}, (2)
where
fr@®) = sup {{z*,2) — f(z)}. (3)

It is known that co f is the greatest lsc convex function majorized by f, and that its
epigraph coincides with the closed convex hull of the epigraph of f. By the term subdif-
ferential, we shall always mean the Fenchel subdifferential 0f defined for every x € dom f
as follows

0f () = (z* € R : f(y) > f(x) + (a"y — ), Wy € RY. (W
If z € R\ dom f, we set df(z) = (). Throughout this paper, the set

domdf := {x € R : 9f (x) # 0}

is supposed to be nonempty. Let further xy denote an arbitrary point of dom df. We call
convex integral of df the lsc convex function f : R? — R U {+oo} defined for all x € R?
by the formula

f(x) = f(z) + sup {Z(fffaxiﬂ —x;) + (v, 1 — «Tn>} (5)

where the supremum is taken for all n > 1, all xy,29,...,x, in dom J0f and all z}, €
Of (xo),xy € Of (x1),...,2 € Of(x,). According to (4), we easily check that f < f and
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consequently f is proper and R
f<caf. (6)
Rockafellar has shown ([8]) that if f is in particular convex, then the convex integral F of
df is equal to f, that is R
f=1r (7)
In [1, Proposition 2.6] the authors generalized (7) to the nonconvex case by showing that
if f is strongly coercive (that is f satisfies (1)), then (6) becomes

~

F=tof

However the exact relation between fand ¢o f for a function not satisfying (1) remains
to discover. In particular, while in one-dimensional spaces we always have f = o f (see
Corollary 8), the following simple counterexample shows that this is not the case in
general.

Example 1 Let f : R? — R be defined as follows:

[ exp(—a®) + 0%, if (a,b) # (0,0)
f(“’b)_{ 0.~ if(ab) = (0,0),
We easily check that X
. [ ifa=0
f(a’b)_{j-oo ifa#0
and that .
co f(a,b) = 5()2.

On the other hand, since
_ J {0} if (a,b) = (0,0)
oren={ § Fh 200
formula (5) yields (for xo = (0,0)) that f(x) =0 for all z€ R2. Hence f # o f.

Remark Modifying appropriately the function f around origin, we can obtain a contin-
uous function ¢ : R? — R such that § # cog.

Let us also remark that in the previous example we have
int (dom f*) = 0. (8)

It will follow from the main theorem of Section 3 that (8) is in fact a necessary condition
in order to obtain such examples.



3 Epi-pointed functions

The aim of this section is to establish the equality between the convex integral J?of of
and the closed convex hull ¢of of f for the class of proper, Isc and epi-pointed functions
defined in R?.

Let us recall the following definition ([2]).
Definition 2 The function f is called epi-pointed if int (dom f*) # ().

It follows easily ([2, Proposition 4.5 (iv)]) that every strongly coercive function is epi-
pointed. Note also that for every T* € int (dom f*) we can always find Z € R? such that
f*(@*) = (z*,7) — f(T) (that is the “sup” in (3) is attained). This obviously yields that
7" € Of(xz) Nint (dom f*). In particular, if f is epi-pointed the set dom df is nonempty.
If now xg is any point of dom Jf we can consider the lsc convex function f defined for all
r € R? by

f‘(x) = f(zo) + sup {Z(fﬁaxiﬂ —x;) + (v, 1 — «Tn>} (9)

where the supremum is taken for all n > 1, all 2y, 29,..., 7, in R?, all 2} € 0f(z) and
all
xf € Of (x;) Nint (dom f*)

where i € {1,...,n}. Note that whenever f is epi-pointed, the set
{r € R? : Of(x) Nint (dom f*) # P}

is nonempty, so that f is proper. Comparing the formulas (5) and (9) we immediately
conclude

f<r
We shall show that if the function f is convex and epi-pointed, then f is equal to f and so,

in view of (7), the previous inequality becomes equality. This is the context of Proposition
4 below.

We shall first need the following lemma.
Lemma 3 Suppose that f is lsc convexr and epi-pointed. Then we have the inclusion
df*(z*) C df*(x*), on int (dom f*).

Proof A classical result (see [8]) states that for the Isc convex function f and all z, z* € R?
we have

r € df*(z*) if and only if 2* € f(x).

Similarly, for the lsc convex function f
z € df*(z*) if and only if 2* € 9f (x).
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Let 2* € int (dom f*) and = € df*(2*). We shall show that = € df*(z*). It follows that

z* € df(x) Nint (dom f*). (10)
For any ¢t < f(z), using the formula (9), we may choose 1, ..., z, in R?, 2t € df(z0) and
x; € Of(x1) Nint (dom f*),..., 2% € df(z,) Nint (dom f*) such that

n—1

t< flzo) + Y (f, w1 — mi) + (w0, 7 — ). (11)

i=0
For any y € R?, adding to both sides of (11) the quantity (z*,y — z), we obtain

n—1

t+ (z",y —x) < f(xo) + Z(x;‘,xiﬂ —x) +{x), x—x,) + (2, y — x). (12)
i=0

In view of (9), the right part of (12) is always less or equal to f(y). Letting t — f(x) we
infer

(@) + @'y —2) < fy)
which yields z* € 8f(x), or equivalently z € 9f* (x*). O

Proposition 4 If f is lsc convex and epi-pointed, then f = f.

Proof Since the functions f* and f* are proper, Isc and convex, we deduce from [8] and
Lemma 3 that R
f*=f"+kon int (dom f*) (13)

for some constant £ € R.

Let us now prove that the equality in (13) can be extended to all R?. According to [7,
Corollary 7.3.4], it suffices to prove that the relative interiors of the convex sets dom f*
and dom f* are equal, or equivalently (since int (dom f*) is nonempty) that

int (dom f*) = int (dom f*). (14)

Let us now prove this last equality. Taking conjugates in both sides of the inequality
f < f we obtain f* < f*, hence in particular

dom f* C dom f*

and so
int (dom f*) C int (dom f*). (15)

Conversely, let 2* € int (dom f*). Since f* is convex, we have 0 f*(2*) # (). By Lemma
3 we get Of*(z*) # 0, yielding that z* € dom d f*. Tt follows that

int (dom f*) C dom f*. (16)
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Combining (15) with (16), we conclude that equality (14) holds as desired. Hence, we
obtain

ff=F+k
Taking conjugates, this last equality yields f = f — k. Since f(zo) = f(xg) we conclude
that £ = 0 and thus f = f. O
We shall finally need the following lemma.

Lemma 5 Suppose that f is lsc and epi-pointed and set ¢ = ¢o f. Then, for any
z € dom df and z* € 9g(x) Nint (dom f*) there exist yi,...,y, in R such that €

co{y1,Ya, ..., yp} and
P
" € ﬂaf(yz-)

=1

Proof From [2, Theorem 4.6] we conclude that for any x* € dg(z), there exist y1,...,y,
in R? and wy, ..., w, in R? \ {0} such that

q
T — ij € co{y1, Yo, Yp}
j=1

and

= [(]af(%)]rwlf]afm(wﬂ], (17)

where f., is defined via the relation epi(fs) = (epi f)s Where
(epi floo :={d € X : Iy }p>1in epif,I{t,} \ 07 with d = hrf tnTn}-
- n—-+0o0

It suffices to show that for x* € int (dom f*), (17) yields ¢ = 0. To this end sup-
pose, towards a contradiction, that ¢ # 0. Since the function f., is sublinear, positively
homogeneous and f,(0) = 0 (2] e.g.), it follows easily that for any w; # 0 and any
r* € 0fo(wj) we have (x*,w;) = foo(w;). Since z* € int (dom f*), we may find some
z* € R? (near z*) such that z* € int (dom f*) and (2*,w;) > fw(w;). The latter yields
easily that

2" ¢ 0fs(0). (18)
On the other hand, since z* € int(dom f*) C domdf* we conclude the existence of = in
R? such that z € 0f*(z*), or equivalently

2" € 0g(x). (19)
Since 0g(r) C 0fx(0) ([2, Theorem 4.6]), relations (18) and (19) give the contradiction.[]

We are now ready to establish the main result of this section.
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Theorem 6 If f is lsc and epi-pointed then f: cof.

Proof Set g = @o(f). Then g is Isc convex and int (dom ¢*) = int (dom f*). In particular
g is epi-pointed. Using Proposition 4 we conclude that

n—1

g(l‘) = g(ZUU) + sup {Z<xral‘i+1 - l‘l> + <£C:;, T — xn>} )

i=0

where the supremum is taken over all n > 1, all z1,..., 2, in R¢, all 2} € dg(xo) and all
xf € dg(x;) Nint (dom f*)

where 7 € {1,...,n}. Take any z € R? and any ¢ < g(x). Then there exist x1,...,z, in
R?, 2 € dg(x) and z} € dg(x;) Nint (dom f*) (for i = 1 to n) such that

—_

t<g(wo)+ Yy (xf,xiv1—x) + (2,0 —xy). (20)

3

Il
)

Recalling that xy € dom df, we easily check that g(x¢) = f(zo) and dg(xy) = Of (o).
On the other hand, for all i € {1,...,n} Lemma 5 guarantees the existence of points
yl,...,yP in R? such that x; € co{yl,y?,...,y""} and

pi
i € [\ of ().
7j=1

We claim that for i = 1, there exists an index j; in {1,2,...,p;} such that

(w1 — o) + (@], w0 — w1) < (w5, " — wo) + (2], @5 — "),
Indeed, if this were not the case, then for every j we would have

(@5, 71— o) + (&}, 25 — 11) > (x5, y] — wo) + (&}, 72 — y]).
This yields a contradiction, since z; € co {yi,...,y*}.

Proceeding like this for 4 > 1, we inductively replace all 2;’s in (20) by 2 ’s in a way
that 2 € 0f(y!"), obtaining thus the formula

t < f(xo) + (h, ylt — wo) + (o}, ys2 —yly + -+ (ah, m — ylr).

~

Comparing with (5), we obtain ¢t < f(z). Letting t — g(z) we infer g(x) = o f(z)
f(z), which finishes the proof in view of (6).

I RVAN

Corollary 7 Suppose that f, h are proper lsc and epi-pointed functions. If Of = Oh,
then ¢o f and €O h are equal up to a constant.
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Proof For zy € domdf and ¢ = g(x¢) — f(x¢) we obviously have f: h + ¢, which in
view of Theorem 6 yields ¢co f =coh + c. O

The class of proper, Isc and epi-pointed functions is not minimal in order to ensure the
conclusion of Theorem 6. For example, every constant function f satisfies f =¢cof = f
and obviously dom f* = {0}. (In fact, one can consider any lsc convex function f which
is not epi-pointed.) Furthermore, the example of the function f(z) = min{||z||, 1} shows
that the conclusion f: ¢o f might be true even in cases where f is non-convex and non
epi-pointed at the same time. In particular, in one-dimensional spaces the following result
is true.

Corollary 8 Ifd =1 (that is f : R - RU{+00}) and domdf # 0, then f=tof.

Proof In view of Theorem 6, it suffices to consider only the case int (dom f*) = (). Since
f* is convex (and dom 0f # ) it follows that dom f* = {a}, for some a € R. We easily
conclude from (2) that

co f(z) = ax — f*(«a), (21)

for all x € R. On the other hand, for any zy € domdf we have df(xy) = {a} which
yields in view of (3) and (4) that

fH(a) = azy — f(zo). (22)

Finally, it follows easily from relation (5) that
Fw) = (o) + ale — 20). (23)
Relations (21), (22) and (23) yield directly f=tof. O
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