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Abstract� We consider the question of integration of a multivalued operator T � that
is the question of �nding a function f such that T � �f � If � is the Fenchel	Moreau
subdi
erential� the above problem has been completely solved by Rockafellar� who
introduced cyclic monotonicity as a necessary and su�cient condition� In this article
we consider the case where f is quasiconvex and � is the lower subdi
erential ���
This leads to the introduction of a property that is reminiscent to cyclic monotonic	
ity� We also consider the question of the density of the domains of subdi
erential
operators�

Keywords� quasiconvex function� lower subdi
erential� integration�

�� Introduction

The integration of an operator T � X � X�� i�e� the question of
�nding a di	erentiable function f such that T 
 rf � has attracted
much interest� When the operator T is multivalued� this question is
transformed into showing that for some function f one has T � �f �for
some notion of subdi	erential�� The above problem has been solved by
Rockafellar� in case one imposes that f should be convex and takes �
to be the Fenchel�Moreau subdi	erential of convex analysis�

�f�x� 
 fx� � X� � f�y�� f�x� � x��y � x�� �y � Xg ���

This gave rise to the class of cyclically monotone operators� Every such
operator T is included in the subdi	erential �fT of a lsc convex function
fT �and coincides with �fT if and only if T is maximal�� In particular
the function fT turns out to be unique up to a constant ����

The general question of integrating a non cyclically monotone mul�
tivalued operator T � X � �X

�

has already been considered by several
authors ���� ����� ����� ��� etc� In this article we relax the convexity
requirement on f to quasiconvexity� that is convexity of its sublevel
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�

sets� The class of quasiconvex functions is much larger than the class
of convex functions and appears naturally in concrete problems� A
�rst di�culty in the question of integration arises with the choice of
a subdi	erential� One line of research consists in using a subdi	eren�
tial of local nature generalizing the derivative �see ���� ���� e�g��� In
that case� characterizations of quasiconvexity have been established by
means of the concept of quasimonotonicity for multivalued operators
��� ���� ���� e�g� and references therein�� In this line of research� cyclic
quasimonotonicity �de�ned in ���� turned out to be an intrinsic property
of the subdi	erentials of quasiconvex functions� Thus an analogy with
the convex case appears� However� it is far from obvious to �nd addi�
tional assumptions ensuring that a cyclically quasimonotone operator
is included in the subdi	erential of a quasiconvex function�

Here we depart from this track and we work with the lower sub�
di	erential of Plastria ���� which is an adaptation to the quasiconvex
case of the Fenchel�Moreau subdi	erential ���� For any x � X with
f�x� � ��� the lower subdi	erential ��f�x� is given by�

��f�x� 
 fx� � X� � f�y�� f�x� � x��y � x�� �y � S�
f�x�g ���

where S�
f�x� �
 fx� � X � f�x�� � f�x�g is the strict sublevel set�

Relation ��� can also take the following form�

��f�x� 


�
x� � X� � f�y� � min

�
f�x�

f�x� � x��y � x�

�
� �y � X

�
���

One easily observes that� as with the Fenchel�Moreau subdi	erential�
�� is not a local notion� two functions that coincide in a neighborhood
of x� may not have the same lower subdi	erential at this point� We
also remark that for every x� � ��f � we have f�x� � � � �g � ��f �
which shows that ��f is not bounded� �In particular �f and ��f are in
general di	erent even for convex functions�� However� under this notion�
quasiconvex Lipschitz functions are characterized by the existence of a
bounded selection for their lower subdi	erential �see ���� for X 
 Rn

and ��� for the general case�� We extend these results in Section �� while
in Section � we consider the question of the density of the domain of the
Fenchel�Moreau subdi	erential of an arbitrary function f � Note that if
the function f is not convex� the Fenchel�Moreau subdi	erential is often
empty� As we show in Section �� its nonemptiness in a dense subset of
X implies the convexity of f �

In Section � we review some results concerning cyclically monotone
operators and Rockafellar�s integration technique for the Fenchel�Moreau
subdi	erential� We note in particular that this integration requires a
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Lower subdi�erentiability and Integration �

property that � a priori � seems to be weaker than cyclic monotonicity
�CM�� namely what we call �cyclic monotonicity with respect to a
certain point x�� �CM�x���� However� these properties turn out to be
equivalent� This alternative description of cyclic monotonicity moti�
vates the introduction� in Section �� of a new class of operators� that
is operators ful�lling a certain property �L�x��� with respect to some
�xed point x�� This property represents a pointwise version of cyclic
monotonicity� indeed �L�x��� is strictly weaker than cyclic monotonic�
ity� while an operator T is cyclically monotone if� and only if� T satis�es
�L�x�� for all x � dom �T �� We also show that the lower subdi	erential
��f of any function f restricted to the set S�

f�x��
�fx�g ful�lls �L�x����

Moreover� any such operator T is included in the lower subdi	erential
��f of some quasiconvex lsc function f �

In the last section we introduce the class of operators ful�lling an�
other property � that we denote by �R�x��� � relative to a ��xed� point
x�� This property is strictly weaker than �L�x���� It is shown that if
T ful�lls �R�x�� at every point of its domain� then it is monotone�
The main result of Section  states that the operator T de�ned by
T �x� 
 ��f�x�� if x 	
 x� and T �x�� 
 �f�x�� satis�es �R�x���� for any
f such that �f�x�� 	
 
� On the other hand� any operator of this class
is always contained in the lower subdi	erential of some quasiconvex
lsc function f � Thus we obtain a characterization of this class� which
is similar to the one given for cyclic monotonicity by means of the
Fenchel�Moreau subdi	erential�

Let us point out that while lower semicontinuous convex functions
are determined up to a constant by their Fenchel�Moreau subdi	eren�
tials� two continuous �even di	erentiable� quasiconvex functions having
the same Plastria subdi	erential may di	er essentially� In fact� the
Plastria subdi	erential of a continuous quasiconvex function may even
be empty� as shown by the example of the function f � R� R given
by f�x� 
 xp� where p � � is an odd integer� �More generally� ��f is

empty whenever lim
kxk��

f�x�
kxk 
 ����

Throughout this paper� we often use the following abbreviations�
FM subdi	erential for the Fenchel�Moreau subdi	erential� lsc for lower
semicontinuous and CM operator for a cyclically monotone operator�
Furthermore� X denotes a Banach space with dual space X�� f a func�
tion on X with values in R� f��g� and T a multivalued operator
de�ned on X and taking its values in the subsets of X�� For any x � X
and any x� � X� we denote by x��x� the value of the functional x� at
the point x� We also use the standard notation� B��x� for the closed
ball centered at x with radius � � �� dom �f� �
 fx � X � f�x� � Rg
for the domain of the function f � Sf�x� �
 fx� � X � f�x�� � f�x�g and
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S�
f�x�


 fx� � X � f�x�� � f�x�g for the sublevel and the strict sublevel

sets of f and dom�T � �
 fx � X � T �x� 	
 
g for the domain of the
multivalued operator T �

�� Integration of the subdi�erential of a nonconvex function

The properties we introduce and discuss in this article are de�ned
by �xing a certain point x� as a base point� It is natural to ask whether
this choice plays any role� In this section we shall see that this is not
the case for the property of cyclic monotonicity�

DEFINITION ���� Let T � X � �X
�

be a multivalued operator� The
operator T is called �i� cyclically monotone with respect to a point x� �
dom�T � �or alternatively T has the �CM�x��� property�� if for any
x�� x����� xn � X and any x�� � T �x��� x�� � T �x��� ���� x�n � T �xn� one
has

x�n�x� � xn� �
n��X
i��

x�i �xi�� � xi� � �

�ii� cyclically monotone �CM�� if it satis�es �CM�x�� for every point
x of its domain�

It is clear that De�nition ����ii� coincides with the standard de�
�nition of cyclic monotonicity �see De�nition ���� in ������ while it
obviously implies De�nition ����i�� The following proposition shows
that the converse is also true�

PROPOSITION ���� Every operator satisfying �CM�x��� is cyclically
monotone�

Proof� Suppose that T satis�es �CM�x��� and that for some �zi�
n
i�� �

dom�T � and z�i � T �zi�� i 
 �� �� ���� nwe have z�n�z��zn��
n��P
i��

z�i �zi���

zi� 
 	 � �� For any k � N and i 
 �� �� �� ���� k  n we de�ne xi�� 

zi�modn���� x

�
i�� 
 z�

i�modn��� �where for i � �� we have j 
 i �mod n�

i	 i� j 
 pn� for some p � N and � � j � n�� Let x�� � T �x��� Since T
satis�es �CM�x��� we have�

x�kn���x� � xkn��� �
knX
i��

x�i �xi�� � xi� � �
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Lower subdi�erentiability and Integration �

which implies�

x���z� � x�� � z���x� � z�� � k

�
z�n�z� � zn� �

n��X
i��

z�i �zi�� � zi�

�
� �

Taking the limit as k � �� we obtain a contradiction� �

REMARK ���� An operator T can be cyclically monotone in a trivial
way� if for instance dom�T � 
 
 or if dom�T � 
 fx�g�

Let us observe that cyclic monotonicity is tied to the very de�nition
of the Fenchel�Moreau subdi	erential �f and does not depend on the
convexity of the function f � Indeed� if f is any function and T � X �
�X

�

any operator satisfying T � �f � then for any x�� x�� ���� xn � X and
x�i � T �xi� �i 
 �� �� ���� n� relation ��� guarantees that f�xi����f�xi� �
x�i �xi�� � xi�� Setting xn�� �
 x� and adding the previous inequalities
yields

Pn
i�� x

�
i �xi���xi� � �� Let us state this observation as a lemma

for further reference�

LEMMA ���� For any function f � any operator T satisfying T � �f
is cyclically monotone�

The converse assertion dealing with the integration of cyclically
monotone operators is more interesting� The proof can be found in
��� and essentially requires condition �CM�x����

THEOREM ���� Let T be a multivalued operator satisfying �CM�x���
at some point x� of its domain� Then there exists a lsc convex function
fT such that T � �fT �

The lsc convex function fT of the above theorem has been con�
structed in ��� �see also ����� by the following formula� in which c is a
�xed constant�

fT �x� 
 c� sup

�
x�n�x� xn� �

n��X
i��

x�i �xi�� � xi�

�
���

where the supremum is taken over all n � N � all �nite sequences
fx�� x�� ���� xng in dom�T � and all x�i � T �x�i �� for i 
 �� �� ���� n�

Let us note here that �CM�x��� ensures that fT is not identically
equal to ��� since fT �x�� 
 c�

REMARK ��� Combining Theorem ��� with Lemma ��	 we obtain an
alternative way to establish Proposition ����
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We also recall that the second conjugate f�� of a proper function f
is given by�

f���x� 
 sup
x��X�

�x��x�� f��x��� ���

where

f��x�� 
 sup
x�X

�x��x�� f�x��� ��

Since the subdi	erential T 
 �f of any function f is cyclically
monotone� the lsc convex function fT given in ��� is well de�ned� If
in particular f is lsc convex� the uniqueness of Rockafellar�s integration
����� shows that for c 
 f�x�� one has fT 
 f � so in particular
fT 
 f��� If now f is not convex� a natural question arises� is fT related
to f��� We provide below a positive answer in �nite dimensions under
a coercivity assumption on f � Let us �rst observe that �for c 
 f�x���
fT � f from which it follows fT � f��� since f�� is the greatest lsc
convex function majorized by f �

PROPOSITION ���� Let f � Rn � R� f��g be a lsc� 
�coercive

function �i�e� lim
kxk��

f�x�
kxk 
 ���� and let T 
 �f � Then for some

constant c� the functions fT and f�� �de�ned in �	� and ��� respectively�
coincide�

Proof� From our assumptions it follows that f attains its minimum
at some point x�� hence � � �f�x��� It follows that f

���x�� 
 f�x���
Taking c 
 f�x�� in ���� we conclude from ��� that fT � f � Since fT is
convex lsc� it follows that fT � f���
Let us prove the reverse inequality� Since the function f�� is lsc and
convex� it follows from Theorem B in ��� that�

f���x� 
 f�x�� � sup

�
n��X
i��

x�i �xi�� � xi� � x�n�x� xn�

�
���

where the supremum is taken over all n � N � all �nite sequences
fx�� x�� ���� xng in dom��f��� and all choices x�i � �f���xi�� for i 

�� �� ���� n�

Using the inequality f�� � f � for any x � Rn one has�

f�x� 
 f���x� 
� �f���x� � �f�x� ���

In particular� since f���x�� 
 f�x��� one observes that

�f���x�� � �f�x�� ���
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Lower subdi�erentiability and Integration �

Fix now x � X and consider any M � f���x�� For some x�� x�� ���� xn �
X and x�i � �f���xi� one has

M � f�x�� � x���x� � x�� � x���x� � x�� � ���� x�n�x� xn� ����

Since the function f is ��coercive and is de�ned in a �nite di�
mensional space� using Theorem �� of ��� we conclude that for i �

f�� �� ���� ng� there exist �yji �
ki
j�� inX � and ��ji �

ki
j��in ��� ��with

Pki
j�� �

j
i 


� such that

x�i �
�

j�������ki

�f�yji � ����

and

xi 


kiX
j��

�jiy
j
i ����

Claim� There exists some yj�� such that

x���y
j�
� � x�� � x���x� � yj�� � � x���x� � x�� � x���x� � x�� ����

�Proof of the claim� If this were not the case� then for every j we would
have

x���y
j
� � x�� � x���x� � y

j
�� � x���x� � x�� � x���x� � x�� ����

Multiplying both sides of ���� by �j� and adding the resulting in�
equalities for j 
 �� �� ���� k� we get a contradiction by using ����� �
�
Arguing in the same way as in the proof of the above claim� we can
�nd some yj�� such that

x���y
j�
� � y

j�
� � � x���x	 � y

j�
� � � x���x� � y

j�
� � � x���x	 � x��� ����

It follows that

x���y
j
� � x�� � x���y

j�
� � yj�� � � x���x	 � yj�� � � x���x� � x�� �

� x���x� � x�� � x���x	 � x��

Proceeding like this� we inductively show that

M � f�x�� � x���y
j�
� � x�� � x���y

j�
� � yj�� � � ���� x�n�x� yjnn �

Note that from ��� we have x�� � �f�x��� while from ���� we get x�i �

�f�yjii �� for i 
 �� �� ���� n� Now ��� guarantees that M � fT �x�� Since
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M can be chosen to be arbitrarily close to f���x�� we conclude that
fT �x� � f���x�� hence equality holds� �

Let us remark that the above proof shows that fT 
 f�� whenever
the lsc function f satis�es the following condition�

�C� For any x � dom ��f��� and x� � �f���x�� there exist �yi�
k
i�� � X

and ��i�
k
i�� in ��� �� with

Pk
i�� �i 
 �� such that x 


Pk
i�� �iyi

and x� �
kT

j��
�f�yi��

This condition can often be satis�ed also by non�coercive functions
�in in�nite dimensional spaces�� as for instance by the function f�x� 

minfkxk� �g�

COROLLARY ���� Let f and g be two lsc functions satisfying condi�
tion �C�� If �f 
 �g� then f�� 
 g�� �up to a constant��

Proof� Let T 
 �f 
 �g� Note that condition �C� yields dom�T � 	
 
�
Let x� � dom �T �� The proof of Proposition ��� shows that f�� 

fT when one takes c 
 f�x�� in ��� and that g�� 
 fT � g�x��� c� �

�� Functions with a dense domain of subdi�erentiability

In the preceding section we considered operators that are �included
in� the subdi	erential of a nonconvex function� These operators are
cyclically monotone� but this may happen in a trivial way� see Remark
���� The example of the function f�x� 
 minfkxk� �g �also f�x� 
p
kxk� shows that one may have fT 
 f�� even if �f is a singleton�

However this relation is more likely to be satis�ed when the domain
dom��f� is large� In this section� we shall consider the question of
the density of the domain of such operators� The following proposition
shows that for lsc functions that do not take the value ��� the density
of �f is equivalent to the convexity of the function�

PROPOSITION ���� Let f � X � R �i�e� dom�f� 
 X� be lsc
and such that dom ��f� is dense in X� Then f is convex and locally
Lipschitz�
In particular the operator �f is maximal monotone and locally bounded�

Proof� We �rst show that f is convex� Since dom��f� is nonempty�
we conclude that f�� � ��� which together with f � f�� shows that
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Lower subdi�erentiability and Integration �

X 
 dom �f� � dom�f���� It follows that the convex function f�� is
continuous�

We now show that the functions f and f�� coincide� One observes
that f�x� 
 f���x�� for every x � dom��f�� Take now any x in X � Our
assumption implies the existence of a sequence �xn�n in dom��f� such
that �xn� � x� Since f���xn� 
 f�xn�� for n � N � f is lsc and f�� is
continuous we get�

f���x� 
 lim inf
n

f���xn� 
 lim inf
n

f�xn� � f�x� � f���x�

Thus f 
 f��� For the last assertion see Theorem ���� and Theorem
���� in ���� e�g� �

We do not know if the assumption dom�f� 
 X in the above
proposition can be omitted� The following corollary shows that this
assumption is not necessary if X 
 Rn� In this case it becomes a part
of the conclusions�

COROLLARY ���� Let f � Rn � R � f��g be lsc and such that
dom��f� is dense in Rn� Then dom �f� 
 R

n and the function f is
convex and locally Lipschitz�

Proof� We have dom ��f� � dom�f���� so dom �f��� is also dense in
R
n� Since dom�f��� is convex� it follows that dom�f��� 
 Rn� hence

f�� is continuous�
Arguing as in the last part of the proof of Proposition ��� we con�

clude again that f is convex and continuous� �

However the following example shows that lower semicontinuity as�
sumption cannot be dropped� even in the case X 
 R�

Example� Consider the indicator function iD of any dense subset D
of R�

iD�x� 


�
� if x � D�

�� if x 
� D�

We note that this function is lsc on its domain� without being lsc in
the whole space �unless D 
 R�� Moreover� for every x � D� we have
�iD�x� 
 f�g� hence D � dom��iD�� However the function iD is not
convex� �

Let us now give an in�nite dimensional version of Corollary ��� by
means of an additional assumption on the operator �f � We shall say
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that an operator T � X � �X
�

has a �locally� bounded selection on its
domain� if for every x� � X there exists M � � and � � � such that�

�z � dom�T �� B��x��� �z
� � T �z� � kz�k �M ���

LEMMA ���� Let f � X � R� f��g be a lsc function such that
dom��f� is dense in X� If �f has a �locally� bounded selection on
dom��f�� then dom�f� 
 X and f is �locally� Lipschitz�

Proof� Let us �rst assume that �f has a locally bounded selection
on dom ��f� and let � � � and M � � be as in ���� We show that
the function f is Lipschitzian on the interior intB��x�� of B��x�� with
constant at most M � Indeed take any x� y � intB��x��� Since dom��f�
is dense on X � there exists a sequence �xn�n�N in dom��f� � B��x��
and x�n � �f�xn�� with kx�nk � M � such that �xn� � x� From ��� we
conclude that f�xn� � f�y��x�n�xn�y�� Since f is lsc� taking the limit
as n� �� we get

f�x� � f�y� �Mkx� yk ����

Since ���� holds for all y in intB��x��� choosing y in dom�f� we con�
clude that f is �nite at x� Since x is arbitrary in intB��x��� we conclude
that intB��x�� � dom�f�� It now follows easily that f is Lipschitz on
intB��x���

If now �f has a bounded selection on dom ��f�� taking � 
 �� we
conclude that f is Lipschitz� �

We now state the following corollary�

COROLLARY ���� Let f � X � R� f��g be a lsc function� The
following statements are equivalent�
�i� dom��f� is dense in X and �f has a �locally� bounded selection on
dom��f��
�ii� dom ��f� 
 X and �f is �locally� bounded�
�iii� dom�f� 
 X and f is convex and �locally� Lipschitz�

Proof� The implications �iii� � �ii� � �i� are obvious� The im�
plication �i� � �iii� follows from Lemma ��� and Proposition ����
�

	� Lower subdi�erentials with a dense domain

In this section we endeavor to complete results of the literature
concerning quasiconvex functions and their lower subdi	erentials� in
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Lower subdi�erentiability and Integration ��

order to reveal analogies with the characterization of Corollary ���� We
recall that a function f � X � R� f��g is called quasiconvex� if its
sublevel sets S��f� �
 fx � X � f�x� � �g are convex for � � R� or
equivalently� if for any x� y � X and t � ��� �� the following inequality
holds�

f�tx� ��� t�y� � maxff�x�� f�y�g�

We �rst state the following lemma concerning the lower subdi	erential
�� �de�ned in ��� or ����� We omit its proof� since it is similar to the
proof of Lemma ����

LEMMA ���� Let f � X � R� f��g be a lsc function such that
dom���f� is dense on X� If the operator ��f has a �locally� bounded
selection on dom ���f�� then dom�f� 
 X and f is �locally� Lipschitz�

The theorem that follows is analogous to Corollary ����

THEOREM ���� Let f � X � R � f��g be a lsc function� The
following assertions are equivalent�
�i� dom ���f� is dense on X and ��f has a bounded selection on
dom���f��
�ii� ��f has a bounded selection on X�
�iii� f is quasiconvex� Lipschitz and dom �f� 
 X�

Proof� The equivalence �ii��� �iii� was proved in ��� �see Corollary
����� Implication �ii� � �i� is obvious� For �i� � �iii� we �rst apply
Lemma ��� to conclude that f is Lipschitz� In particular the sublevel
sets S� of f have nonempty interior� whenever � � inf f � It now follows
from Proposition ����i� of ���� that f is quasiconvex� �

The following result extends Theorem ��� in a non�Lipschitzian case
and is comparable to Corollary ���� However implication �iii� � �ii�
does not hold in general� as shown by the example below�

PROPOSITION ���� Let f � X � R�f��g be a lsc function� Among
the following statements one has �ii�� �i�� �iii��
�i� dom���f� is dense and ��f has a locally bounded selection on
dom���f��
�ii� ��f has a locally bounded selection on X�
�iii� dom�f� 
 X and f is quasiconvex and locally Lipschitz�
If the restriction of f to its sublevel sets is Lipschitzian� then the above
statements are equivalent�

SVAN����tex� ��	�
	
���� ����� p���



��

Proof� Implication �ii�� �i� is obvious� If �i� holds� then using Lemma
��� we conclude that dom f 
 X and f is locally Lipschitz� From
Proposition ����i� of ���� it now follows that f is quasiconvex� hence
�iii� holds�

Let us now assume that f is quasiconvex� continuous� dom�f� 
 X
and for any � � R the restriction of f to S� �
 fx � X � f�x� � �g is
a Lipschitz function of constant k� for some k � �� We show that ��f
has a bounded selection on S��

Indeed� consider any x� � S�� If f�x�� 
 inf f � then � � ��f�x���
Hence we may suppose that f�x�� � inf f � Since f is continuous� the
closed convex set Sf�x�� has a nonempty interior� Separating intSf�x��
from fx�g� we obtain a functional z� � X�� with kz�k 
 � such that
z��x� � z��x��� for all x � intSf�x��� It is easily seen that x� is minimizer
of f on the half space fy � X � z��y� � z��x��g� Set x

�
� 
 kz��

Claim� x�� � ��f�x���
�Proof of the Claim� Suppose that x�� 
� ��f�x��� It follows from

��� that for some x � S�
f�x��

we have f�x�� � f�x� � x���x� � x��

Given any � � �� we may �nd y � X such that x���y� 
 x���x�� and
x���y � x� � � � kx��kky� xk 
 kky� xk� Since f is continuous� we can
�nd some x� in the segment �x� y� such that f�x�� 
 f�x��� We easily
get that x���x

�� x� � � � kkx�� xk� Since f�x��� f�x� � x���x�� x� 

x���y � x� � x���x

� � x�� it follows that f�x�� � f�x� � kkx� � xk � ��
Since � is arbitrary� we have contradicted the fact that f is Lipschitz
on Sf�x�� with constant k� � �

Since x� is arbitrary in S� �and since � is arbitrary�� we have shown
that dom ���f� 
 X � Moreover� the continuity assumption of �iii�
ensures that for any x � X and � � f�x� there exists � � � such that
B��x� � S�� If k

� is the Lipschitz constant of f on S�� the previous claim
asserts that ��f has a selection on B��x� which is �norm� bounded by
k�� �

Remark� The claim of the preceding proof relies heavily on techniques
employed in ���� �see also Corollary ���� in ��� or Proposition �� in
����� in order to prove the equivalence �ii��� �iii� in Theorem ��� if
X 
 Rn� In �nite dimensions it has been shown in Cororally ���� of
��� that� if condition �iii� of Proposition ��� holds and f is inf�compact
�that is for all � � R� the set S� is compact�� then f is everywhere lower
subdi	erentiable� that is dom���f� 
 Rn� Note that the assumptions
�f is inf�compact� and dom�f� 
 X imply that the space X can
be written as a countable union of compact sets� hence it is �nite
dimensional� On the other hand� an easy compactness argument shows
that if condition �iii� holds and f is inf�compact� then the restriction of
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f to the sublevel sets is a Lipschitz function� Hence Proposition ��� can
be seen as an extension of Corollary ���� in ��� to in�nite dimensions�
which also establishes the existence of a locally bounded selection�

One cannot expect a characterization similar to Theorem ���� The
following example shows that� without additional assumptions� a lo�
cally Lipschitz quasiconvex function f may have its subdi	erential ��f
everywhere empty�

Example� Let X 
 R and consider the quasiconvex function f � R�

R� with f�x� 


�
�x� if x � �
x if x � �

� It is easy to see that f is locally

Lipschitz� but ��f�x� 
 
� for all x � R� �


� Integration by means of the lower subdi�erential

In this section we consider again the problem of integrating a mul�
tivalued operator� by relaxing this time the assumption on f �to be
quasiconvex instead of being convex� and by taking � to be the lower
subdi	erential ��� We also replace accordingly cyclic monotonicity
with a certain point�based property that we call �L�x���� This prop�
erty yields the construction of a lsc quasiconvex function gT in a way
reminiscent to the construction of the lsc convex function fT in ���
by means of De�nition ����i�� We show that a cyclically monotone
operator ful�lls �L�x�� at any point x � dom�T �� Conversely� if an
operator satis�es �L�x�� at every point of its domain� then it is cyclically
monotone �see Proposition ����� Roughly speaking� property �L�x��� is
to be understood as a pointwise version of cyclic monotonicity�

DEFINITION ���� An operator T � X � �X
�

is said to have property
�L�x��� with respect to some x� � dom�T �� if for any n � �� any
x�� x�� ���� xn � dom�T � and any x�i � T �xi� for i 
 �� �� ���� n� one has�

min

����
��	

x���x� � x��
x���x� � x�� � x���x� � x��

  

x�n�x� � xn� �
Pn��

i�� x
�
i �xi�� � xi�


���
��� � �

It follows easily that if T is cyclically monotone �see De�nition
����ii��� then it satis�es �L�x�� at every point of its domain� The fol�
lowing proposition shows that the converse is also true�

PROPOSITION ���� If T satis�es �L�x�� for every x � dom�T �� then
T is cyclically monotone�
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Proof� Suppose that T is not cyclically monotone� Then there exist
n � � and x�� x�� ���� xn�� in X and x�� � T �x��� x

�
� � T �x������� x

�
n�� �

T �xn��� such that �setting xn 
 x��

n��X
i��

x�i �xi�� � xi� � � ����

For i 
 �� �� ���� n� � and for j 
 i �mod n� �i�e� j 
 nm � i for some
m � N� we set �j 
 x�i �xi�� � xi�� so that ���� can be rewritten�

n��X
j��

�j � � ����

Thus� there exists some h� � f�� �� ���� n� �g such that �h� � �� Since
the operator T satis�es L�xh��� there exists some k � fh� � �� h� �
�� ���� h�� ng such that

kX
j�h�

�j � � ����

Note that the fact that k 	
 h��n is ensured by ����� Taking now k to
be the largest integer in fh� � �� h� � �� ���� h�� n� �g such that ����
is satis�ed� we conclude that �k�� � �� Setting now h� 
 k � � and
proceeding like this� we de�ne inductively a strictly increasing sequence
�hq�

�
q�� such that for any q � � we have �hq � � and

hq����X
i�hq

�i � � ����

Since the sequence �hq �modn��q�N has an accumulating point� we
can �nd p � q � � such that hp 
 hq � mn� for some m � N �i�e�
hp 
 hq �mod n��� We thus obtain the following equality�

hq����X
i�hq

�i �

hq����X
i�hq��

�i � ����

hp��X
i�hp��

�i 


hp��X
i�hq

�i 
 m

n��X
i��

�i

which is not possible in view of ���� and ����� �

Remark� Considering for instance the operator T � R� �R given by
T ��� 
 f�g and T �x� 
 ���� ��� if x 	
 �� it is easy to see that T satis�es
property �L�x��� for x� 
 �� without being CM�
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Motivated by ��� we consider the following function gT � X � R�
f��g �

gT �x� 
 c� supmin

����
��	

x���x� � x��
x���x� � x�� � x���x� � x��

  
x�n�x� xn� �

Pn��
i�� x

�
i �xi�� � xi�


���
��� ����

where c is an arbitrary constant and the supremum is taken over all
n � N � �and for n � �� all �nite sequences �xi�

n
i�� � dom�T � and

all x�i � T �x�i �� for i 
 �� �� ���� n� Note that the choice n 
 � in the
above supremum yields gT �x� � sup

x�
�
�T �x��

x���x� x�� � c� In particular

gT �x� � ��� for all x � X �
Since gT is represented as a supremum of a family of suba�ne con�

tinuous functions �i�e� of functions of the form x� min fc� x��x�� bg�
where b� c � R�� it follows that it is quasiconvex and lower semicontin�
uous� Comparing ��� and ���� one notes that gT �x� � fT �x�� for every
x � X �

The following theorem is analogous to Theorem ����

THEOREM ���� If T ful�lls �L�x��� then there exists a lsc quasiconvex
function g such that T �x�� � �g�x�� and for all x � X� T �x� � ��g�x��

Proof� Set g 
 gT � Since T ful�lls �L�x���� it follows �by taking n 
 �
and x� 
 x�� that gT �x�� 
 c� hence as observed before� for any x � X
and any x�� � T �x�� we have

x���x� x�� � gT �x�� � gT �x�

which shows that x�� � �gT �x���
Let x� � T �x�� For anyM � gT �x�� there exist n � � and �for n � ��

x�� x�� ���� xn � X � x�� � T �x��� x
�
� � T �x��� ���� x

�
n � T �xn� such that

M � c�min

����
��	

x���x� � x��
x���x� � x�� � x���x� � x��

  

x�n�x� xn� �
Pn��

i�� x
�
i �xi�� � xi�


���
��� � ����

In particular� setting xn�� �
 x �and considering simultaneously the
cases n 
 � and n � ��� one gets M �

Pn
i�� x

�
i �xi�� � xi� � c� For

any y � X � and adding to both sides of this inequality the quantity
x��y � x� we obtain�

M � x��y � x� �
nX
i��

x�i �xi�� � xi� � x��y � x� � c� ����
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Combining ���� and ���� and taking the minimum we obtain�

minfM�M � x��y � x�g � c� min

������
����	

x���x� � x��
x���x� � x�� � x���x� � x��
  

x�n�x� xn� �
Pn��

i�� x
�
i �xi�� � xi�

x��y � x� �
Pn

i�� x
�
i �xi�� � xi�


�����
�����

�with the convention xn�� �
 x�� As the right hand side of the preceding
inequality is always less than or equal to gT �y� and since M can be ar�
bitrarily close to gT �x�� combining ��� we conclude that x� � ��gT �x��
This �nishes the proof� �

Remarks� �� If one omits the inclusion T �x�� � �g�x�� in the above
statement �i�e� replaces it by T �x�� � ��g�x���� then the remaining
conclusion holds trivially� since one can take for g the constant function�
�� If the operator T of Theorem ��� has a �locally� bounded selection at
least in a dense subset of X � then the function g �of Theorem ���� will
be �locally� Lipschitz� This is an immediate consequence of Theorem
��� �resp� Proposition �����

We �nally state the following �converse� to Theorem ����

PROPOSITION ���� For any function f and any x� � dom �f�� the
operator T � S�

f�x��
� fx�g � �X

�

given by T �x� 
 ��f�x� ful�lls

�L�x����

Proof� The result follows from the fact that for any x � S�
f�x��

and

any x�� � T �x�� one has x
�
��x� x�� � �� �

Note that Proposition ��� is similar to Lemma ���� the di	erence
being the domain of the operator �S�

f�x��
� fx�g instead of the whole

space X��
Property �L�x���� introduced in the present section� is a logical step

from cyclic monotonicity and the FM subdi	erential to the lower sub�
di	erential� Theorem ��� and Proposition ��� almost characterizes this
property� However� given a function f with �f�x�� 	
 
� Proposition ���
�unlike Lemma ���� does not describe the behavior of the operator

T �x� 


�
��f�x� if x 	
 x��
�f�x�� if x 
 x��

����

on the whole space� but only on the strict level set S�
f�x��

� This is clearly

shown by the following example�
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Example� Let f � R� R be given by�

f�x� 


�
�� if x � ���
x if x � ���

Then the operator T de�ned in ���� is given as follows�

T �x� 


��
	
f�g if x 
 ��
������ if x � ���� ��� �������
R if x � ���

It is easy to see � considering the points x� 
 �� x� 
 � and x� 
 �
� �
that T fails to satisfy L���� �

�� Characterization of operators that are contained in the
lower subdi�erential of a function

In this section we introduce the property �R�x��� aiming at de�
scribing the above operator T �see ����� in the whole space� Although
this property is weaker than �L�x���� we show that operators ful�lling
�R�x��� can still be �integrated� �in the sense of Theorem ����� This
leads to a situation similar to Lemma ��� and Theorem ���� We also
show that any operator satisfying �R�x�� at every point of its domain�
is monotone�

DEFINITION ��� An operator T � X � �X
�

is said to have property
�R�x��� with respect to some x� � dom�T �� if for any n � �� for any
x�� x�� ���� xn � dom�T � and any x�i � T �x�i � for i 
 �� �� ���� n� one has�

x���x� � x�� �
n��X
i��

fx�i �xi�� � xi�g
� � fx�n�x� � xn�g

� � � ���

where fx�i �xi�� � xi�g
� �
 min fx�i �xi�� � xi�� �g�

De�nition �� is in the same spirit as De�nition ��� and De�nition
����i�� In particular every operator that satis�es �L�x��� also satis�es
�R�x���� The following example shows that the converse is not true�

Example� Let T � R � �R be such that T ��� 
 f�g� T ��� 
 f�g�
T ��� 
 f�g and T �x� 
 
 elsewhere� One can verify that T has property
�R�x��� for x� 
 �� without satisfying �L�x����

In this example one may observe that the operator T does not satisfy
�R�x�� at every point of its domain �it fails at the point x� 
 ��� The
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following proposition �together with the fact that for one dimensional
spaces cyclic monotonicity and monotonicity coincide ���� e�g��� gives
an explanation for this�

PROPOSITION ��� If an operator T ful�lls �R�x�� at every point of
its domain� then T is monotone�

Proof� Take any x� y � X� x� � T �x�� y� � T �y� and assume that

x��y � x� � y��x� y� � � ����

Interchanging the roles of x and y� we may suppose that y��x� y� � ��
Then taking n 
 �� x� 
 x and xn 
 y� relation ��� yields that
x��y � x� � �� Taking now n 
 �� x� 
 y and xn 
 x� relation ���
leads to a contradiction with ����� �

COROLLARY ��� IfX 
 R� then T ful�lls �R�x�� for all x � dom�T �
if� and only if� T is cyclically monotone�

The following theorem characterizes the class of operators that sat�
isfy property �R�x����

THEOREM ��� The operator T satis�es �R�x��� for some x� � dom�T �
if� and only if� there exists a lsc quasiconvex function hT such that
T �x�� � �hT �x�� and T �x� � ��hT �x�� for all x � X�

Proof� �a� Let us �rst assume that T satis�es �R�x��� at some point x�
of its domain� We consider the following function hT � X � R� f��g
given by

hT �x� 
 c� sup

�
x���x� � x�� �

nX
i��

fx�i �xi�� � xi�g
�

�
� ����

where xn�� �
 x� c is an arbitrary constant and the supremun is taken
over all n � N � all choices x�� x�� ���� xn � dom �T � and all x�i � T �x�i �
for i 
 �� �� ���� n� We make here the convention that the choice n 

� in the above supremum is acceptable and corresponds to the term
sup

x���T �x��
x���x� x�� � c�

It is easy to see that hT is lsc and quasiconvex� From De�nition ��
above� we conclude that hT �x�� � c� and in fact hT �x�� 
 c� It follows
directly from ���� that for every x � X we have

hT �x� � sup
x���T �x��

�x��� x� x�� � c 
 sup
x���T �x��

�x��� x� x�� � hT �x��
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which in view of ��� ensures that T �x�� � �hT �x���
Let now any x � X and x� � T �x�� For M � hT �x�� ���� shows
that there exist n � N � x�� x�� ���� xn�� �
 x � X and x�� � T �x���
x�� � T �x������� x

�
n � T �xn� such that

c� x���x� � x�� �
n��X
i��

fx�i �xi�� � xi�g
� � fx�n�x� xn�g

� � M ����

�If n 
 �� then we have c � x���x� x�� � M�� For any y � X � setting
xn�� �
 x� adding to both sides of ���� the quantity fx��y�x�g� �and
considering simultaneously the cases n 
 � and n � ��� we obtain

c� x���x� � x�� �
nX
i��

fx�i �xi�� � xi�g
� � fx��y � x�g� � M � fx��y � x�g�

����

We note that the left side of ���� is always less than or equal to hT �y��
Since M can be chosen arbitrarily close to hT �x�� we conclude from
���� that�

hT �y� � min

�
hT �x�

x��y � x� � hT �x�

�
� ����

It now follows from ��� that x� � ��hT �x�� We conclude that for every
x � X � T �x� � ��hT �x��

�b� Given any function f with �f�x�� 	
 
 we consider the multivalued
operator

T �x� 


�
��f�x� x 	
 x��
�f�x�� x 
 x��

����

For any x�� � T �x�� and any x� � dom�T � we have�

f�x��� f�x�� � x���x� � x�� ����

Furthermore� for any xi � dom �T �� x�i � T �xi� and any xi�� � X � we
conclude from ���� and ��� that

f�xi���� f�xi� � min fx�i �xi�� � xi�� �g ����

Considering any �nite cycle fx�� x�� ���� xn� xn�� �
 x�g in dom �T � and
any choice x�i � T �xi�� for i 
 �� �� ���� n� we conclude from ���� and
���� that�

x���x� � x�� �
nX
i��

fx�i �xi�� � xi�g
� � � ����
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which shows �see De�nition ��� that T satis�es �R�x����
The observation that property �R�x��� is inherited by smaller op�

erators �in the sense of the inclusion of graphs� �nishes the proof�
�

The above theorem gives a characterization of the class of operators
that satisfy �R�x���� The situation is analogous to the one correspond�
ing to the class of cyclically monotone operators as described by Lemma
��� and Theorem ����

Remarks�
�� Since property �R�x��� entails �L�x���� Theorem ��� can be de�

duced as a consequence of the �only if� part of Theorem ��� Let us
also note that� as was the case in Theorem ���� the inclusion T �x�� �
�hT �x�� is an essential part of Theorem ���

�� Using Theorem ��� or Proposition ���� we may conclude that
the quasiconvex function hT constructed in the above proof is �locally�
Lipschitz whenever the operator T has a �locally� bounded selection in
a dense subset of X �

�� If there exists x� � dom �T � such that T �x�� 
 f�g� then the
above construction leads to the constant function hT 
 �� Let us
observe that this situation cannot appear if T is given by ���� unless
�f�x�� 
 f�g�

	� One may wonder whether the analogy between �CM�x��� �cycli�
cally monotone� and �R�x��� operators can go any further� Namely�
starting from an arbitrary function f with �f�x�� 	
 
� one may de�ne
an operator T of the class �R�x��� �resp� of the class �CM�x���� via
relation ���� �resp� T 
 �f� and subsequently consider the lsc qua�
siconvex function hT �resp� the lsc convex function fT � given by the
formula ���� �resp� ����� In both cases we have�

x���x� x�� � hT �x� � fT �x� � f�x� ���

It is easily seen that if f is a�ne� then the functions hT � fT and f co�
incide �modulo the constant f�x���� It is also known that if f is convex
and lsc� then fT and f coincide ���� However in general the function hT
does not coincide with f and in particular � unlike the convex case � the
operator T de�ned in ���� does not uniquely determine the function
f � A comparison of ���� ���� and ���� yields hT � gT � fT � In the
following example we show that if T is de�ned by ����� the functions
hT and gT are in general strictly majorized by f �
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Example� Consider the function f � R� Rgiven by f�x� 
j x�� j ���
Then for x� 
 �� the operator T in ���� is given as follows�

T �x� 


����
��	

������ if x � ���� ��� �������
f�g if x 
 ��
R if x 
 ���
������� if x � ���

hence the constructions ���� and ���� lead to functions gT and hT �

gT �x� 
 hT �x� 


�
x if x � ���
�� if x � ���

Remark As pointed out by the referee� the results of this paragraph
and the integration procedure of Rockafellar ����� can both be seen as
particular cases of the following scheme�

Consider a general function b � X � X � X� � R� Then for any
function f � X � R� f��g let us de�ne the b�subdi	erential �bf �
X � �X

�

by

�bf�x� 
 fx� � X� � f�y� � f�x� � b�x� y� x��� for all y � Xg� ����

Further� given an operator T � X � �X
�

and a point x� in dom �T ��
de�ne the b�x���property as follows� For any x�� x����� xn � X and any
x�� � T �x��� x

�
� � T �x��� ���� x

�
n � T �xn�

nX
i��

b�xi� xi��� x
�
i � � �� ����

where the convention xn�� 
 x� is used� Then if T has this property�
adapting the procedure of Rockafellar �in ���� we can construct a
function fT in such a way that T � �bfT � The function fT � being
a supremum of functions of the form b�x� y� x��� will enjoy a certain
property based on b��� �� ��� that we call b�convexity� In the light of this
general scheme� the conclusions of Theorem ��� and Theorem �� may
read in a uni�ed way as follows�

T has b�x�� �� T � �bfT � for some b�convex function fT �

Note that Theorem ��� corresponds to the case b�x� y� x�� 
 x��y �
x�� where one recovers in ���� the de�nition of the Fenchel�Moreau
subdi	erential and in ���� the de�nition of cyclic monotonicity �see
De�nition ��� �i��� In this case� b�convexity is equivalent to convexity
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plus lower semicontinuity� On the other hand� Theorem �� corresponds
to the choice

b�x� y� x�� 


�
x��y � x� if x 
 x�

minfx��y � x�� �g if x 	
 x�
�

where ���� is the considered R�x�� property� and b�convexity is nothing
less than lower semicontinuity and quasiconvexity�

Question� The class of operators ful�lling �R�x�� at every point of their
domain is located between monotone and cyclically monotone operators
�see Propositions ���� �� and comments after De�nition ���� However
we do not know which of these inclusions is strict�
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