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1 Introduction

The notion of a “normal cone to sublevel sets”, i.e. a multivalued oper-
ator associating with every function f and every point x of its domain the
normal cone to the sublevel set Sy(,) has first been introduced and studied
in [5], where the authors discussed continuity properties of this operator (or
variants of it) when applied to quasiconvex functions. Subsequently, several
authors used this notion (see [13], [10], [11] e.g.) for dealing with quasiconvex
optimization problems.

In [4], a modification on the original definition ([5]) of the normal operator
has been proposed, consisting in considering for every x the polar cone of
the Clarke tangent cone of Sy(,) at z. This new definition coincides with
the previous one whenever the function f is quasiconvex, whereas it has the
advantage to allow simple characterizations of various types of quasiconvexity
in terms of corresponding types of quasimonotonicity of the normal operator.

In this work, following the lines of [4], we give an axiomatic formulation for
the concept of normal operator, based on an abstract notion of subdifferential,
see Section 2. Subsequently, we present some applications in quasiconvexity
(Sections 3 and 5) and in pseudoconvexity (Section 4).
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Throughout this paper, X will be a Banach space with dual X*, and f
a lower semicontinuous (Isc) function on X with values in R U {+o0}. For
any € X and any z* € X* we denote by (z*,z) the value of the functional
z* at the point . We also use the standard notation: Bs(z) for the closed
ball centered at x with radius § > 0, dom f := {z € X : f(z) # 400} for
the domain of the function f and Sy, := {2’ € X : f(2') < f(z)} (resp.
St = {z' € X : f(z') < f(z)}) for the sublevel and the strict sublevel sets
of f. For z,y € X we set [z,y] = {tz+ (1 —t)y : 0 < ¢ < 1} and we define
the segments |z, y], [z,y[ and ]z, y[ analogously.

2 Abstract subdifferential and normal operator

Let us first recall from [2] the definition of an abstract subdifferential.

Definition 1. We call subdifferential operator, any operator d associating to
any Banach space X, any lower semicontinuous function f : X — IR U {+o0}
and any x € X, a subset 9f(x) of X*, and satisfying the following properties:

(P1) 9f(z) ={z" € X* : (z"y —x) + f(z) < fy), Vye X},

whenever f is convex;
(P2) 0€ df(x), whenever f attains a local minimum at z € domf;

(P3) O(f +9)(z) COf(x) + dg(x), whenever g is real-valued convex
continuous, and 0-differentiable at z,

where g 0-differentiable at x means that dg(z) and 9(—g)(x) are nonempty.
In the sequel, we shall assume in addition that
oco’ or 9coPt

where 01 is the Clarke-Rockafellar and 9P+ the upper Dini subdifferential.
Let us recall that the definitions:

f(z) ={z* € X*: (z*,d) < fT (2,d), foralld € X}

where 1
f1(z,d) =suplimsup inf - (f(y+td)—f(y))-
>0 t\0 d’'e€Bc(d)
y—yw
and
OPTf () ={z* € X*: (z*,d) < fPF (x,d), foralld € X}
where

1
fP* (z,d) =limsup - (f (z + td) — f (z)).
ot T
It is recalled that ¢ \, 0" indicates the fact that ¢ > 0 and ¢t — 0, while
T — T, means that both x — z, and f(z) — f(z,).
We further recall from [2] the following definition.
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Definition 2. A norm ||.|| on X is said to be 9-smooth if the functions of
the following form are J-differentiable:

T = As(z) := Zﬂn”x — vall?,

where p,, > 0, the series ), p, is convergent, and the sequence (vy) con-
verges in X.

Let us also introduce the notion of an “abstract” normal cone, based on
the subdifferential 9.

Definition 3. Let 0 be a subdifferential operator. For any closed subset C'
of X and any point z € X we associate the normal cone to C' at the point x
defined by

[ OYe(x) fzeC
No(z) = { ) otherwise

where ¢ denotes the indicator function of C (i.e. ¥ (x) = 0if z € C and
+ooif z ¢ C).

For all classical subdifferentials (Clarke, lower and upper Hadamard, lower
and upper Dini, Frechet, proximal...) the subset N¢ () is effectively a cone.
Although this property will not be used in the sequel, to be in accordance
with the term “normal cone” of the above definition, we can assume that the
abstract subdifferential fulfills the following property:

For any function f,any A > 0 and any z € X, 9(\f)(z) = \0f(x).

Whenever the subdifferential operator is the lower Hadamard subdiffer-
ential 7~ the corresponding normal cone is the classical Bouligand normal
cone defined as follows

NEKo(z) ={z* € X* : (z",d) <0, Vd € K¢(z)} (1)
with

Kc(m):{y:klirr;oyk o Jt (O with z + tpyr € C, Vk € N}

On the other hand, if & = 87, then we recover the Clarke normal cone
Ng(a:) ={z* e X" : (2¥,d) <0, Vd € Tc(z)} (2)
with

deTo@) o Ve > 0,36 > 0 such that
© Vz' € Bs(z) N C,Vt €]0,d], (z' +tB.(d))NC # 0.

We are now in a position to define the normal operator associated with a
function.
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Definition 4. Let d be a subdifferential operator. For any lower semicon-
tinuous function f : X — IR U {+oo} we associate a multivalued operator
Ny : X — 2% - called normal operator - defined by

N {st(m)(a:) ifz € (%omf
otherwise

Remark: 1) In the particular case d = 8", we recover the definition used in
[4] (see relation (2)).

2) Based on the strict sublevel sets (i.e. S, = {z € X : f(z) < A})
an analogous concept of normal operator (called strict normal operator) has
been considered in [4] (extending the original definition of [5]) :

0 if z € dom f
- X* if z € Argminf
Ny(z) = Nos: (@) i €c(Sg,)
{0} otherwise

Since, as showed in [4], the operator Ny is more appropriate than N ¢ for the
normal characterization of the different types of quasiconvexity, the use of
(large) sublevel sets has been preferred for the purpose of this paper.

A natural question immediately arises concerning the relation between
the multivalued operators Ny and Jf and in particular, the possible equality
between N¢(z) and cone (0f(x)) := {ta* : t > 0 and 2* € 9f(z)}. This
equality is not true in general. In fact several counterexamples have been
given in [4] for the case = d'. In the following proposition we shed more
light on this topic.

Let us recall that a function f: X — IR U {+o0o} is called quasiconvez if
its sublevel sets Sy are convex subsets of X . Following [6], a locally Lipschitz
function is said to be regular at a point x, if for any d € X the classical
directional derivative f'(z,d) exists and is equal to the Clarke directional
derivative f°(z,d) defined as follows:

o (@, d) = limsup ~ (F(y +td) — £ (1))

tNOT y—a
Proposition 1. Let f : X — IR U {400} be Isc such that 0 ¢ 0f(X).
i) If f is quasiconvez then, for any x € X,
cone(0f(x)) C Ny(x).

ii) Let us suppose, in addition, that f is Lipschitz continuous and 0 C 0.
If f is quasiconvex or f is regular, then for any x € X,

Ny (z) = cone(0f (x)).
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Proof. For i) let us suppose, for a contradiction, that € dom f is such that
Of(x) ¢ Ny(z) = NKg,(,). Hence there exists y € Sy(x) and z* € 9f(z)
verifying (z*,y — z) > 0. Let § > 0 be such that (z*,u — ) > 0 for all
u € Bj(y). Since f is quasiconvex, it follows (see [3] e.g.) that f(u) > f(z)
for all u € B;s(y). But, since y is an element of S¢(x), y is a local minimum
of f and therefore 0 € df(y) which contradicts the hypothesis.

i1) is a direct consequence of [6, Th. 2.4.7]. d

Remark 1. a) As proved in [14, Lemma 5.3], if 9 is the Fréchet subdifferential,
then assertion i) can be obtained without the assumption “0 ¢ 0f(X)”.

b) In assertion ii) of the previous proposition, the Lipschitz assumption
can not be dropped. Indeed, if we define the function f: IR — IR by f(z) =
Ve if z > 0and f(z) = —/—x otherwise, then for any x # 0, cone(0f(z)) =
N¢(z), while for = 0 we have df(0) = 0 and N¢(0) = [0, +o0].

3 Normal characterizations of quasiconvexity

In this section we establish ‘normal’ characterizations for quasiconvex and
strictly (semistrictly) quasiconvex functions in terms of the abstract normal
operator N;. These characterizations have been derived in [4] in the particular
case 9 = 01,

Let us first recall the relevant definitions. A function f: X — R U {400}
is said to be semistrictly quasiconver if f is quasiconvex and for any z,
y € dom f we have

f(@) < fly) = f(2) < f(y), Vz € [z,y[.

Similarly, f is called strictly quasiconvez, if it is quasiconvex and for any =z,
y € dom f and z €]z, y[ we have

f(z) <max{f(z), f(y)}-

For any subset K of X, let us also recall that a multivalued operator
T: X — 2X" is called quasimonotone on K if for all z,y € K we have

32" € T(a), (a*,y—2)>0=Vy €T(y) : (y',y—2) > 0.

Following [8] T is called cyclically quasimonotone (on K), if for every z;,x2,
vy T, € X (resp. z1,x2,...,x, € K), there exists ¢ € {1,2,...,n} such that

<$:>xi+1 - mz> < O,Vl': S T(l‘l)

(where z,41 := ).
Furthermore ([7]), the operator T is called semistrictly quasimonotone on
K, if T is quasimonotone on K and for any x, y € K we have

dz" € T(x), (z*,y —z) >0 =

x;—y,y[, A" € T(z) : (z*,y—2)>0.

2z €]
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Finally T is called strictly quasimonotone if T' is quasimonotone and for any
z,y € K we have

Az €la,y, Iz* € T(z) : (¢",y —xz) #0.
Let us now recall from [3] the following characterization.

Proposition 2. Let X be a Banach space admitting a 0-smooth renorm and
let f: X — RU{+o0} be a lsc function. Then f is quasiconvez iff Of is
quasimonotone.

For the forthcoming characterization we need the following lemmas:

Lemma 1. Let C be a nonempty subset of X. The following statements are
equivalent:

i) C is closed and convex.
ii) The indicator function ¥ is convex and lsc.
iii) The indicator function V¢ is quasiconvex and lsc.

Proof. The proof is straightforward and will be omitted. O

Lemma 2. For any Isc quasiconvez function f, and any x € dom(f) we
have:
Nf(iL’) = NKSf(z)(m)

Proof. For every x € domf, the set C' = Sy(,) is convex and closed, hence
from Lemma 1 it follows that the function ¥¢ is convex and Isc. Property
(P1) of Definition 1 implies that 01¥¢ does not depend on the subdifferential
operator. In particular dyc(x) coincides with the cones defined in (1) and
(2) respectively. O

Theorem 1. Let X be a Banach space admitting a 9-smooth renorm and let
f: X > RU{+o0} be a lsc function. Consider the following statements:

i) [ is a quasiconvex function.
i) 3a* € Ny(z), (z%,y —2) > 0= f(y) > f(z)
i) Ny is a (cyclically) quasimonotone operator.

Then we always have i) = ii) = iii). Moreover if, either 07— C 0 and X
admits a Gateauz-smooth renorm or, & C 0Pt and f is radially continuous
or,  C 0" and f is continuous, then iii) = i), hence all these three conditions
are equivalent.

Proof. i) = ii). Let us suppose that for some 2* € Ny(z) we have (z*,y—2) >
0. It follows from Lemma 2 that Ny(z) = NKg, ,,(z). Consequently y — = is
not an element of K, (z) = cl(Ux>0A(Sy(x) — {z})). Hence, in particular,
y is not an element of Sy(,), i.e. f(z) < f(y).
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i1) = iit). Take any finite family {z1,...,z,} of points of X and suppose
that for i € {1,...,n}, there exists xf € Ny(z;) such that (z},z;41 —z;) >0
where z,+1 = x1. A contradiction immediately occurs since i) yields f(z1) <

fz2) < < f(znt1) = f(z1).

i11) = 4). Let us suppose, to a contradiction, that f is not quasiconvex.
Then from Lemma 1 it follows that for some xy € dom f, the function ¢, :=
VS, 18 DOt quasiconvex.

If 9%~ C 0 (and X admits a Géateaux-smooth renorm) then, in view
of Proposition 2, its lower Hadamard subdifferential 8, is not quasi-
monotone. Hence there exist z, y € dom,, = Sy(a,), T° € 0=, (z) and
y* € 04, (y) satisfying (z*,y —z) > 0 and (y*,z — y) > 0. Note now
that Sy(y) C Sf(a,), from which it follows that ¢4, (-) < ¥, (-). We can easily
conclude that ¥ (z,d) < " (z,d) for all d in X, hence 9" ¢),,(z) C

0" 4, (z). Hence z* € Ny(z) and (similarly) y* € N¢(y) and we obtain the
desired contradiction.

In both other cases, using again Proposition 2, we conclude to the exis-
tence of z, y € dom )y, = Sy(z,), T° € Oa,(w) and y* € 09y, (y) satisfying
(z*,y —x) >0 and (y*,z —y) > 0.

Now we claim that f(x) = f(y) = f(xo).
[We obviously have f(z) < f(zo). Let us now suppose that f(z) < f(xo).

If & C 9P7, then from the radial continuity of f we may find some § > 0
such that f(u) < f(xo) for any element u in the segment (z—d§(y—x), v+(y—
z)). Then it follows that the function 1),, is constant on this segment, which
is not compatible with the inequality (z*,y — x) > 0. Hence f(z) = f(xo)
and for the same reasons f(y) = f(xo).

If now 0 C 9" (and the function f is continuous), then we may take a
d > 0 such that f(u) < f(zo) for all u € Bs(z), hence the function ), is
locally constant on z, which contradicts the fact that (z*,y — z) > 0. Again
we conclude that f(z) = f(zo) = f(y). The claim is proved.]

Now the proof is complete. Indeed v, = 1, = ¢,. Hence, in both cases
z* is an element of Ovy,(z) = OYs(z) = Ns,, (z) = Ny(z) and y* is an
element of Ny(y) thus furnishing a contradiction with the quasimonotonicity
of Nf. O

Using essentially the same proof as in [4] it is possible to obtain the
following characterizations of semistrict and strict quasiconvexity in this more
general framework. Let us thus state - without proof - these results.
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Theorem 2. Let X be a Banach space admitting a 9-smooth renorm and let
f:X = RU{4+o00} be lsc and continuous on its domain domf. Then the
following statements are equivalent:

i) f is a semistrictly quasiconvex function.
i) Ja* € Np(z) @ (" y—x) > 0= f(y) > f(2), Vz € [z,y)

i) Ny is a semistrictly quasimonotone operator on domf.

Theorem 3. Let X be a Banach space admitting a 9-smooth renorm and let
f: X = RU{+o0} be alsc and continuous on domf.

Then f is strictly quasiconvez if and only if Ny is strictly quasimonotone
on domf.

4 Normal cones and pseudoconvexity.

In this section we shall discuss relations between normal operators and
pseudoconvexity. In [1], a differentiable function f was called pseudoconvez, if
for every z,y € dom(f) the inequality (df (z),y —z) > 0 ensures f(y) > f(x).
The notion of pseudoconvexity was subsequently extended into non-smooth
functions, based on the concept of subdifferential (see [12], [3]). Let us further
give the definition of pseudoconvexity in an even more abstract setting.

Definition 5. Given an operator T : X — 2%, a function f : X - IRU
{+0o0} is called T-pseudoconvex, if for any z,y € dom(f) and z* € T'(z), the
inequality (z*,y — z) > 0 implies f(y) > f(x).

In case T := Of, we recover the definition given in [12] (see also [9] for a
summary).

Since Definition 5 of Ny \ {0}-pseudoconvexity and Theorem 1 i3) are
very similar, one may wonder whether quasiconvexity and Ny \ {0}-pseudo-
convexity differ. It is shown below (Proposition 3) that for some particular
case these concepts coincide. However this is not the case in general, as shows
the example of the function f: R — IR, with

o= {1 215 >

The above function is lower semicontinuous and T-pseudoconvex (for T' =
Ny \ {0}), without being quasiconvex.

A more general example of a lsc function satisfying for all z,y € dom f
the property:

Va* € T(z), (z*,y —x) > 0= f(y) > f(z), for all z € [z,y] (4)
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without being quasiconvex is given below. (Relation (4) was taken as defini-
tion for T-pseudoconvexity in [9]).

Ezample: Let us consider the lsc function f : IR? — IR defined by

1,if r<0andy>0
0, if xy >0
—x,if >0,y<0and —y>=x
y,if t>0,y<0and —y <z

flz,y) = (5)

It is easily seen that f is Ny \ {0}-pseudoconvex, provided that 8 C 8T. On
the other hand, since

Sf(O,O) = ]Rz\{(a;,y) < 07 y > 0}
the function f is not quasiconvex.

Proposition 3. Let f : X — R U {+00} be a Isc radially continuous func-
tion with conver domain. Then

i) f quasiconvex = f N\ {0}-pseudoconvez.
i) if, moreover, X = IR" and & = 0" then f is quasiconvex iff f is
N¢(z) \ {0}-pseudoconvex.

Proof. i) Let us assume that z, y € dom f and z* € Ny(z) \ {0} are such
that (z*,y — z) > 0. Since z* # 0, there exists d € X such that (z*,d) > 0.
Then for y, =y + %d (with n € IN) we have (z*,y,, — ) > 0 which implies,
by i) of Theorem 1 that f(y,) > f(x). Since f is radially continuous this
yields f(y) > f(z) and f is Ny \ {0}-pseudoconvex.

i1) To prove the converse implication, let us suppose that f is N¢(z)\{0}-
pseudoconvex and (towards a contradiction) z is an element of |z, y[ verifying

f(2) > max[f(z), f(y)]-

Since f is radially continuous, we may assume that f(z) > f(y) and that there
exists Z € |z, y[ such that f(z) < f(Z) < f(2). It is also no loss of generality
in assuming that f(u) > f(Z) for all u €]z, Z]. Thus £ is on the boundary of
the closed subset Sy(z) and consequently Ny(Z) contains a nonzero element
Z* (see [6] e.g.). On the other hand, since f(2) > f(x), we have (a*,z—2) <0
for any a* € N¢(2) \ {0}. In particular, (*,y — Z) > 0 and, according to the
Ny \ {0}-pseudoconvexity, f(y) > f(Z) which is a contradiction. O

We also recall ([8]) that an operator T is called cyclically pseudomonotone,
if for every x1,x2, ...,z € X, the following implication holds:
i €{1,2,..,n}, 3z € T(x;) : (x], 231 —25) > 0=
Jj €{L,2,..,n},Va; € T'(x;) : (¥}, 2j41 —x;) <0

(Where Tp41 = .’L'l).
Let us now state the following result, to be compared with Theorem 1.
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Proposition 4. Let X be a Banach space admitting a 0-smooth renorm and
f: X 5> RU{+o00} be a continuous function. The following statements are
equivalent:

i) f is quasiconvez.

i) Ny \ {0} is (cyclically) pseudomonotone.

Proof. i) = ii). Set T'(z) = N¢(z) \ {0} for all € X. Let any finite subset
{z1, 22, ...,z } of X and suppose (for a contradiction) that (z},z2 —x1) >0
whereas for all j > 2, and all 7} € T'(z;), (¢}, %j+1 — ;) > 0 (Where T4 :=
z1). Since z # 0, using the same arguments as in part i) of the previous
proof, we obtain f(x;+1) > f(z;), for j > 2. On the other hand, since (2, z2—
x1) > 0 we infer by Theorem 1 i) that f(x2) > f(21). The contradiction
follows easily, since z,1 := x1. Hence T is cyclically pseudomonotone.

i1) = 4). This implication follows from Theorem 1 (iii) = 1)), since the
pseudomonotonicity of Ny \ {0} obviously implies the quasimonotonicity of
Ny O

It is well known (see [8] e.g.) that every Of-pseudoconvex lsc function is
quasiconvex. Combining with Proposition 3 ¢) and proposition 1 i) we thus
recover easily the following known result:

Corollary 1. Suppose that f is continuous and 0 € Of(X). Then
f is quasiconvex <= f is 0-pseudoconvex

5 Normally equivalent functions

As observed in [4], two functions with the same normal operator may differ
by more than an additive constant. Nevertheless, using the previous definition
of T-pseudoconvexity (with T' = N\ {0}), it is possible to characterize, under
certain regularity assumptions, the set of quasiconvex functions having the
same normal operator as a given quasiconvex function. This is the aim of
Theorem 4.

Let us first define an equivalent relation on the set of all real-valued
functions on X as follows:

f~g& Ni(x) = Ny(z), Ve X.

Remark: It follows directly from the definition that f ~ ¢ o f for every
f + X — IR and every strictly increasing function ¢ : IR — IR, since the
functions f and o f have the same sublevel sets.

We now denote by C the class of continuous quasiconvex functions f :
X — IR satisfying the following two regularity conditions:

(a) every local minimum is a global minimum
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(b) the subset
Argmin f:={z e X : f(z) = ig(ff}

is included in a closed hyperplane of X.

Let us remark that assumption (a) can be rewritten as follows:
(a') For every A € f(X), A >infx f: cl(Sy) =S\
and that, in finite dimensional spaces, (b) is equivalent to
(b') the subset Argmin f has an empty interior.

Hypothesis (a) has been used in [5] in order to obtain continuity results
for the normal operator.

 In the following theorem, we characterize the equivalent class, denoted by
f, of a given function f in C.

Theorem 4. The equivalent class f of a given function f in C is the set of
all Ny \ {0}-pseudoconvex functions, that is

F={geC : Fa" e Ny(@)\ {0} : (@",y—2) > 0= g(y) > g(2)}.

Another way to express this result is to say that a function g of C has
the same normal operator as a given function f of C if, and only if, g is
N¢ \ {0}-pseudoconvex.

Proof. Let us denote by C; the subset of C defined by

Cr={g€C : Ja" € Ny(2) \ {0} : (z",y—2) >0= g(y) > g(2)}.

(i) Let us first show fcc:
Suppose that g € f and let z, y € X and 2* € Ny(z) \ {0} = Ny(z) \ {0}
be such that
(z",y —x) > 0. (6)
x

If the inequality (6) is strict, then from Theorem 1 we conclude g(y) > g(
In case where equality holds in (6), there exists a sequence (y,), C X
converging to y such that (z*,y, —z) > 0, for any n € IN. It follows g(y,) >
g(z), which together with the upper semicontinuity of g yields g(y) > g(z).
(i4) We shall now show C; C f :
Let any g € Cy.
Step 1: Ny(xz) C Ny(z), for all z € X.
Assume, for a contradiction, that there exists x € X and #* € Ny (z) such
that z* & Ny(z).
Claim: z € Argmin g
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[ Indeed, if z is not an element of Argmin g then, using assumption (a’)
and the fact that z* is not an element of N,(x), we immediately obtain the
existence of a point y of Sg_(x) satisfying (z*,y — z) > 0. A contradiction

occurs since the definition of Cy now yields g(y) > g(x). The claim is proved.]
Since z* € Ny (), there exists § € Sy(,) = Argmin g such that

(x*,5 —x) > 0. (7)

Obviously
g9(x) = g(¥) = ming (8)
On the other hand, z* is an element of Ny(z) and therefore, (7) implies,

fy) > f(x).
Pick now any A in |f(z), f()[. Since f is continuous, there exists ¢ > 0
such that

B.(x) € Sy (f)- (9)
Due to the closedness of Sy(f), one can find ¢ €]0, 1] such that
CinS\(f) =0 (10)

where C; = {t§ + (1 — t)u ; u € B:(z)}. Since int(C;) # 0, assumption (b)
implies the existence of a point & € B.(x) such that for § = t§+ (1 — t)T we
have:

9(9) > 9(y) = g(z) (11)

Thanks to (10), it is no loss of generality to assume that f(z) > f(Z) for
all z in |Z, 7). Applying thus a separation argument to the disjoint convex
sets |Z,y] and Syz) (f), we conclude that there exists * € Ny (z) \ {0} such
that (z*,5 — 2) > 0.

The definition of C; now yields g(§) > g(&). The contradiction is obtained,
since, using (8) with the quasiconvexity of g we get g(¢) = g(¢), which is not
compatible with (11). Hence Ny(x) C Ny(z), for all z € X.

Step 2: Ny(z) C Ny(z), for all z € X.

We shall also proceed by contradiction. So let us suppose that there exist
z € X and z* € Ny(z) such that «* is not an element of Ny(z). This implies
the existence of a point y of Sy (,)(f) which is not in Sy(,)(g), i-e. g(y) > g(z).

Case 1: The interior of Sy(,)(f) is nonempty.

In this case we claim that there exists z such that f(z) < f(z) and
9(2) > g(@).

Indeed if f(y) < f(z), then take z = y. Otherwise we have f(x) = f(y),
and thanks to hypothesis (a’) there exists a sequence {y,}n>1 in Sf_(z)(f)
converging to y. Since ¢ is continuous and g(y) > g(x), the claim follows for
Z =y, and n sufficiently large.

Now one can separate (in a large sense) the subsets Syz)(f) and {z}.
Hence there exists Z* € N¢(2) \ {0} such that

(z*, 2 —z) > 0.
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This immediately implies, from the definition of Cy, that g(z) < g(z) which
is impossible.

Case 2. The set Sy(,)(f) has an empty interior.

In this case we have f(z) = f(y) = min f. We shall conclude again to a
contradiction. Indeed, by hypothesis (b) there exists a* € X*\ {0} such that

Argmin f C Hy» ={u e X : (a*,u—y) =0}

Thus a* € N¢(y) \ {0}, hence according to the definition of Cr, g(z) > g(y)
which is impossible.
Consequently Ny coincides with N, and the proof is complete. O

Ezample: If X = 1R, the class C consists of the equivalent classes determined
by the functions fi(z) = z, f2(z) = —z and f3 4(z) = [z — af (for a € R).
For example, the function defined in Remark 1 is an element of f;.

Remarks: 1. Two equivalent functions f,g € C do not necessarily have the
same family of sublevel sets. Consider for instance the functions f(z) = |z|
and g(z) = max{z, —2z}. Note that both functions belong to the class defined
by f3,0 (see the previous example).

2. It is possible to consider quasiconvex functions taking the value +oco. In
this case one can obtain a result similar to Theorem 4 under the assumption
that all functions have the same domain. Without this assumption, the fore
mentioned result is not true, as can be shown by easy counterexamples.
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