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Abstract. We consider the question of integration of a multivalued operator 7', that
is the question of finding a function f such that 7' C 3f. If 3 is the Fenchel-Moreau
subdifferential, the above problem has been completely solved by Rockafellar, who
introduced cyclic monotonicity as a necessary and sufficient condition. In this article
we consider the case where f is quasiconvex and @ is the lower subdifferential 9<.
This leads to the introduction of a property that is reminiscent to cyclic monotonic-
ity. We also consider the question of the density of the domains of subdifferential
operators.

Keywords: quasiconvex function, lower subdifferential, integration.

1. Introduction

The integration of an operator T : X — X*, i.e. the question of
finding a differentiable function f such that T" = Vf, has attracted
much interest. When the operator T is multivalued, this question is
transformed into showing that for some function f one has 7' C 9 f (for
some notion of subdifferential). The above problem has been solved by
Rockafellar, in case one imposes that f should be convex and takes 0
to be the Fenchel-Moreau subdifferential of convex analysis:

Of(x) ={a" € X7: fly) - fle) 22" (y —2), vy e X} (1)

This gave rise to the class of cyclically monotone operators. Every such
operator T' is included in the subdifferential @ f7 of a lsc convex function
fr (and coincides with 0 fr if and only if 7" is maximal). In particular
the function fr turns out to be unique up to a constant [16].

The general question of integrating a non cyclically monotone mul-
tivalued operator T : X — 2" has already been considered by several
authors [7], [15], [18], [3] etc. In this article we relax the convexity
requirement on f to quasiconvexity, that is convexity of its sublevel
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sets. The class of quasiconvex functions is much larger than the class
of convex functions and appears naturally in concrete problems. A
first difficulty in the question of integration arises with the choice of
a subdifferential. One line of research consists in using a subdifferen-
tial of local nature generalizing the derivative (see [4], [17] e.g.). In
that case, characterizations of quasiconvexity have been established by
means of the concept of quasimonotonicity for multivalued operators
[6], [1], [11] e.g. and references therein). In this line of research, cyclic
quasimonotonicity (defined in [5]) turned out to be an intrinsic property
of the subdifferentials of quasiconvex functions. Thus an analogy with
the convex case appears. However, it is far from obvious to find addi-
tional assumptions ensuring that a cyclically quasimonotone operator
is included in the subdifferential of a quasiconvex function.

Here we depart from this track and we work with the lower sub-
differential of Plastria [14] which is an adaptation to the quasiconvex
case of the Fenchel-Moreau subdifferential (1). For any z € X with
f(z) < 400, the lower subdifferential d< f(z) is given by:

0<f(e) = {a" € X" [(y) ~ fl2) > a"(y — 2). Yy € 55} (2)

where Sf(l,) = {2’ € X : f(2') < f(2)} is the strict sublevel set.

Relation (2) can also take the following form:

I<f(z) = {w* € X*: f(y) > min { f(@) fﬂ(ﬁEy —o) } e X}(S)

One easily observes that, as with the Fenchel-Moreau subdifferential,
d< is not a local notion: two functions that coincide in a neighborhood
of z, may not have the same lower subdifferential at this point. We
also remark that for every z* € 9<f, we have {\a* : A > 1} C 9<f,
which shows that < f is not bounded. (In particular df and 9< f are in
general different even for convex functions.) However, under this notion,
quasiconvex Lipschitz functions are characterized by the existence of a
bounded selection for their lower subdifferential (see [14] for X = R”
and [8] for the general case). We extend these results in Section 4, while
in Section 3 we consider the question of the density of the domain of the
Fenchel-Moreau subdifferential of an arbitrary function f. Note that if
the function f is not convex, the Fenchel-Moreau subdifferential is often
empty. As we show in Section 3, its nonemptiness in a dense subset of
X implies the convexity of f.

In Section 2 we review some results concerning cyclically monotone
operators and Rockafellar’s integration technique for the Fenchel-Moreau
subdifferential. We note in particular that this integration requires a
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property that - a priori - seems to be weaker than cyclic monotonicity
(CM), namely what we call ‘cyclic monotonicity with respect to a
certain point zo” (C'M (z¢)). However, these properties turn out to be
equivalent. This alternative description of cyclic monotonicity moti-
vates the introduction, in Section 5, of a new class of operators, that
is operators fulfilling a certain property (L(z¢)) with respect to some
fixed point xg. This property represents a pointwise version of cyclic
monotonicity: indeed (L(zg)) is strictly weaker than cyclic monotonic-
ity, while an operator T is cyclically monotone if, and only if, T satisfies
(L(z)) for all z € dom (1"). We also show that the lower subdifferential
J< f of any function f restricted to the set Sf(l,o) U{zo} fulfills (L(z0)).
Moreover, any such operator T is included in the lower subdifferential
< f of some quasiconvex lsc function f.

In the last section we introduce the class of operators fulfilling an-
other property - that we denote by (R(zg)) - relative to a (fixed) point
zg. This property is strictly weaker than (L(zg)). It is shown that if
T fulfills (R(z)) at every point of its domain, then it is monotone.
The main result of Section 6 states that the operator T defined by
T(z) = 0<f(2),if @ # xg and T'(zg) = 3 f(x0) satisfies (R(xo)), for any
f such that 0 f(z) # 0. On the other hand, any operator of this class
is always contained in the lower subdifferential of some quasiconvex
Isc function f. Thus we obtain a characterization of this class, which
is similar to the one given for cyclic monotonicity by means of the
Fenchel-Moreau subdifferential.

Let us point out that while lower semicontinuous convex functions
are determined up to a constant by their Fenchel-Moreau subdifferen-
tials, two continuous (even differentiable) quasiconvex functions having
the same Plastria subdifferential may differ essentially. In fact, the
Plastria subdifferential of a continuous quasiconvex function may even
be empty, as shown by the example of the function f : R — R given
by f(z) = 2P, where p > 1 is an odd integer. (More generally, 9<f is
empty whenever lim Ja) —00).

lal|—+o 111

Throughout this paper, we often use the following abbreviations:
FM subdifferential for the Fenchel-Moreau subdifferential, lsc for lower
semicontinuous and C'M operator for a cyclically monotone operator.
Furthermore, X denotes a Banach space with dual space X*, f a func-
tion on X with values in RU {+o0}, and T" a multivalued operator
defined on X and taking its values in the subsets of X*. For any z € X
and any 2* € X* we denote by 2*(z) the value of the functional 2* at
the point 2. We also use the standard notation: B.(z) for the closed
ball centered at z with radius € > 0, dom (f) := {2z € X : f(z) € R}
for the domain of the function f, Sty := {2’ € X : f(2') < f(2)} and

SVAN436.tex; 18/12/2000; 19:19; p.3



4

Sf(l,) ={2' € X : f(2') < f(2)} for the sublevel and the strict sublevel

sets of f and dom (T) := {& € X : T(2) # 0} for the domain of the

multivalued operator T.

2. Integration of the subdifferential of a nonconvex function

The properties we introduce and discuss in this article are defined
by fixing a certain point zg as a base point. It is natural to ask whether
this choice plays any role. In this section we shall see that this is not
the case for the property of cyclic monotonicity.

DEFINITION 2.1. Let T : X — 2X"be a multivalued operator. The
operator T is called (i) cyclically monotone with respect to a point xq €
dom (T') (or alternatively T has the (C'M(xo)) property), if for any
T, 9., 2, € X and any zf € T(zo), 27 € T(21),...,2) € T(x,) one
has

n—1

Zi(eo = 2) + 3 i (wis — ) <0

=0

(i1) cyclically monotone (CM), if it satisfies (CM (x)) for every point
x of its domain.

It is clear that Definition 2.1(ii) coincides with the standard de-
finition of cyclic monotonicity (see Definition 2.20 in [13]), while it
obviously implies Definition 2.1(i). The following proposition shows
that the converse is also true.

PROPOSITION 2.2. Every operator satisfying (C M (o)) is cyclically
monotone.

Proof: Suppose that T satisfies (C'M (2¢)) and that for some (z;)7; C
n—1

dom (T') and 2} € T'(z),t=1,2,...,nwe have 2} (21 —2,)+ > 2/ (zip1—
=1

zi) = a > 0.Forany k € N and i = 0,1,2,....k - n we define z;,4; =

Zi(modn)+1r Tip1 = Zz'*(modn)+1 (where for ¢ > 0, we have j =7 (mod n)

iff i — j = pn, for some p € N and 0 < j < n). Let 2, € T'(zg). Since T'

satisfies (C'M (z¢)) we have:

kn

i1 (@0 = Tpnpr) + )@l (wig — ;) <0
=0
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which implies:

n—1

i(z1 — o) + 2 (xo— 21) + k {22(21 - zy) + ZZZ'*(ZZ'-I—I - zz)} <0

=1

Taking the limit as & — 400 we obtain a contradiction. B

REMARK 2.3. An operator T can be cyclically monotone in a trivial
way, if for instance dom (T) = @ or if dom (T) = {zo}.

Let us observe that cyclic monotonicity is tied to the very definition
of the Fenchel-Moreau subdifferential df and does not depend on the
convexity of the function f. Indeed, if f is any function and T : X —
2X" any operator satisfying T C 9 f, then for any zg, 21, ..., 2, € X and
a7 € T(x;) (1 =0,1,...,n) relation (1) guarantees that f(z;41)—f(z;) >
a7 (xi41 — 2;). Setting x,49 := 2 and adding the previous inequalities
yields "7 ;¥ (241 — 2;) < 0. Let us state this observation as a lemma
for further reference.

LEMMA 2.4. For any function f, any operator T satisfying T C Jf
is cyclically monotone.

The converse assertion dealing with the integration of cyclically
monotone operators is more interesting. The proof can be found in
[16] and essentially requires condition (C'M (zg)).

THEOREM 2.5. Let T be a multivalued operator satisfying (C'M (zo))
at some point xg of its domain. Then there exists a lsc convex function

fr such that T C 0 fr.

The lIsc convex function fr of the above theorem has been con-
structed in [16] (see also [13]) by the following formula, in which ¢ is a
fixed constant:

=0

fr(z)= c+ sup {xﬁ(x —x,) + z_: i (Tip1 — xz)} (4)

where the supremum is taken over all n € N, all finite sequences
{z1,29,...,2,} in dom (T') and all ¥ € T'(z7), for i =0,1,...,n.

Let us note here that (C'M(z¢)) ensures that fr is not identically
equal to +oo, since fr(zg) = c.

REMARK 2.6. Combining Theorem 2.5 with Lemma 2.4 we obtain an
alternative way to establish Proposition 2.2.
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We also recall that the second conjugate f** of a proper function f
is given by:

[ (z) = sup [27(2) — [ (a7)] (5)
z*EX*
where
f (&™) = sup[az™(z) — f(z)]. (6)
zeX

Since the subdifferential T = df of any function f is cyclically
monotone, the lsc convex function fr given in (4) is well defined. If
in particular fis Isc convex, the uniqueness of Rockafellar’s integration
([16]) shows that for ¢ = f(2p) one has fr = f, so in particular
fr = f*.If now fis not convex, a natural question arises: is fr related
to f**7 We provide below a positive answer in finite dimensions under
a coercivity assumption on f. Let us first observe that (for ¢ = f(20))
fr < f from which it follows fr < f**, since f** is the greatest Isc
convex function majorized by f.

PROPOSITION 2.7. Let f : R® — RU{+o0} be a Isc, 1-coercive
function (i.e. lim @ = 4o0), and let T = Jf. Then for some

fal|=+o 111
constant ¢, the functions fr and f** (defined in (4) and (5) respectively)
coincide.

Proof: From our assumptions it follows that f attains its minimum
at some point zg, hence 0 € 0f(zg). It follows that f**(z9) = f(zo).
Taking ¢ = f(z¢) in (4), we conclude from (1) that fr < f. Since fr is
convex lsc, it follows that fr < f**.

Let us prove the reverse inequality. Since the function f** is lsc and
convex, it follows from Theorem B in [16] that:

n—1
(@) = f(wo) +sup {wa(wm —xi) (e — $n)} (7)
=0
where the supremum is taken over all n € N, all finite sequences
{z1,29,...,2,} in dom (0f**) and all choices z¥ € Jf**(z;), for ¢ =
0,1,...,n.
Using the inequality f** < f, for any x € R™ one has:

fla)= ") = 0f"(x) COf(x) (8)
In particular, since f**(x¢) = f(zo), one observes that
9 (xo) € 0f (o) (9)
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Lower subdifferentiability and Integration 7

Fix now z € X and consider any M < f**(z). For some z1, 22, ..., 2, €
X and 27 € 9 (z;) one has

M — f(zo) < zg(z1 — o) + 27 (22 —21) + oo + 2 (2 — 24) (10)

Since the function f is 1-coercive and is defined in a finite di-
mensional space, using Theorem 3.6 of [2] we conclude that for i €

{1,2,...,n}, there exist (yf)f’zl in X, and (/\Z)fizlin (0,1) with Zf’zl /\f =
1 such that

e () o) (11)

71=1,2,..k;

and
vi=y Myl (12)
=1

Claim: There exists some y{l such that

eyl — wo) + 2 (22 — yi') > 2j(21 — 2o) + ¥} (x2 — 1) (13)

[Proof of the claim: If this were not the case, then for every j we would
have

2y (y] — wo) + 25 (22 — yl) < &z — wo) + ¥ (zz — 21) (14)

Multiplying both sides of (14) by /\{ and adding the resulting in-
equalities for j = 1,2,...,k; we get a contradiction by using (12). ¢

]

Arguing in the same way as in the proof of the above claim, we can
find some y3* such that

i =)+ a3 (ea —yy) > wi(er = y)') +aflea — ). (15)
It follows that
w51 = wo) + 2T (u3’ — ui') + 23 (s = w?) 2 wf(er - wo) +
+ iz — w1) + 23(2s — 72)
Proceeding like this, we inductively show that
M — f(wo) < wj(yi' = w0) + 27 (5 = yi') + o+ 2l — yir)

Note that from (9) we have z§ € 9f(xo), while from (11) we get 27 €
df(yl*), for i = 1,2, ...,n. Now (4) guarantees that M < fr(z). Since
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M can be chosen to be arbitrarily close to f**(z), we conclude that
fr(z) > f**(x), hence equality holds. B

Let us remark that the above proof shows that fr = f** whenever
the Isc function f satisfies the following condition:

(C) For any x € dom (0f*) and 2* € 9 f**(x), there exist (y;)%, C X
and (\)_, in (0,1) with % Ay = 1, such that 2 = 3% Ay

and z* € fk] Af(y:).
=1

J

This condition can often be satisfied also by non-coercive functions
(in infinite dimensional spaces), as for instance by the function f(z) =
min{][z], 1}.

COROLLARY 2.8. Let f and g be two lsc functions satisfying condi-
tion (C). If 0f = 0g, then f** = ¢g** (up to a constant).

Proof: Let T = 9 f = dg. Note that condition (C) yields dom (T') # 0.
Let g € dom (7). The proof of Proposition 2.7 shows that f** =
fr when one takes ¢ = f(z¢) in (4) and that ¢** = fr + g(z¢) —c. R

3. Functions with a dense domain of subdifferentiability

In the preceding section we considered operators that are (included
in) the subdifferential of a nonconvex function. These operators are
cyclically monotone, but this may happen in a trivial way, see Remark
2.3. The example of the function f(z) = min{||z|,1} (also f(z) =

||z||) shows that one may have fr = f** even if df is a singleton.
However this relation is more likely to be satisfied when the domain
dom (0f) is large. In this section, we shall consider the question of
the density of the domain of such operators. The following proposition
shows that for Isc functions that do not take the value +oc, the density
of df is equivalent to the convexity of the function.

PROPOSITION 3.1. Let f : X — R (ie. dom(f) = X) be Isc
and such that dom (0f) is dense in X. Then f is convex and locally
Lipschitz.

In particular the operator 0 f is mazximal monotone and locally bounded.

Proof: We first show that f is convex. Since dom (0f) is nonempty,
we conclude that f** > —oo, which together with f > f** shows that
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X = dom (f) C dom (f**). It follows that the convex function f** is
continuous.

We now show that the functions f and f** coincide. One observes
that f(z) = f**(2), for every 2 € dom (9f). Take now any z in X. Our
assumption implies the existence of a sequence (), in dom (9 f) such
that (z,) — z. Since f**(x,) = f(z,), for n € N, f is Isc and f** is
continuous we get:

() = liminf f*(2,) = liminf f(e,) > f(2) > [ (2)

Thus f = f**. For the last assertion see Theorem 2.25 and Theorem
2.28 in [13] e.g. W

We do not know if the assumption dom (f) = X in the above
proposition can be omitted. The following corollary shows that this
assumption is not necessary if X = R™. In this case it becomes a part
of the conclusions.

COROLLARY 3.2. Let f : R® - R U {400} be Isc and such that
dom (0f) is dense in R™. Then dom (f) = R™ and the function f is
convex and locally Lipschitz.

Proof: We have dom (0f) C dom (f**), so dom (f**) is also dense in
R™. Since dom (f**) is convex, it follows that dom (f**) = R", hence
f*” is continuous.

Arguing as in the last part of the proof of Proposition 3.1 we con-
clude again that f is convex and continuous. B

However the following example shows that lower semicontinuity as-
sumption cannot be dropped, even in the case X = R.

Example: Consider the indicator function ¢p of any dense subset D

of R:

: _ 0 if x€ D,
ip(z) = +oo if @ ¢ D.

We note that this function is Isc on its domain, without being lsc in
the whole space (unless D = R). Moreover, for every @ € D, we have
dip(z) = {0}, hence D C dom (0ip). However the function ¢p is not
convex. ¢

Let us now give an infinite dimensional version of Corollary 3.2 by
means of an additional assumption on the operator df. We shall say
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that an operator 7' : X — 2% has a (locally) bounded selection on its
domain, if for every zg € X there exists M > 0 and p > 0 such that:

Vz € dom (T) N By(xg), 32" € T'(2) : ||27°|| <M (16)

LEMMA 3.3. Let f : X — RU{4o0} be a Isc function such that
dom (0f) is dense in X. If Of has a (locally) bounded selection on
dom (0f), then dom (f) = X and f is (locally) Lipschitz.

Proof: Let us first assume that df has a locally bounded selection
on dom (0f) and let p > 0 and M > 0 be as in (16). We show that
the function fis Lipschitzian on the interior intB,(xz¢) of B,(z¢) with
constant at most M. Indeed take any z,y € intB,(z¢). Since dom (Jf)
is dense on X, there exists a sequence (z,,),en in dom (3f) N B,(zo)
and z} € 0f(xy), with ||| < M, such that (z,) — 2. From (1) we
conclude that f(z,) < f(y)+2} (2, —y). Since f is Isc, taking the limit
as n — +oo we get

F(@) < fly)+ Mz — | (17)

Since (17) holds for all y in intB,(z), choosing y in dom (f) we con-
clude that f is finite at z. Since z is arbitrary in intB,(zo), we conclude
that intB,(zg) C dom (f). It now follows easily that f is Lipschitz on
intB,(zo).

If now df has a bounded selection on dom (df), taking p = +oo we
conclude that f is Lipschitz. B

We now state the following corollary.

COROLLARY 3.4. Let f : X — RU {+o0} be a lsc function. The
following statements are equivalent:

(i) dom (9 f) is dense in X and 0 f has a (locally) bounded selection on
dom (0f).

(i1) dom (0f) = X and 0f is (locally) bounded.

(iii) dom (f) = X and f is convex and (locally) Lipschitz.

Proof: The implications (i7¢) — (i¢) — (¢) are obvious. The im-
plication (i) — () follows from Lemma 3.3 and Proposition 3.1.
u

4. Lower subdifferentials with a dense domain

In this section we endeavor to complete results of the literature
concerning quasiconvex functions and their lower subdifferentials, in
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order to reveal analogies with the characterization of Corollary 3.4. We
recall that a function f: X — RU {400} is called quasiconvex, if its
sublevel sets S\(f) = {2z € X : f(z) < A} are convex for A € R, or
equivalently, if for any 2,y € X and t € [0, 1] the following inequality
holds:

flte + (1 =1)y) < max{f(z), f(y)}.

We first state the following lemma concerning the lower subdifferential
0< (defined in (2) or (3)). We omit its proof, since it is similar to the
proof of Lemma 3.3.

LEMMA 4.1. Let f : X — RU{4o0} be a Isc function such that
dom (9<f) is dense on X. If the operator < f has a (locally) bounded
selection on dom (O< f), then dom (f) = X and f is (locally) Lipschitz.

The theorem that follows is analogous to Corollary 3.4.

THEOREM 4.2. Let f : X — R U {4oc0} be a Isc function. The
following assertions are equivalent:

(i) dom (0<f) is dense on X and O<f has a bounded selection on
dom (9<f).

(i) O< f has a bounded selection on X.

(iii) f is quasiconvex, Lipschitz and dom (f) = X.

Proof: The equivalence (i) «— (ii7) was proved in [9] (see Corollary
3.3). Implication (i¢) — (¢) is obvious. For (i) — (7¢7) we first apply
Lemma 4.1 to conclude that f is Lipschitz. In particular the sublevel
sets S of f have nonempty interior, whenever A > inf f. It now follows
from Proposition 3.1(i) of [10] that f is quasiconvex. B

The following result extends Theorem 4.2 in a non-Lipschitzian case
and is comparable to Corollary 3.4. However implication (¢¢) — (4¢)
does not hold in general, as shown by the example below.

PROPOSITION 4.3. Let f: X — RU{4+o0} be a lsc function. Among
the following statements one has (it) — (i) — (ii1).

(i) dom (0<f) is dense and O<f has a locally bounded selection on
dom (9<f).

(ii) O< f has a locally bounded selection on X .

(iii) dom (f) = X and f is quasiconvex and locally Lipschitz.

If the restriction of f to its sublevel sets is Lipschitzian, then the above
statements are equivalent.
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Proof: Implication (i) — (¢) is obvious. If (¢) holds, then using Lemma
4.1 we conclude that dom f = X and f is locally Lipschitz. From
Proposition 3.1(i) of [10] it now follows that f is quasiconvex, hence
(¢i7) holds.

Let us now assume that f is quasiconvex, continuous, dom (f) = X
and for any A € R the restriction of f to Sy :={z € X : f(z) < A} is
a Lipschitz function of constant &, for some k& > 0. We show that 9<f
has a bounded selection on 5.

Indeed, consider any xzg € Sy. If f(zg) = inf f, then 0 € 9<f(x().
Hence we may suppose that f(zg) > inf f. Since f is continuous, the
closed convex set Sf(;,) has a nonempty interior. Separating int.Sy .,
from {z¢}, we obtain a functional z* € X*, with ||z*|| = 1 such that
Z*(z) < 2%(zo), for all @ € int.Sy (.. It is easily seen that z is minimizer
of f on the half space {y € X : 2*(y) > z*(2z0)}. Set af = kz~.

Claim: z§ € 0< f(zo)-

[Proof of the Claim: Suppose that z§ ¢ 0<f(x). It follows from
(2) that for some 2 € Sf(xo) we have f(zo) — f(z) > zf(zo — 2).
Given any ¢ > 0, we may find y € X such that z§(y) = 2§(zo) and
vo(y — ) +2 > [|ag|llly — #(| = k[|ly — «|. Since f is continuous, we can
find some 2’ in the segment [z, y] such that f(z') = f(xg). We easily
get that zf(z’ — 2) + ¢ > k|2’ — z||. Since f(zo) — f(z) > 2i(z0—2) =
iy — ) > aj(a’ — ), it follows that f(2') — f(x) > k|2’ — 2| — «.
Since € is arbitrary, we have contradicted the fact that f is Lipschitz
on Sy(z) With constant k. ¢ ]

Since zg is arbitrary in Sy (and since A is arbitrary), we have shown
that dom (0<f) = X. Moreover, the continuity assumption of (i)
ensures that for any 2 € X and A > f(z) there exists £ > 0 such that
B.(x) C Sy. If k" is the Lipschitz constant of f on S}, the previous claim
asserts that 9< f has a selection on B, (z) which is (norm) bounded by
K.

Remark: The claim of the preceding proof relies heavily on techniques
employed in [14] (see also Corollary 4.20 in [8] or Proposition 6.2 in
[12]) in order to prove the equivalence (i) <— (i?) in Theorem 4.2 if
X = R"™ In finite dimensions it has been shown in Cororally 4.20 of
[8] that, if condition (7:) of Proposition 4.3 holds and f is inf-compact
(that is for all A € R, the set Sy is compact), then fis everywhere lower
subdifferentiable, that is dom (9< f) = R™. Note that the assumptions
“f is inf-compact” and dom (f) = X imply that the space X can
be written as a countable union of compact sets, hence it is finite
dimensional. On the other hand, an easy compactness argument shows
that if condition (¢¢¢) holds and f is inf-compact, then the restriction of
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Lower subdifferentiability and Integration 13

S to the sublevel sets is a Lipschitz function. Hence Proposition 4.3 can
be seen as an extension of Corollary 4.20 in [8] to infinite dimensions,
which also establishes the existence of a locally bounded selection.

One cannot expect a characterization similar to Theorem 4.2. The
following example shows that, without additional assumptions, a lo-
cally Lipschitz quasiconvex function f may have its subdifferential 9< f
everywhere empty.

Example: Let X = R and consider the quasiconvex function f:R —
R, with f(z) = e iz <0

! x ifx>0"
Lipschitz, but < f(x) = 0, for all 2 € R. ¢

It is easy to see that f is locally

5. Integration by means of the lower subdifferential

In this section we consider again the problem of integrating a mul-
tivalued operator, by relaxing this time the assumption on f (to be
quasiconvex instead of being convex) and by taking 0 to be the lower
subdifferential 0<. We also replace accordingly cyclic monotonicity
with a certain point-based property that we call (L(zg)). This prop-
erty yields the construction of a lsc quasiconvex function g7 in a way
reminiscent to the construction of the lIsc convex function fr in (4)
by means of Definition 2.1(i). We show that a cyclically monotone
operator fulfills (L(z)) at any point 2 € dom (7). Conversely, if an
operator satisfies (L(z)) at every point of its domain, then it is cyclically
monotone (see Proposition 5.2). Roughly speaking, property (L(z¢)) is
to be understood as a pointwise version of cyclic monotonicity.

DEFINITION 5.1. An operator T : X — 2% is said to have property
(L(z0)) with respect to some xo € dom (1), if for any n > 1, any
T1,22 ..., Ty € dom (1) and any zF € T(z;) for i =0,1,...,n, one has:
i (1 — zo)
i ei(xe — 1) + af (21 — 2o) <0

wh (0 — w0) + 3000 @ (wigr — 20)

It follows easily that if 7' is cyclically monotone (see Definition
2.1(ii)), then it satisfies (L(z)) at every point of its domain. The fol-
lowing proposition shows that the converse is also true:

PROPOSITION 5.2. If T satisfies (L(z)) for every x € dom (T'), then

T is cyclically monotone.
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Proof: Suppose that T is not cyclically monotone. Then there exist
n > 2 and zq, 21, ..., 2p—1 in X and af € T'(zo), 27 € T(21),..., 2_; €
T(z,-1) such that (setting z,, = )

|
—

n

a7 (zi41 —2) >0 (18)

Il
=]

7

Fori=10,1,....,n— 1 and for j =7 (mod n) (i.e. j = nm + ¢ for some
m € N) we set §; = 27 (2;41 — 2;), so that (18) can be rewritten:

n—1
>8>0 (19)
=0

Thus, there exists some hy; € {0,1,...,n — 1} such that 85, > 0. Since
the operator T' satisfies L(xp, ), there exists some k € {hy + 1,h; +
. h1+ n} such that

k
> <o (20)

Jj=h1

Note that the fact that & # hqy 4 n is ensured by (19). Taking now k to
be the largest integer in {hy + 1,1 +2,..., k1 + n — 1} such that (20)
is satisfied, we conclude that 8z41 > 0. Setting now he = k4 1 and
proceeding like this, we define inductively a strictly increasing sequence
(hg)gZ, such that for any ¢ > 1 we have 3, > 0 and

hgt1—-1

Y Bi<o (21)

1=hg

Since the sequence (h, (modn)),en has an accumulating point, we
can find p > ¢ > 1 such that h, = h, + mn, for some m € N (ie.
hy, = hy (mod n)). We thus obtain the following equality:

hgt1-1 hgta—1 hp—1 hp—1
Z Bi + Z Bi+ ...+ Z ﬁz—Zﬁz—mZﬁz
t=hg 1=hgq1 i=hp_1 i=hg

which is not possible in view of (19) and (21). &
Remark: Considering for instance the operator 7 : R — 2¥ given by

T(0) =40} and T'(z) = [-1, 1],if  # 0, it is easy to see that T satisfies
property (L(z¢)) for 2o = 0, without being CM.
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Lower subdifferentiability and Integration 15

Motivated by (4) we consider the following function gr : X — RU
{+oo}

i (1 — o)

2i(2y — x1) + 25(21 — o)

gr(xz) = ¢+ supmin (22)

(e = an) + 215y 4 (wipr — i)
where ¢ is an arbitrary constant and the supremum is taken over all
n € N, (and for n > 0) all finite sequences (z;)7_, € dom (7") and

all z¥ € T'(a¥), for i = 0,1,...,n. Note that the choice n = 0 in the

above supremum yields gr(z) > sup z}(2z — x9) + c. In particular
xzy €T (z0)

gr(2) > —o0, for all z € X.

Since gr is represented as a supremum of a family of subaffine con-
tinuous functions (i.e. of functions of the form # — min {¢, 2*(z) + b},
where b, ¢ € R), it follows that it is quasiconvex and lower semicontin-
uous. Comparing (4) and (22) one notes that gr(z) < fr(z), for every
re X.

The following theorem is analogous to Theorem 2.5:

THEOREM 5.3. IfT fulfills (L(x¢)) then there exists a lsc quasiconvex
Junction g such that T'(zo) C dg(xo) and for allz € X, T'(z) C 9<g(x).

Proof: Set g = gr. Since T fulfills (L(xo)), it follows (by taking n =1
and x; = 2¢) that g7(zg) = ¢, hence as observed before, for any z € X
and any zj € T'(x¢) we have

zo(x — 2o) + g7 (20) < g7(2)

which shows that 2§ € dgr(z0).
Let 2* € T'(z). For any M < gr(z), there exist n > 0 and (for n > 0)
T, T,y € X, 2 € T(2o), 27 € T(241), ..., 2, € T'(2,) such that

i (1 — zo)

27 (22 — 1) 4 25(21 — o)

M < ¢+ min (23)

(@ — ) + XI5y @l (2 — @)
In particular, setting z,41 := @ (and considering simultaneously the
cases n = 0 and n > 0), one gets M < Y " ja¥(x;41 — ;) + ¢. For
any y € X, and adding to both sides of this inequality the quantity
2*(y — ) we obtain:

M+ 2" (y — ) <fo(xi+1—xi)+x*(y—x)—l—c. (24)

=0
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Combining (23) and (24) and taking the minimum we obtain:

min{M, M + 2*(y — z)} < ¢+ min
(@ = an) + 200 @ (@i — @)
ey — )+ g i (i — )

(with the convention #,,41 := ). As the right hand side of the preceding
inequality is always less than or equal to g7(y) and since M can be ar-
bitrarily close to gr(z), combining (3) we conclude that 2* € 0<gr(2).
This finishes the proof. B

Remarks: 1. If one omits the inclusion T'(z¢) C dg(zo) in the above
statement (i.e. replaces it by T'(z9) C 9<g¢(zo)), then the remaining
conclusion holds trivially, since one can take for g the constant function.
2. If the operator T' of Theorem 5.3 has a (locally) bounded selection at
least in a dense subset of X, then the function g (of Theorem 5.3) will
be (locally) Lipschitz. This is an immediate consequence of Theorem
4.2 (resp. Proposition 4.3).

We finally state the following “converse” to Theorem 5.3.

PROPOSITION 5.4. For any function f and any zo € dom (f), the
operator T : S< 0o Y {20} — 2% given by T(z) = 0<f(x) fulfills

f=
(L(z0))-

Proof: The result follows from the fact that for any = € Sf(l,o) and
any z§ € T'(zg) one has zj(z — 2¢) < 0. ®

Note that Proposition 5.4 is similar to Lemma 2.4, the difference
being the domain of the operator (Sf(l,o) U {zo} instead of the whole
space X).

Property (L(x0)), introduced in the present section, is a logical step
from cyclic monotonicity and the FM subdifferential to the lower sub-
differential. Theorem 5.3 and Proposition 5.4 almost characterizes this
property. However, given a function f with 9 f(x¢) # 0, Proposition 5.4
(unlike Lemma 2.4) does not describe the behavior of the operator

_ [ 0<f) if @ # a0,

T(e) = { df(zo) if z = o, (25)
on the whole space, but only on the strict level set Sf(l,o). This is clearly
shown by the following example:
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Lower subdifferentiability and Integration 17
Example: Let f: R — R be given by:

-1 if = < -1,
f(ac):{ z if > —1.

Then the operator T’ defined in (25) is given as follows:

{1} if ©=0,
T(z) =4 [1,+00) if 2 € (=1,0)U (0,+0o),
R if < -1.

It is easy to see - considering the points 2o = 0, 2; = 1 and z3 = 3/2 -
that 7" fails to satisfy L(0). ¢

6. Characterization of operators that are contained in the
lower subdifferential of a function

In this section we introduce the property (R(zg)) aiming at de-
scribing the above operator 1" (see (25)) in the whole space. Although
this property is weaker than (L(z¢)), we show that operators fulfilling
(R(z0)) can still be “integrated” (in the sense of Theorem 5.3). This
leads to a situation similar to Lemma 2.4 and Theorem 2.5. We also
show that any operator satisfying (R(z)) at every point of its domain,
is monotone.

DEFINITION 6.1. An operator T : X — 287 is said to have property
(R(z0)) with respect to some xq € dom (T), if for any n > 1, for any
L1, %2, ..., &, € dom (T') and any z7 € T(2Y) for i =0,1,...,n, one has:

i(en = 20) £ 3o (s — 20} + {ehlmo — )} <0 (26)

where {a¥ (2,41 — x;)}~ = min {27 (2;41 — 2;), 0}.

Definition 6.1 is in the same spirit as Definition 5.1 and Definition
2.1(i). In particular every operator that satisfies (L(z)) also satisfies
(R(z0)). The following example shows that the converse is not true:

Example: Let T : R — 2% be such that T(0) = {1}, T(1) = {2},
T(2) = {1} and T'(z) = 0 elsewhere. One can verify that T’ has property
(R(z0)) for 29 = 0, without satisfying (L(z¢)).

In this example one may observe that the operator T does not satisfy
(R(x)) at every point of its domain (it fails at the point 2o = 1). The
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following proposition (together with the fact that for one dimensional
spaces cyclic monotonicity and monotonicity coincide ([5] e.g.)) gives
an explanation for this.

PROPOSITION 6.2. If an operator T fulfills (R(x)) at every point of

its domain, then T is monotone.
Proof: Take any z,y € X, 2* € T'(z), y* € T'(y) and assume that
P y—a)+y (z—y)>0 (27)

Interchanging the roles of z and y, we may suppose that y*(z —y) > 0.
Then taking n = 1, 29 = 2 and z,, = y, relation (26) yields that
2*(y — x) < 0. Taking now n = 1, zg = y and 2, = z, relation (26)
leads to a contradiction with (27). B

COROLLARY 6.3. If X =R, thenT fulfills (R(x)) for all z € dom (T')

if, and only if, T is cyclically monotone.

The following theorem characterizes the class of operators that sat-
isfy property (R(zo)).

THEOREM 6.4. The operator T satisfies (R(xq) ) for some x¢ € dom (T)
if, and only if, there exists a lsc quasiconvexr function hr such that

T(x0) C Ohr(xo) and T(x) C I<hr(z), for all x € X.

Proof: (a) Let us first assume that 1" satisfies (R(z()) at some point
of its domain. We consider the following function hz : X - RU{+o0}
given by

hr(e) = ¢+ sup {wé(ﬂm — o) + ) _{af(vip - wi)}_} o (28)

=1

where z,41 := x, ¢ is an arbitrary constant and the supremun is taken
over all n € N, all choices 21, 23, ..., 2, € dom (T) and all ¥ € T'(z7)
for ¢ = 0,1,...,n. We make here the convention that the choice n =
0 in the above supremum is acceptable and corresponds to the term
sup z4(z — o) +c.
x5 €T (xo)
It is easy to see that hp is Isc and quasiconvex. From Definition 6.1
above, we conclude that hy(zg) < ¢, and in fact hy(zo) = c. It follows
directly from (28) that for every 2 € X we have

hr(z) = sup (25,2 —xo) +c= sup (z5,2— zo)+ hr(zo)
w5 €T (o) w5 €T (wo)
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which in view of (1) ensures that T'(zo) C dhr (o).

Let now any z € X and 2* € T(z). For M < hr(z), (28) shows
that there exist n € N, z1,22,...,2541 = @ € X and 2§ € T(xg),
x7 € T(x1),..., ), € T(xy) such that

n—1

et agler —xo) + Y {af (e —2)}” +{af(e —2a)}” > M (29)

=1

(If n = 0, then we have ¢+ z{(z — z9) > M). For any y € X, setting
Tpt1 = z, adding to both sides of (29) the quantity {z*(y —2)}~ (and
considering simultaneously the cases n = 0 and n > 0), we obtain

c+ag(er — 2o) + Z{ﬂﬁf(wm )} ey - @)} > M4 {aT(y - 2)}”

(30)

We note that the left side of (30) is always less than or equal to hz(y).
Since M can be chosen arbitrarily close to hr(z), we conclude from

(30) that:

hr(y) > min { 2 (y _h;“)(i) hy(x) } . (31)

It now follows from (3) that 2* € 9<hr(xz). We conclude that for every
v e X, T(x) CO<hr(z).

(b) Given any function f with 9f(zq) # () we consider the multivalued

operator
1) = { Gl LT (32)

df(xo) == zo.
For any a§ € T'(x¢) and any z; € dom (T") we have:
fle1) = fzo) = a5(21 — o) (33)

Furthermore, for any z; € dom (7'), f € T'(z;) and any 2,41 € X, we
conclude from (32) and (3) that

Jlaes) = J(e) = min {3 (w1 — 1), 0) (34)
Considering any finite cycle {zg, 1, ..., Zn, Tpy1 1= o} in dom (T') and
any choice 27 € T'(z;), for ¢ = 0,1,...,n, we conclude from (33) and
(34) that:
w5(w1 = wo) + Y {ef(wipr — i)} <0 (35)
=1
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which shows (see Definition 6.1) that T" satisfies (R(zg)).

The observation that property (R(zg)) is inherited by smaller op-
erators (in the sense of the inclusion of graphs) finishes the proof.
u

The above theorem gives a characterization of the class of operators
that satisfy (R(z)). The situation is analogous to the one correspond-
ing to the class of cyclically monotone operators as described by Lemma
2.4 and Theorem 2.5.

Remarks:

1. Since property (R(zg)) entails (L(z)), Theorem 5.3 can be de-
duced as a consequence of the “only if” part of Theorem 6.4. Let us
also note that, as was the case in Theorem 5.3, the inclusion T'(zq) C
Oht(x0) is an essential part of Theorem 6.4.

2. Using Theorem 4.2 or Proposition 4.3, we may conclude that
the quasiconvex function hy constructed in the above proof is (locally)
Lipschitz whenever the operator 7" has a (locally) bounded selection in
a dense subset of X.

3. If there exists 29 € dom (7) such that T'(zg) = {0}, then the
above construction leads to the constant function hy = 0. Let us
observe that this situation cannot appear if 7" is given by (32) unless
df(zo) = {0}.

4. One may wonder whether the analogy between (C'M (z¢)) (cycli-
cally monotone) and (R(zg)) operators can go any further. Namely,
starting from an arbitrary function f with 0 f(z¢) # 0, one may define
an operator 7" of the class (R(zg)) (resp. of the class (C'M(z))) via
relation (25) (resp. 7" = Jf) and subsequently consider the lsc qua-
siconvex function hr (resp. the Isc convex function fr) given by the
formula (28) (resp. (4)). In both cases we have:

zo(z — o) < hr(e) < fr(z) < f(2) (36)

It is easily seen that if f is affine, then the functions hr, fr and f co-
incide (modulo the constant f(z¢)). It is also known that if f is convex
and lsc, then fr and f coincide [16]. However in general the function Ap
does not coincide with f and in particular - unlike the convex case - the
operator T defined in (25) does not uniquely determine the function
f. A comparison of (4), (22) and (28) yields hy < g7 < fr. In the
following example we show that if 7" is defined by (25), the functions
hr and gr are in general strictly majorized by f.
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Example: Consider the function f : R — R given by f(z) =| 2+1 | —1.
Then for g = 0, the operator 7" in (32) is given as follows:

[1,400) if 2z € (—1,0)U (0, +o0),
) {1} if =0,
@) =g if o= 1,
(—oo,—1] if = < -1,

hence the constructions (22) and (28) lead to functions gr and hr:

x if 2> -1,
i) = o) ={ i 1200

Remark As pointed out by the referee, the results of this paragraph
and the integration procedure of Rockafellar ([16]) can both be seen as
particular cases of the following scheme:

Consider a general function b : X x X x X* — R. Then for any
function f : X — RU {+oco} let us define the b-subdifferential 9°f :
X — 28 by

O flx)={z" € X™: f(y) > f(x) +b(z,y,27), forall y € X}. (37)

Further, given an operator T : X — 2%" and a point zg in dom (T),
define the b(zg)-property as follows: For any 1, 23..., 2, € X and any
$8 S T($0)7 w»{ S T($1), e $:; € T(xn)

Zb($¢,$¢+1,$?) <0, (38)
=0

where the convention 2,41 = ¢ is used. Then if T has this property,
adapting the procedure of Rockafellar (in [16]) we can construct a
function fr in such a way that T C 0°fr. The function fr, being
a supremum of functions of the form b(z,y,z*), will enjoy a certain
property based on b(.,.,.), that we call b-convexity. In the light of this
general scheme, the conclusions of Theorem 2.5 and Theorem 6.4 may
read in a unified way as follows:

T has b(zo) <= T C 3°fr, for some b-convex function fr.

Note that Theorem 2.5 corresponds to the case b(z,y,2*) = 2*(y —
x), where one recovers in (37) the definition of the Fenchel-Moreau
subdifferential and in (38) the definition of cyclic monotonicity (see
Definition 2.1 (i)). In this case, b-convexity is equivalent to convexity
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plus lower semicontinuity. On the other hand, Theorem 6.4 corresponds
to the choice

.- *(y — ) if =z
bz, y,27) = { min{z*(y — z),0} if x # 29 ’

where (38) is the considered R(z) property, and b-convexity is nothing
less than lower semicontinuity and quasiconvexity.

Question: The class of operators fulfilling (R(z)) at every point of their
domain is located between monotone and cyclically monotone operators
(see Propositions 5.2, 6.2 and comments after Definition 6.1). However
we do not know which of these inclusions is strict.
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