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Preface

During the period July 20-24, 2009, the research group on Optimization of the
Autonomous University of Barcelona organized an advanced course at the CRM,
with the aim of promoting research in the area of optimization in all of its compo-
nents: theory, algorithms, and practical problems. This volume is a unified version
of the material presented in the course.

The advanced course was entitled Optimization: Theory, Methods, and Ap-
plications. The courses and the written material were accordingly divided into
these three main parts. The theoretical part of the book is a self-contained course
on the general moment problem and its relations with semidefinite programming,
presented by Jean B. Lasserre, senior researcher at the CNRS (France), world-
leading specialist of the domain and author of a recent research monograph on
this topic (Imperial College Press, 2009). The second part is dedicated to the
problem of determination of Nash equilibria from an algorithmic viewpoint. This
part is presented by Francisco Facchinei, professor at the University of Roma “La
Sapienza”, established researcher and co-author of an extended monograph on this
topic (Springer, two volumes). The third part is a study of congestion models for
traffic networks. This part develops modern optimization techniques for finding
traffic equilibria based on stochastic optimization and game theory. It has been
presented by Roberto Cominetti, professor at the University of Chile, who has been
working for several years on congestion models of the traffic of the municipality
of Santiago de Chile.

This advanced course was an i-MATH activity (ref. 2009 MIGS-C4-0212),
which was also supported by the Spanish Ministry of Science and Innovation
(Complementary Actions, ref. MTM2008-04356E). We wish to thank the CRM
direction and administrative staff for the logistic support, and our three main lec-
turers for the excellent course and the quality of the material presented. We also
thank our colleagues Emilio Carrizosa (Sevilla), Laureano Escudero (Rey Juan
Carlos), Claude Lemaréchal (INRIA Rhone-Alpes), and Justo Puerto (Sevilla),
who agreed to deliver invited talks complementary to the courses, as well as the
70 participants of the event. Our special thanks to Sabine Burgdorf (Konstanz),
Vianney Perchet (Paris), Philipp Renner (Ziirich), Marco Rocco (Bergamo), and
Guillaume Vigeral (Paris), who accepted to review carefully several parts of this
material.

Bellaterra, February 2011
Aris Daniilidis
Juan Enrique Martinez-Legaz
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