

Advanced Courses in Mathematics CRM Barcelona

Centre de Recerca Matemàtica

Managing Editor: Carles Casacuberta

For further volumes: http://www.springer.com/series/5038

Roberto Cominetti Francisco Facchinei Jean B. Lasserre

Modern Optimization Modelling Techniques

Editors for this volume:

Aris Daniilidis (Universitat Autònoma de Barcelona) Juan Enrique Martínez-Legaz (Universitat Autònoma de Barcelona)



Roberto Cominetti Departamento de Ingeniería Industrial Universidad de Chile Santiago de Chile Chile

Jean B. Lasserre LAAS-CNRS Toulouse France Francisco Facchinei Department of Computer, Control, and Management Engineering Antonio Ruberti Università di Roma "La Sapienza" Roma Italy

ISBN 978-3-0348-0290-1 ISBN 978-3-0348-0291-8 (eBook) DOI 10.1007/978-3-0348-0291-8 Springer Basel Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012944421

Mathematics Subject Classification (2010): Primary: 90-XX, 91-XX; Secondary: 12Y05, 14P10, 65K10, 65K15, 90B20, 90C22, 90C26, 90C30, 90C33, 90C40, 91A10, 91A13, 91A26, 91B51

© Springer Basel 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer Basel AG is part of Springer Science+Business Media (www.birkhauser-science.com)

Contents

Pı	reface		ix			
		$ \begin{array}{c} \textbf{Moments and Positive Polynomials for Optimization} \\ . \ \textit{Lasserre} \end{array} $				
In	troduc	tion	9			
1	Repr	esentation of Positive Polynomials				
	1.1	Sum of squares representations and semidefinite optimization	8			
	1.2	Nonnegative versus s.o.s. polynomials	11			
	1.3	Representation theorems: Univariate case	12			
	1.4	Representation theorems: Multivariate case	14			
	1.5	Polynomials positive on a compact basic semi-algebraic set	17			
		1.5.1 Representations via sums of squares	17			
		1.5.2 A matrix version of Putinar's Positivstellensatz	20			
		1.5.3 An alternative representation	21			
	1.6	Polynomials nonnegative on real varieties	23			
	1.7	Representations with sparsity properties	24			
	1.8	Notes and sources	26			
2	Mom	ents				
	2.1	One-dimensional moment problems	31			
		2.1.1 The full moment problem	31			
		2.1.2 The truncated moment problem	33			
	2.2	The multi-dimensional moment problem	34			
		2.2.1 Moment and localizing matrix	35			
		2.2.2 Positive and flat extensions of moment matrices	38			
	2.3	ne K-moment problem				
	2.4	Moment conditions for bounded density	42			
		2.4.1 The compact case	42			
		2.4.2 The non-compact case	44			
	2.5	Notes and sources	45			

vi

3	Polynomial Optimization						
	3.1	The primal and dual points of view					
	3.2	Unconstrained polynomial optimization 4					
	3.3	Constrained polynomial optimization: SDP-relaxations	53				
		3.3.1 A hierarchy of semidefinite relaxations	53				
		3.3.2 Obtaining global minimizers	55				
		3.3.3 The univariate case	62				
		3.3.4 Numerical experiments	62				
		3.3.5 Exploiting sparsity	63				
	3.4	Constrained polynomial optimization: LP-relaxations	65				
		3.4.1 The case of a basic semi-algebraic set	65				
		3.4.2 The case of a convex polytope	66				
	3.5	Contrasting LP and semidefinite relaxations	66				
	3.6	Putinar versus Karush–Kuhn–Tucker	68				
	3.7	Discrete optimization	70				
		3.7.1 Boolean optimization	71				
		3.7.2 Back to unconstrained optimization	73				
	3.8	Global minimization of a rational function	74				
	3.9	Exploiting symmetry	76				
	3.10	Notes and sources	78				
4	Conv	exity in Polynomial Optimization					
	4.1	Convexity and polynomials	81				
		4.1.1 Algebraic certificates of convexity	81				
		4.1.2 Representation of convex polynomials	85				
		4.1.3 An extension of Jensen's inequality	89				
	4.2	Convex polynomial programs	90				
		4.2.1 The s.o.sconvex case	90				
		4.2.2 The strictly convex case	91				
	4.3	Notes and sources	92				
5	Parar	netric Polynomial Optimization					
	5.1	Introduction	93				
	5.2	A related linear program	95				
		5.2.1 A related infinite-dimensional linear program	96				
		5.2.2 Duality	96				
	5.3	A hierarchy of semidefinite relaxations	01				
		5.3.1 Semidefinite relaxations	01				
		5.3.2 The dual semidefinite relaxations	05				
		5.3.3 Persistency for Boolean variables	04				
		5.3.4 Estimating the density $q(\mathbf{y})$	0.5				

Contents

		5.3.5 Illustrative examples	107
	5.4	A joint + marginal algorithm for polynomial optimization $\ \ . \ \ . \ \ .$	111
	5.5	Appendix	116
	5.6	Notes and sources	119
Gl	ossary		121
Bi	bliogra	aphy	123
_			
Pa	art II	: Computation of Generalized Nash Equilibria: Recent Advancements	
Fr	rancis	co Facchinei	
Ac	knowl	edgement	133
In	troduc	tion	135
Hi	story		139
1 Some Telecommunication Applications			
-	1.1	Joint rate and power optimization in interference limited wireless	
		communication networks	145
	1.2	Rate maximization game over parallel Gaussian interference	1 45
	1.3	channels	147
	1.0	constraints over interference channels	148
2	NEPs	s and Jointly Convex GNEPs	
	2.1	The Nash equilibrium problem	151
3	Joint	ly Convex Nash Equilibrium Problems	163
4			
	4.1	Existence of solutions	175
	4.2	Penalty approach	177
	4.3	Using the KKT condition	184
Co	onclusi	ons	189
Aı	ppendi	x: Elements of variational inequality theory	191
Bi	bliogra	aphy	197
		I: Equilibrium and Learning in Traffic Networks	
Re	obert c	o Cominetti	
Fo	rewor	d	207
In	troduc	tion and Overview	209

viii Contents

1	Ward	rop and	l Stochastic User Equilibrium				
	1.1	Wardı	rop equilibrium				
		1.1.1	Arc-flow formulation				
		1.1.2	Dual formulation				
	1.2	Stoch	astic user equilibrium				
	1.3	Rema	rks on Wardrop and SUE				
2	Markovian Traffic Equilibrium						
	2.1	Marko	ovian route choice				
		2.1.1	Expected travel times				
		2.1.2	Expected flows				
		2.1.3	Implicit functions				
	2.2	Marko	ovian traffic equilibrium				
		2.2.1	Extensions				
	2.3	Nume	rical methods				
		2.3.1	Convergence of MSA				
		2.3.2	Hessian calculation				
3	Adap	tive Dy	namics in Traffic Games				
	3.1	Payoff	f-based adaptive dynamics				
		3.1.1	The model				
		3.1.2	Rest points and perturbed game				
		3.1.3	Asymptotic convergence of the dynamics 245				
	3.2	Applie	cation to traffic games				
		3.2.1	Potential function and global attractor				
		3.2.2	Lagrangian description of the dynamics				
		3.2.3	The case of symmetric players				
Ap	pendi	ces					
	A	Discrete choice models					
	В	B Stochastic approximation					
		B.1	Differential inclusions				
		B.2	ω -limit sets and attractors				
		B.3	Lyapunov functions				
Ril	hliogra	nhv	265				

Preface

During the period July 20–24, 2009, the research group on Optimization of the Autonomous University of Barcelona organized an advanced course at the CRM, with the aim of promoting research in the area of optimization in all of its components: theory, algorithms, and practical problems. This volume is a unified version of the material presented in the course.

The advanced course was entitled Optimization: Theory, Methods, and Applications. The courses and the written material were accordingly divided into these three main parts. The theoretical part of the book is a self-contained course on the general moment problem and its relations with semidefinite programming, presented by Jean B. Lasserre, senior researcher at the CNRS (France), worldleading specialist of the domain and author of a recent research monograph on this topic (Imperial College Press, 2009). The second part is dedicated to the problem of determination of Nash equilibria from an algorithmic viewpoint. This part is presented by Francisco Facchinei, professor at the University of Roma "La Sapienza", established researcher and co-author of an extended monograph on this topic (Springer, two volumes). The third part is a study of congestion models for traffic networks. This part develops modern optimization techniques for finding traffic equilibria based on stochastic optimization and game theory. It has been presented by Roberto Cominetti, professor at the University of Chile, who has been working for several years on congestion models of the traffic of the municipality of Santiago de Chile.

This advanced course was an i-MATH activity (ref. 2009 MIGS-C4-0212), which was also supported by the Spanish Ministry of Science and Innovation (Complementary Actions, ref. MTM2008-04356E). We wish to thank the CRM direction and administrative staff for the logistic support, and our three main lecturers for the excellent course and the quality of the material presented. We also thank our colleagues Emilio Carrizosa (Sevilla), Laureano Escudero (Rey Juan Carlos), Claude Lemaréchal (INRIA Rhône-Alpes), and Justo Puerto (Sevilla), who agreed to deliver invited talks complementary to the courses, as well as the 70 participants of the event. Our special thanks to Sabine Burgdorf (Konstanz), Vianney Perchet (Paris), Philipp Renner (Zürich), Marco Rocco (Bergamo), and Guillaume Vigeral (Paris), who accepted to review carefully several parts of this material.

Bellaterra, February 2011 Aris Daniilidis Juan Enrique Martínez-Legaz