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Abstract The aim of this paper is to present a geometric characterization of
even convexity in separable Banach spaces, which is not expressed in terms of
dual functionals or separation theorems. As an application, an analytic equiva-
lent definition for the class of evenly quasiconvex functions is derived.

1 Introduction

According to Fenchel [4], a subset of a locally convex real topological vector
space X is called evenly convex if it is an intersection of open half-spaces. As
a consequence of the Hahn-Banach theorem, every open or closed convex set is
evenly convex (note that any closed half-space is an intersection of open half-
spaces). Evenly convex sets are precisely those convex sets having the property
that for every outside point, there exists a closed hyperplane containing the
point and not meeting the set. This interesting property shows the importance
of evenly convex sets, and has already appeared in several places in the lit-
erature (see [6, Proposition 2], [7], for example). In finite dimensions, evenly
convex sets have been recently studied by Rodriguez [14]; as observed there,
they are precisely the solution sets of general linear inequality systems (that is,
those linear inequality systems in which both strict and nonstrict inequalities
may occur). That work contains several interesting characterizations of evenly
convex sets, but all of them are in terms of hyperplanes or of exposed faces,
so that they are of a separational character. A natural question arises: Is it
possible to formulate necessary and sufficient conditions of a geometric nature
on a (convex) set ensuring the aforementioned separability from any outside
point? Of course, this question is equivalent to asking for a non-separational
characterization of evenly convex sets.

Notice that the same question with strong separation has an easy answer:
A necessary and sufficient condition for a set to be strongly separated from
any outside point by a closed hyperplane is it to be convex and closed. How-
ever, the case of evenly convex sets seems to be more complicated: in [4] a
non-separational characterization is given, but only for subsets of a finite di-
mensional Euclidean space. In the first part of this paper, we shall extend this
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characterization to the class of separable Banach spaces. We shall also present
an example showing that the same characterization is not valid in more general
spaces.

The second part of the paper is devoted to the study of evenly quasiconvex
functions [11] (called normal quasiconvex functions in [8]), that is, extended real-
valued functions f : X — R U{—00,+00} whose level sets are evenly convex.
Obviously, every lower semicontinuous quasiconvex function is evenly quasicon-
vex. It is well-known and easy to prove that all upper semicontinuous qua-
siconvex functions are evenly quasiconvex, too. Evenly quasiconvex functions
are important in duality theory. In fact, as lower semicontinuous proper con-
vex functions constitute the regular subclass of convex functions under Fenchel
conjugation, it was early recognized that evenly quasiconvex functions are the
regular functions in all usual quasiconvex conjugation schemes (see [8], [11],
[9], [13], for example). In Mathematical Economics, evenly quasiconvex func-
tions also play a role. More specifically, the indirect utility functions arising
in consumer theory are characterized as the non-increasing evenly quasiconvex
functions that satisfy an additional minor regularity condition [10]. But despite
the importance of evenly quasiconvex functions, no analytical characterization
is known so far. In other words, the only available method for checking the
even quasiconvexity of a function that is neither lower nor upper semicontinu-
ous is looking whether each of its level sets enjoys the separation property that
characterizes evenly convex sets. In this paper we give such an analytic char-
acterization of evenly quasiconvex functions in separable Banach spaces, which
follows from our geometric characterization of evenly convex sets.

Throughout the rest of this paper, X denotes a Banach space, with topolog-
ical dual X*. By (p, z) we denote the dual coupling for any x € X and p € X*.
A nonempty subset P of X is called a cone, provided AP C P, for all A > 0.
A cone P is convex if and only if P+ P C P. If P is a convex cone, then the
set £(P) := P N (—P) is the largest linear subspace of X contained in P (see
[5]). The convex cone P is said to be pointed, provided ¢(P) = {0}. Given
a nonempty convex subset K of X and a point z¢ in cl(K), the (Bouligand)
tangent cone of K at xg is the closed convex cone Tk (zg) := J A (K — {x0}).

A>0

Finally, let co(S) denote the convex hull of a subset S of X.

2 Evenly convex sets
Let X be a Banach space and K be a nonempty convex subset of X.

Definition 1 A set K is said to be evenly convez, if for every xo € X \ K, there
exists ¢ € X* such that {(q,x — xo) <0, for all z € K.

According to this definition, a set K is evenly convex if, and only if, it can
be written as an intersection of open half spaces. This shows that intersections
of evenly convex sets are evenly convex; consequently, since the whole space
X is evenly convex (being the intersection of the empty family), the evenly



convex hull eco(S) of an arbitrary set S C X is well defined as the intersection
of all evenly convex sets containing S. An easy application of Hahn-Banach
theorem shows that any closed or open convex set is evenly convex. It is also
straightforward that every convex subset of R is evenly convex. However, this
is not the case if dim X > 2, as is easily seen by considering the union of an
open half-space with one of its boundary points. One can also observe that K
is evenly convex if, and only if, for every zy € cl(K) \ K the set K U {xo} is
convex and has xg as an exposed point.

The following proposition will be needed in the sequel.

Proposition 2 Let P be a closed convexr cone in a separable Banach space
X. Then there exists p € X* such that (p,x) > 0 for every x € P\ {(P) and
(p,z) =0 for every x € ((P).

Proof Clearly, {(P) := PN (—P) is a closed linear subspace of X. Let us
consider the quotient space Z = X /£(P) and the canonical projection 7 : X —
Z (that is, n(xz) = x + £(P), for every z in X). Then 7(P) is a closed convex
pointed cone of Z. Indeed, one can easily check that 7(P) is a convex pointed
cone, while its closedness follows from the closedness of P in X and the definition
of the quotient topology, since 7~ (7 (P)) = P + {(P) = P.

Let us further consider the w*-closed set
m(P)* :={z* € Z*: (z%,2) >0, for all z € n(P)}. (1)

Since Z is a separable Banach space, using [1, Theorem 2.19] we conclude that
the set w*-qri [r(P)*] of the w*-quasi-relative interior points of mw(P)* (see
[1, Definition 2.3]) is nonempty. If z* € Z* is any such point, then we have
(z*,2) > 0, for all z € w(P) \ {0}. Indeed, if for some z € w(P) \ {0} we had
(z*,z) = 0, then using (1) we would obtain (z* — 2*,z) < 0 for all 2* € n(P)*,
which contradicts [1, Proposition 2.16].

Let now p = n*(2*), where 7* : Z* — X* is the adjoint operator of 7. It
follows easily that (p,z) > 0 for every z € P\ {(P) and (p,z) = 0 for every
x € ((P). O

The main result in this section is based on the following proposition:

Proposition 3 Let K be a conver subset of a Banach space X and let xo €
cl(K)\ K. We consider the following assertions:

(i) zo ¢ eco(K).

(i) 3g € X* : (g, — xo) <0, for all z in K.

(i1i) [xo + (Tk (20))| N K = 0.
Then (i)<= (ii)=>(iii). Moreover, if X is separable, then all three assertions
are equivalent.



Proof The equivalence (i)<=-(ii) follows directly from Definition 1 and the
observation that eco(K) is the intersection of all open half-spaces that contain
the set K.

Let us prove (ii)=>(iii). Assertion (ii) implies (g,d) < 0, for all d € Tk ().
If (iii) does not hold, then for some z € K we would have x — 29 € Tk (o) N
(—Tk(x0)), that is (g,z — zo) = 0, which is a contradiction.

Finally, let us assume that (iii) holds, and that X is a separable Banach
space. Then let us set P = Tk (zp). It follows that P is a closed convex cone.
Hence, there exists ¢ € X* such that (q,z) < 0 for every z € P \ ¢(P) and
(q,z) = 0 for every x € ¢(P) (take ¢ = —p in Proposition 2). Let now = € K.
Since © — xg € P, we get (¢,x — xo) < 0. In fact, this inequality must be
strict. Indeed, let us assume that {q,z — xo) = 0. Then z — zy € £(P), that is
x € xg + ¢(P), which obviously contradicts (iii). Consequently (g, z — zo) < 0,
for all z in K, that is (ii) (or equivalently (i)) holds. O

Remark: The equivalence between (ii) and (iii) had essentially been given also
in [4] for the case of finite dimensional spaces. Proposition 2 plays here a crucial
role for the extension to separable Banach spaces.

Using the above proposition, we obtain the following formula for the evenly
convex hull of a set.

Corollary 4 Let K be any subset of a separable Banach space X. Then
eco(K) = {z € cl(co(K)) : [z + €(Teor)(x))] N co(K) # B}.

Proof Set K; = {z € cl(co(K)) : [z + {(Teo(x)(x))] N co(K) # 0} and note
that co(K) C K. Let now x € eco(K) \ co(K). Then obviously x € cl(co(K)) \
co(K), hence by Proposition 3(iii)==(i) we get [z + {(Teo(k)(2))] N co(K) # 0.
Consequently, z € K1, hence eco(K) C K;.

Let now z € K;. Again, if z € co(K), then obviously z € eco(K). If = ¢
co(K), then Proposition 3(i)=(iii) shows that = € eco(co(K)) = eco(K). O

We now obtain immediately the following characterization of even convexity,
which does not make explicit use of dual functionals.

Theorem 5 Let K be a convexr subset of a separable Banach space X. Then
the following are equivalent:

(i) K is evenly convez.
(ii) [zo + {(Tk(20))]NK =0, Vo € cl(K) \ K.

Proof Since K is convex, we have K = co(K). Hence, by Corollary 4, K is
evenly convex if, and only if, K = {z € cl(K) : [z + {(Tx(z))] N K # 0}. But
this condition is obviously equivalent to (ii). O

Remark:
1. Condition (ii) states that if a point zy € cl(K) does not belong to K, then



every line of its tangent cone that passes through 0 does not intersect K — {zo}.
Note that this is trivially satisfied if Tk (x0) is pointed.

2. Implication (i)==(ii) in Theorem 5 is valid in arbitrary Banach spaces. On
the other hand, separability assumption is crucial for (ii)==-(i) as shows the
following example:

Example: Let I be any uncountable set and consider the non-separable Hilbert
space

X=03(I):=¢x=(2;); ER' : sup Z |2i, |*< 400 ¢, (2)
PGl ker
F finite

that is, the space of all square summable functions z : I — R. Then, for
the convex set K = (*(I); \ {0} it is easily seen that cl(K)\ K = {0} and
Tk (0) = ¢?(I)4. Since the latter is a (closed convex) pointed cone, condition
(ii) is satisfied. However, there is no functional ¢ = (¢;) € X* = ¢2(I) such that
(q,z) < 0 for every x € K. Indeed, if such a functional exists, then it should
satisfy ¢; < 0 for all ¢ € I, which is impossible, since (2) implies that the set
{i € I : ¢; # 0} is countable. (See also [1, Example 3.11 (iii)] for an example of
the same type.)

Corollary 6 A convex set K in a separable Banach space is evenly convez if,
and only if, for every xo € cl(K) \ K, {zn}n>1 C K, {A\}n>1 C (0,+00) and
d € X such that li_)m An(@p —x0) =d one has xg —d ¢ K.

n [ee]

Proof Assume first that K is evenly convex. Let us note that if d is as above,
then d € Tk (xg). If 29 — d € K, then obviously —d € Tk (xo), whence —d €
£(Tk(zp)), which violates condition (i) of Theorem 5, since zop — d € [xg +
{(Tk(z0))] N K. Conversely, if K is not evenly convex then that condition is
violated, that is, there exists d' € Tk (zo) such that K N {xg —td';t > 0} # 0.
Then for some ¢t > 0, and for d = td’' we would have zog—d € K, which contradicts
the assumption in the corollary. O

3 Evenly quasiconvex functions

We recall that a function f : X — RU {—o00,+00} is quasiconvex (respec-
tively, lower semicontinuous), if for every a € R the level set S¢(a) :={z € X :
f(z) < a} is convex (respectively, closed). The class of lower semicontinuous
quasiconvex functions has an important role in optimization ([2], [3] e.g.) and
presents good stability properties (see [12], for example). It turns out that the
larger class of evenly quasiconvex functions (see definition below) appears nat-
urally in the quasiconvex duality ([8], [11], [9], [13]) and enjoys applications in
economics [10].

Definition 7 A function f : X — RU{—o00, +00} is called evenly quasiconver,
if for every a € R the level set Sy(a) := {z € X : f(x) < a} is evenly convez.



It is obvious that every lower semicontinuous quasiconvex function is evenly
quasiconvex. The class of evenly quasiconvex functions is strictly larger, since it
also contains all upper semicontinuous quasiconvex functions (that is, functions
whose strict level sets are convex and open). Considering indicator functions
of appropriate convex sets one can get examples of evenly quasiconvex func-
tions that are neither lower semicontinuous nor upper semicontinuous as well
as quasiconvex functions that are not evenly quasiconvex. The following exam-
ple shows that an evenly quasiconvex function might fail to have evenly convex
strict level sets.

Example Let f: R> — R be defined as follows:

0, if x>y and y <0,

f(,y) =19 y/z, fz>y>0,
1, elsewhere.

Then f has closed convex level sets, hence in particular it is evenly quasiconvex;
however the strict level set S, (1) := {(z,y) € R*: = >y > 0} U {(z,y) € R*:
xz > y and y < 0} is not evenly convex.

Evenly quasiconvex functions are closed under pointwise suprema, given that
the level sets of the pointwise supremum of a family of functions are intersections
of level sets of the members of the family. Therefore every function has a largest
evenly quasiconvex minorant, which is called its evenly quasiconvex hull and
denoted by feq- The following expression for f., is well-known ([15, pg 144]
e.g.); we include a proof in order to make the paper self-contained.

Proposition 8 For any f: X - RU{—o00,+00} and x € X, one has
feq(x) =inf{a € R: 2 € eco(Sf(a))}. (3)

Proof Since f., < f and the level sets of f., are evenly convex, one has
eco(Sy(a)) C Sy, (a) for every a € R. Consequently, it follows easily that
feq(z) =inf{a€R:z € Sy (a)} <inf{a €R:x € eco(Sy(a))}.

To prove the opposite inequality, we set g(z) = inf{a € R: 2 € eco(St(a))}.
In view of the definition of f., it suffices to show that g is an evenly qua-
siconvex minorant of f. But this easily follows from the inequality g(xz) =
inf{a e R: 2z €eco(Sy(a)} <inf{a € R:z € Sy(a)} = f(x) and the fact that,
for every a € R, one has Sy(a) = [ eco(Sf(b)). O

b>a

Definition 9 [15, Definition 4.3] A function f : X — RU{—o00, 400} is called
evenly quasiconvex at xo € X, if feq(xo) = f(z0).

Since the evenly quasiconvex hull of a function lies between its lower semicon-
tinuous quasiconvex hull and its quasiconvex hull, it follows that if a quasiconvex



function f is lower semicontinuous at x then it is also evenly quasiconvex at
Zo-.

The following characterization of even quasiconvexity at a point will be use-
ful:

Proposition 10 A function f : X - RU{—o00,+00} is evenly quasiconvez at
zo € X if and only if for all a < f(zo) one has o ¢ eco(Sy(a)).

Proof If f is evenly quasiconvex at zo and a < f(xo) then a < feq(xo), that is,
zo ¢ Sy.,(a), whence, as eco(Sf(a)) C Sy, (a), zo ¢ eco(Sy(a)). Conversely, if
zo ¢ eco(Sy(a)) for all @ < f(xo) then, by formula (3), one has feq(x0) > f(z0);
since feq < f, it follows that f is evenly quasiconvex at zg. O

Proposition 11 Let f: X — RU {—o00, 400} be any function. Then
(1) f is evenly quasiconver at o € X if, and only if, for every a < f(xo) there
exists ¢ € X* such that

(g, — x0) <0, Vz € Sy(a).

(ii) f is evenly quasiconvez if, and only if, it is evenly quasiconver at every
9 € X.

Proof (i) It follows directly combining Proposition 10 with Proposition 3(i)<=>(ii).

(ii) It is an immediate consequence of the obvious fact that f is evenly quasi-
convex if, and only if, fe, = f. O

Based on Proposition 3 we obtain the following characterization of even
quasiconvexity in separable Banach spaces.

Proposition 12 Let X be a separable Banach space, f : X — RU {—o0, +o0}
a quasiconvez function and xg € X. Then f is evenly quasiconver at o if, and
only if, the following condition holds:

(*) for every yo € X such that f(yo) < f(xo), every {yn}n>1 C X such that
liT Yn = Yo and every {untn>1 C (0, +00), one has
n——+0oo -

f(@o) <Timinf f(zo + pin(2o — yn))-

Proof Let us first assume that f is evenly quasiconvex at zo. If (*) is not
satisfied, then there exists yo € X with f(yo) < f(20), {¥n}n>1 C X, {ttn}n>1 C
(0,400), such that {y,} — yo and ngrfmf(xo + pn(zo — yn)) < f(zp). Set

B = max{f(yo), ngrfmf(wo + pn(xo —yn))}- Let B < a < f(xo). By Proposition

11 there exists ¢ € X* such that (g, zo) > (g, z), for all 2 € S¢(a). In particular,
for sufficiently large n we have (g, zo) > (g, Zo + tn (o — yn)), yielding (g, y,) >
(q, o), and consequently (q,y0) > (g, zo). This contradicts the fact that yo €

S¢(a).



It remains to show that condition (*) implies that f is evenly quasiconvex
at xg. Suppose, towards a contradiction, that f is not evenly quasiconvex at
zo. Then by Proposition 10, there exists a < f(zo) such that zo € eco(Sy(a)).
Then obviously zo € cl(Sf(a)) \ (Sf(a)). Then by Proposition 3(iii)==(i) we
would have [z + £(Ts, (a)(20))] N Sf(a) # 0. Hence there exists yo € Sy(a) such

that zo — yo € Ts;(a) (zo). This means that xo — yo = lirf An(2n — xo), for
n—r—+00

some {Ap}n>1 C (0,400), {zn}n>1 C Sy(a). Let us define for every n > 1,
Un = To + A\n(®o — 25) and p, = 1/X,. Then it follows that Erf Yn = Yo
n o0

and liminf f(zo + pn (o — yn)) = liminf f(2z,) < a, since {z,}n>1 C Sy(a). This
n——+00 n—+4o00 Z
clearly contradicts (*), since a < f(xp). This finishes the proof. O

References

[1] J. BorRwEIN & A. LeEwrs, Partially finite convex programming, Part I:
Quasi relative interiors and duality theory, Math. Program. 57 (1992), 15—
48.

[2] J.-P. CrouUZzEIX, Contribution d l’étude des fonctions quasiconvezes, The-
sis, Université de Clermont, 231 pp., 1977.

[3] J.-P. CroUZEIX, Continuity and differentiability properties of quasicon-
vez functions on R™, in: Generalized Concavity in Optimization and Eco-
nomics, S. Schaible and W. Ziemba (eds.), Academic Press, New York
(1981), 109-130.

[4] W. FENCHEL, A remark on convex sets and polarity, Comm. Sem. Math.
Univ. Lund (Medd. Lunds Univ. Math. Sem.) Tome Supplém. (1952), 82-
89.

[5] D. T. Luc, Theory of vector optimization, Lecture Notes in Economics
and Mathematical Systems 319, Springer, Berlin (1988).

[6] N. Hapiisavvas, D. KrRAVVARITIS, G. PANTELIDIS & I. POLYRAKIS,
Nonlinear monotone operators with values in L(X,Y"), J. Math. Anal. Appl.
140 (1989), 83-94.

[7] N. Hapjisavvas, D. KRAVVARITIS, G. PANTELIDIS & I. POLYRAKIS,
Hereditary Order Convexity in L(X,Y), Rend. Circ. Mat. Palermo 38
(1989), 130-139.

[8] J.-E. MARTINEZ-LEGAZ, A generalized concept of conjugation, in: Opti-
mization, theory and algorithms, J.-B. Hiriart-Urruty, W. Oettli and J.
Stoer (eds.), Lecture Notes in Pure and Applied Mathematics 86 (1983),
45-59, Marcel Dekker, New York.

[9] J.-E. MARTINEZ-LEGAZ, Quasiconvex duality theory by generalized con-
jugation methods, Optimization 19 (1988), 603-6 52.



[10]

[11]

[12]

J.-E. MARTINEZ-LEGAZ, Duality between direct and indirect utility func-
tions under minimal hypotheses, J. Math. Econ. 20 (1991), 199-209.

U. Passy & E. Z. PrismaN, Conjugacy in quasi-convex programming,
Math. Program. 30 (1984), 121-146.

J.-P. PENOT, Generalized convezity in the light of nonsmooth analysis,
in: Recent Developments in Optimization, R. Durier and C. Michelot
(eds.), Lecture Notes in Economics and Math. Systems 429 (1995), 269-
290, Springer Verlag, Berlin.

J.-P. PENOT & M. VOLLE, On quasi-convex duality, Math. Oper. Res. 15
(1990), 597-625.

M. RODRIGUEZ, Nuevos resultados sobre sistemas lineales y conjuntos con-
vezos, Thesis, Universidad de Alicante, 126 pp., 2001.

I. SINGER, Abstract Conver Analysis, A Wiley-Interscience Publication,
John Wiley & Sons, Inc., New York, 1997.

Aris Daniilidis
Laboratoire de Mathématiques Appliquées
Université de Pau et des Pays de I’Adour

Avenue de I"Université
64000 Pau, France

Current address:
INRIA, Rhoéne-Alpes, Monbonnot, 38334 St Ismier Cedex, France

E-mail: aris.daniilidis@inrialpes.fr

Juan-Enrique Martinez-Legaz

CODE and Departament d’Economia i d’Historia Economica
Universitat Autonoma, de Barcelona
Bellaterra 08193, Spain

E-mail: jemartinez@selene.uab.es



