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1 Introduction

Let U be a nonempty open subset of Rn equipped with its canonical Euclidean norm || · ||,
and f : U → R be a real-analytic function. According to the ÃLojasiewicz gradient inequality
([16, 17, 18]), if a ∈ U is a critical point of f , that is ∇f(a) = 0, then there exists θ ∈ [0, 1) such
that the function

|f − f(a)|θ
‖∇f‖ (1)

remains bounded around the point a. [Throughout this work we set 00 = 1, and we interpret
λ/0 as +∞ if λ > 0 and 0 if λ = 0.]

Recently, Kurdyka [13, Theorem 1] has extended the above result to C1 functions whose
graph belong to an o-minimal structure (see [8], for example), thus in particular to “globally
subanalytic” functions. On the other hand, (1) might fail for C∞ functions with no “adequate”
geometric structure. Such functions can either satisfy a weaker condition (i.e. θ = 1), or present
wild oscillations around their critical point, preventing any comparison between their value and
the norm of their gradient. The following one-dimensional examples illustrate failures of these
two types (around the critical point a = 0):

f(x) =
{

exp(−1/x2), if x 6= 0
0 if x = 0

and g(x) =
{

exp(−1/x2) sin(1/x), if x 6= 0
0 if x = 0

.

1 Research partially supported by the CECM (Simon Fraser U.) and the C.M.M. (Universidad de Chile)
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The aim of this note is to establish a nonsmooth version of the ÃLojasiewicz inequality (1)
for lower semicontinuous convex subanalytic functions (Theorem 3.3), and for continuous sub-
analytic functions (Theorem 3.1). A first and simple illustration is given by the example of the
Euclidean norm function h(x) = ‖x‖, which satisfies (1) for every θ ∈ [0, 1) around zero (which
is a “generalized” critical point - Definition 2.11), but is not differentiable at 0. Behavior of
this type is hereby shown to hold true for a large class of nonsmooth functions, leading to the
conclusion that the ÃLojasiewicz inequality is more linked to the underlying geometrical structure
of f than to its smoothness.

Given an extended-real-valued subanalytic function f : Rn → R ∪ {+∞}, our approach to
generalize property (1) relies on a one-sided notion of generalized gradients called subgradients.
For both a mathematical and a historical account on this notion, as well as for classical results
in nonsmooth analysis, one is referred to the monographs of Clarke-Ledyaev-Stern-Wolenski [7]
and Rockafellar-Wets [20].

Subgradients are obtained according to a two-stage process. First the equality in the defini-
tion of the usual gradient is relaxed into an inequality (Definition 2.10 (i)): this gives rise to the
notion of Fréchet subgradients. Then by a closure operation the so-called limiting subdifferential
∂f can be defined (Definition 2.10 (ii)). This notion constitutes the basis for the generalization
of the ÃLojasiewicz inequality to nonsmooth functions. Let us also mention that in this formalism
Fermat’s rule reads: if a is a local minimizer of f then ∂f(a) 3 0; conversely, if a ∈ Rn is such
that ∂f(a) 3 0, the point a is called a critical point.

Variational analysis and subdifferential calculus provide a framework for the modeling of
unilateral constraints in mechanics and in partial differential equations [11, 6, 9]. Such a calculus
is also central in optimization. In particular it provides variational tools to treat constrained
and unconstrained minimization problems on an equal theoretical level. This stems from the
simple fact that minimizing f over a closed set C amounts to minimizing f + δC over Rn where
δC is the indicator function of C, that is

δC(x) =
{

0 if x ∈ C,
+∞ otherwise.

(2)

Those domains have as a common topic the behavior at infinity of dynamical systems gov-
erned by subdifferential operators, see [15] for an insight in optimization. An important motiva-
tion that drove us to transpose the ÃLojasiewicz result into a nonsmooth context are precisely its
expected consequences in the asymptotic analysis of such subgradient-type dynamical systems.
Those are modeled on the following type of differential inclusion:

ẋ(t) ∈ −∂f(x(t)), t ≥ 0, x(0) ∈ Rn,

where for any x ∈ Rn, ∂f(x) denotes the set of limiting subgradients. The above differential
inclusion generalizes the classical gradient dynamical system

ẋ(t) = −∇f(x(t)), t ≥ 0, x(0) ∈ Rn. (3)

In his pioneering work on real-analytic functions ([16, 17]), ÃLojasiewicz provided the main ingre-
dient – namely, (1) – that allows us to derive the convergence of all bounded trajectories of (3)
to critical points. As can be seen from a counterexample due to Palis and De Melo [19, page 14],
the set of cluster points of a bounded trajectory generated by the gradient of a C∞ function is,
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in general, far from being a singleton. Those famous results illustrate the importance of gradient
vector fields of functions satisfying the ÃLojasiewicz inequality. An even more striking feature
is that the trajectories converge “in direction” when approaching critical points. This fact had
been conjectured by R. Thom (around 1972, see [22]) for real-analytic functions, and established
by Kurdyka, Mostowski and Parusiński in [14]. The subanalytic generalized Thom conjecture
remains open even in the smooth case (see [13, Conjecture F]).

In Section 4 we extend ÃLojasiewicz results to a nonsmooth setting (f is a subanalytic proximal
retract), by showing that all bounded trajectories have a finite length (Theorem 4.5). We also
provide estimates of the asymptotic convergence rate towards the critical points (Theorem 4.7).

For related results on this topic, see [1] ; for other applications to partial differential equations
one is referred to the works of Simon [21] and Haraux [12].

2 Preliminaries

The key ingredients for the nonsmooth extension of the ÃLojasiewicz inequality are subanalyticity
of the function f and notions of generalized differentiation provided by variational analysis.

2.1 Subanalytic sets and Stability properties

We recall the following definition.

Definition 2.1 (subanalyticity) (i). A subset A of Rn is called semianalytic if each point of
Rn admits a neighborhood V for which A ∩ V assumes the following form

p⋃

i=1

q⋂

j=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where the functions fij , gij : V 7→ R are real-analytic for all 1 ≤ i ≤ p, 1 ≤ j ≤ q.
(ii). The set A is called subanalytic if each point of Rn admits a neighborhood V such that

A ∩ V = {x ∈ Rn : (x, y) ∈ B}

where B is a bounded semianalytic subset of Rn × Rm for some m ≥ 1.
(iii). Given m,n ∈ N∗, a function f : Rn → R ∪ {+∞} (respectively, a point-to-set operator
T : Rn ⇒ Rm) is called subanalytic, if its graph is a subanalytic subset of Rn ×R (respectively,
of Rn × Rm).

Recall that the graphs of f and T , denoted respectively by Gr f and GrT , are defined by

Gr f := {(x, λ) ∈ Rn × R : f(x) = λ} Gr T := {(x, y) ∈ Rn × Rm : y ∈ T (x)}.

Some of the elementary properties of subanalytic sets have been gathered below (e.g. [4], [10],
[18]):

- Subanalytic sets are closed under locally finite union and intersection. The complement of
a subanalytic set is subanalytic (Gabrielov Theorem).

- If A is subanalytic then so are its closure clA, its interior intA, and its boundary bdA.
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- Given a subanalytic set S, the distance dS(x) := inf {‖x − a‖ : a ∈ S} is a subanalytic
function.

- Path connectedness (e.g. [10, Facts 1.10-1.12]): Any subanalytic set has a locally finite
number of connected components. Each component is subanalytic and subanalytically path
connected, that is, every two points can be joined by a continuous subanalytic path that lies
entirely in the set.

- Curve selection lemma (e.g. [4, Lemma 6.3 ]): If A is a subanalytic subset of Rn and a ∈
bd A, then there exists an analytic path z : (−1, 1) → Rn, satisfying z(0) = a and z((0, 1)) ⊂ A.

The image and the preimage of a subanalytic set are not in general subanalytic set. This is
essentially due to the fact that the image of an unbounded subanalytic set by a linear projection
may fail to be subanalytic. Consider for instance the set {( 1

n+1 , n) : n ∈ N}, whose projection
onto R× {0} is not subanalytic at 0.

To remedy to this lack of stability, let us introduce a stronger analytic-like notion called
global subanalyticity (see [10] and references therein).

For each n ∈ N, set Cn = (−1, 1)n and define τn by

τn(x1, . . . , xn) = (
x1

1 + x2
1

, . . . ,
xn

1 + x2
n

).

Definition 2.2 (global subanalyticity) (e.g. [10, p. 506]) (i). A subset S of Rn is called
globally subanalytic if its image under τn is a subanalytic subset of Rn.

(ii). An extended-real-valued function (respectively, a multivalued mapping) is called globally
subanalytic if its graph is globally subanalytic.

Globally subanalytic sets are subanalytic, and conversely any bounded subanalytic set is
globally subanalytic. Typical examples of subanalytic sets which are not globally subanalytic
are the set of integers Z, the graph of the sinus function, the spiral {(t cos t, t sin t) ∈ R2 : t ≥ 0}
etc. The class of semialgebraic sets (e.g. [3], [8]) provides an important subclass of globally
subanalytic sets. Recall that a set A ⊂ Rn is called semialgebraic if it assumes the following
form

A =
p⋃

i=1

q⋂

j=1

{x ∈ V : fij(x) = 0, gij(x) > 0},

where fij , gij : Rn 7→ R are polynomial functions for all 1 ≤ i ≤ p, 1 ≤ j ≤ q. [Readers who
are unfamiliar with subanalytic geometry might in a first reading replace “subanalytic” and
“globally subanalytic” by “semialgebraic” in the forthcoming statements.]

A major fact concerning the class of globally subanalytic sets is its stability under linear
projections.

Theorem 2.3 (projection theorem) (e.g. [10, Example 4, p. 505]) Let Π(x1, . . . , xn+1) =
(x1, . . . , xn) be the canonical projection from Rn+1 onto Rn. If S is a globally subanalytic subset
of Rn+1, then so is Π(S) in Rn.

Amongst the numerous consequences of the above result in terms of stability, the following
properties are crucial to our main results.
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- The image or the preimage of a globally subanalytic set by a globally subanalytic func-
tion (respectively, globally subanalytic multivalued operator) is globally subanalytic (e.g. [10,
p. 504]).

- Monotonicity lemma (e.g. [10, Fact 4.1]) Take α < β in R. If ϕ : (α, β) → R is a globally
subanalytic function, then there is a partition t0 := α < t1 < . . . < tl+1 := β of (α, β), such that
ϕ|(ti,ti+1) is C∞ and either constant or strictly monotone, for i ∈ {0, . . . , l}.
Moreover ([13] e.g.) ϕ admits a Puiseux development at t = α, that is, there exists δ > 0, a
positive integer k, l ∈ Z and {an}n≥l ⊂ R such that

ϕ(t) =
∑

n≥l

an(t− α)n/k, for all t ∈ (α, α + δ).

- ÃLojasiewicz factorization lemma (e.g. [4, Theorem 6.4]): Let K ⊂ Rn be a compact set
and f, g : K → R be two continuous (globally) subanalytic functions. If f−1(0) ⊂ g−1(0), then
there exist c > 0 and a positive integer r such that |g(x)|r ≤ c |f(x)| for all x ∈ K.

2.2 Notions from nonsmooth analysis and further stability results.

Throughout this paper, we essentially deal with non-differentiable functions defined on Rn with
values in R ∪ {+∞}. We denote by dom f the domain of the function, that is, the subset of
Rn on which f is finite. In a similar way, the domain of a point-to-set operator T : Rn ⇒ Rn,
denoted by dom T , is defined as the subset of Rn on which T is nonempty. The epigraph and
the strict epigraph of f are respectively defined by

epi f := {(x, λ) ∈ Rn × R : λ ≥ f(x)}, epis f := {(x, λ) ∈ Rn × R : λ > f(x)},
while the epigraphical sum of two extended-real-valued functions f, g : Rn → R ∪ {+∞} is the
function defined by

Rn 3 u 7−→ h(u) = inf {f(v) + g(v − u) : v ∈ Rn} ∈ [−∞,+∞].

The terminology stems from the fact that the strict epigraph of h is the Minkowski sum of the
strict epigraphs of f and g.
Even if f : Rn → R∪{+∞} is subanalytic, its domain and its epigraph may fail to be subanalytic
sets.

Example 2.4 Consider the function f : R → R ∪ {+∞} whose graph is given by the set
S := {( 1

n , n)}. Then the domain of f is not subanalytic whereas its graph is. If g : R→ R∪{+∞}
has −S := {(− 1

n ,−n) : n ∈ N} as its graph, both its domain and epigraph are not subanalytic.

Additional geometrical properties like convexity are also not sufficient to obtain regularity
on the domain. This is shown in the example below.

Example 2.5 Let {qn}n≥1 be an enumeration of the rationals {qn} and define h : R2 → R ∪
{+∞} in polar coordinates by

h(r, θ) =





0 if r ∈ [0, 1)
n if r = 1 and θ = qn (mod 2π)
+∞ otherwise.

Then h is convex and subanalytic but its domain is not subanalytic.
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As expected, such a behavior can be avoided by requiring the function to be globally suban-
alytic. The following two results are basic consequences of the projection theorem.

Proposition 2.6 Let f : Rn → R∪{+∞} be a globally subanalytic function. Then the domain,
the epigraph, and the strict epigraph of f are globally subanalytic sets.

Proposition 2.7 Let f : Rn → R∪{+∞} be a subanalytic function which is relatively bounded
on its domain, that is {f(x) : x ∈ dom f ∩ B} is bounded for every bounded subset B of Rn.
Then the domain, the epigraph and the strict epigraph of f are subanalytic sets.

Remark 2.8 Observe that Proposition 2.6 and Proposition 2.7 involve distinct assumptions and
provide different results. This can be seen by considering for instance the subanalytic functions
f(x) = x−1 with dom f = (0, +∞) and g := δ N .

The case for which functions under consideration are convex but not necessarily continuous
requires more attention.

Proposition 2.9 Let f : Rn → R ∪ {+∞} be a lower semicontinuous convex and subanalytic
function such that infRn f ∈ R. Define h : Rn → R ∪ {+∞} as the epigraphical sum of f and
the square function 1

2 || · ||2, that is

h(x) = inf{f(u) +
1
2
||x− u||2 : u ∈ Rn}, x ∈ Rn.

Then h is a C1 subanalytic function.

Proof The proof consists mainly in showing that the epigraphical sum of a convex function
with a coercive function is a “graphically local” operation. The fact that h takes finite values
and is a C1 function is a classical result (see [20], for example). Therefore it suffices to prove
that h+δB is subanalytic for every bounded subset B of Rn. Let us fix some nonempty bounded
set B of Rn and let us set M = sup{h(x) : x ∈ B}. Thanks to the continuity of h we have
M < +∞.

The infimum in the definition of h(x) is always attained at a unique point denoted J(x), and
the mapping J : Rn → Rn so defined is a nonexpansive mapping (see [6]). Moreover, the function
f is bounded on the bounded set J(B). Indeed if u = J(b) for some b ∈ B, the definition of J
implies that

f(u) = f(J(b)) = h(b)− 1
2
||b− J(b)||2 < M.

Let C be some ball containing the bounded set J(B), and let fM : Rn → R ∪ {+∞} be the
function whose graph is given by Gr f ∩ (C × [infRn f,M ]). By definition the function fM has
a bounded subanalytic graph and it is therefore globally subanalytic. According to the above
considerations the values of h on B coincide with those of the function

ĥ(x) := inf{fM (u) +
1
2
||x− u||2 : u ∈ Rn}, x ∈ Rn.

The strict epigraph of ĥ is the sum of the strict epigraphs of the bounded subanalytic function
fM and the square function u 7→ 1

2 ||x−u||2 (which is globally subanalytic for it is semialgebraic).
This yields that ĥ (and consequently h + δB) is globally subanalytic; hence h is subanalytic. ¦
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The notion of subdifferential – that is, an appropriate multivalued operator playing the role
of the usual gradient mapping – is crucial for our considerations. In the sequel we denote by
〈·, ·〉 the usual Euclidean product of Rn.

Definition 2.10 (subdifferential) (e.g. [20, Definition 8.3])
(i). The Fréchet subdifferential ∂̂f(x) of a lower semicontinuous function f at x ∈ Rn is given
by

∂̂f(x) =
{

x∗ ∈ Rn : lim inf
y→x,y 6=x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖ ≥ 0

}
,

whenever x ∈ dom f , and by ∂̂f(x) = ∅ otherwise.
(ii). The limiting subdifferential at x ∈ Rn, denoted by ∂f(x), is the set of all cluster points of
sequences {x∗n}n≥1 such that x∗n ∈ ∂̂f(xn) and (xn, f(xn)) → (x, f(x)) as n → +∞.

If the function f is of class C1 the above notion coincides with the usual concept of gradient,
that is, ∂f(x) = ∂̂f(x) = {∇f(x)}. For a general lower semicontinuous function, the limiting
subdifferential ∂f(x) (thus, a fortiori the Fréchet subdifferential ∂̂f(x)) can be possibly empty
at several points x ∈ dom f . Nevertheless (e.g. [20, Chapter 8]), both the domain of ∂̂f and (a
fortiori) the domain of ∂f are dense in the domain of f .

Using the limiting subdifferential ∂f , we define the nonsmooth slope of f by

mf (x) := inf{‖x∗‖ : x∗ ∈ ∂f(x)}. (4)

By definition, mf (x) = +∞, whenever ∂f(x) = ∅.
Let us recall that if f is continuous, the operator ∂f : Rn ⇒ Rn has a closed graph. This is

also the case for a lower semicontinuous convex function, where both ∂f(x) and ∂̂f(x) coincide
with the classical subdifferential of convex analysis, that is,

∂f(x) = ∂̂f(x) = {x∗ ∈ Rn : f(·)− 〈x∗, ·〉 has a global minimum at x} . (5)

We are ready to state the notion of generalized critical point (in the sense of variational analysis).

Definition 2.11 (critical point) A point a ∈ Rn is said to be a (generalized) critical point of
the function f : Rn → R ∪ {+∞} if it belongs to the set

crit f := {x ∈ Rn : 0 ∈ ∂f(x)}.

Remark 2.12 (i) If an extended-real-valued function f : Rn → R∪{+∞} has a closed domain
dom f relative to which it is continuous (that is, f |domf is continuous), then f is lower semi-
continuous and the graph of the limiting subdifferential ∂f is simply the closure of the graph of
the Fréchet subdifferential ∂̂f .
(ii) If f is either lower semicontinuous convex or if dom f is closed and f |domf is continuous,
then the graph of ∂f is closed, which implies that the set crit f of the critical points of f is
closed. In that case, let us also observe that the slope mf (x) is a lower semicontinuous function,
and that

crit f = m−1
f (0).
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The following result illustrates further the properties of stability of subanalytic sets recalled
in Subsections 2.1 and 2.2.

Proposition 2.13 Let f be an extended-real-valued function.
(i) If f is globally subanalytic, then the operators ∂̂f and ∂f , the function mf and the set crit f
are globally subanalytic.
(ii) If f is subanalytic and relatively bounded on its domain, then the operators ∂̂f and ∂f , the
function mf and the set crit f are subanalytic.

Proof. The local nature of the Fréchet and the limiting subdifferential allow to restrict our
proof to the globally subanalytic function fB := f + δB where B is some nontrivial ball. It
suffices therefore to establish (i).

Thanks to the projection theorem (Theorem 2.3), the proof becomes a routine application of
[8, Theorem 1.13] which asserts that if Φ(x1, . . . , xn) is a first order formula (in the language of
the subanalytic structure of Rn), then the set {(x1, . . . , xn) ∈ Rn : Φ(x1, . . . , xn)} is definable,
or in other words it belongs to the structure.2

As an illustration of this standard technique, let us prove that the operator ∂̂f : Rn ⇒ Rn is
globally subanalytic. To this end, set A = epi f , Γ = Gr f and D = dom f , which are all globally
subanalytic sets. According to Definition 2.10 (ii) the graph Gr ∂̂f of the Fréchet subdifferential
∂̂f(x) is the set of (x, x∗) ∈ Rn × Rn such that

{∀ε > 0,∃δ > 0,∀(y, β) ∈ (B(x, δ)× R) ∩A ⇒ (y, β − 〈x∗, y − x〉+ ε‖y − x‖) ∈ A},
where B(x, δ) denotes the open ball of center x and radius δ > 0. Since the above first order
formula involves only globally subanalytic sets (namely, the subanalytic sets B(x, δ),R and A),
it follows that Gr ∂̂f is subanalytic.

Subanalyticity of the graphs of the operator ∂f and of the function mf can be proved simi-
larly. Finally, crit f being the inverse image of (the subanalytic set) {0} by mf , it is a subanalytic
set. ¦

Similarly one obtains the following

Corollary 2.14 Under the assumptions of Proposition 2.13 (ii), the restrictions of the multi-
valued mappings ∂̂f , ∂f and of the slope function mf to any bounded subanalytic subset of Rn

are globally subanalytic.

Remark 2.15 The assumptions (and consequently the results) of the statements (i) and (ii) of
Proposition 2.13 are of different nature. For example, let us consider the lower semicontinuous
convex function f : R2 → R ∪ {+∞}, defined by

f(x, y) =





x2/y if y > 0 ;
0 if x = y = 0 ;
+∞ elsewhere.

Then Proposition 2.13(i) applies but not (ii), since f is not relatively bounded on dom f .
2Global subanalytic sets form a model-complete first order theory. In fact, whether or not a structure is

“model complete” depends only on the theory of the structure, that is, the set of the sentences (i.e. quantifier-free
formulas) of its language which are true in this theory. We refer to [23, page 1052] for more details.
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3 Main results

3.1 The ÃLojasiewicz inequality for subanalytic continuous functions

Assuming f subanalytic and having a closed domain relative to which it is continuous, the set
crit f is closed (Remark 2.12) and subanalytic (Proposition 2.13), so it has a locally finite number
of connected components (see Subsection 2.1). For any a in crit f , let us denote by (crit f)a the
connected component of crit f containing a. In [5, Theorem 13] it has been established that

f is constant on (crit f)a . (6)

The proof of (6) relies on a fundamental structural result about subanalytic functions (stratifi-
cation) and on the PawÃlucki generalization of the Puiseux lemma, see [5]. Nevertheless, (6) can
be easily proved for continuous functions that satisfy in addition

∂̂f(x) = ∂f(x), for all x ∈ Rn. (7)

Indeed, given x and y in some connected component Si of crit f we consider the continuous
subanalytic path z : [0, 1] → Si with z(0) = x and z(1) = y, and the subanalytic function
h(t) = (f ◦ z)(t) (see Subsection 2.1). Since 0 ∈ ∂̂f(z(t)) for all t ∈ [0, 1], from the “monotonicity
lemma” and the chain rule for the Fréchet subdifferential [20, Theorem 10.6] we get h′(t) = 0, for
almost all t. It follows that h is constant on [0, 1], whence f(x) = f(y). Examples of continuous
functions that satisfy (7) are C1 functions (for which ∂f(x) = ∂̂f(x) = {∇f(x)}), proximal
retracts (or lower-C2 functions, see [20, Definition 10.29] and Section 4), or more generally
subdifferentially regular functions [20, Definition 7.25].

The main result of Subsection 3.1 can be now stated:

Theorem 3.1 Let f : Rn → R∪{+∞} be a subanalytic function with closed domain and assume
that f |domf is continuous. Let a ∈ Rn be a critical point of f . Then there exists an exponent
θ ∈ [0, 1) such that the function

|f − f(a)|θ
mf

(8)

is bounded around a.

N.B. We have adopted here the following conventions: 00 = 1 and ∞/∞ = 0/0 = 0.

Proof. Let us set S = crit f and Sa = (crit f)a . Replacing if necessary f by g(x) = f(x)−f(a),
there is no loss of generality to assume f(a) = 0, so that (6) implies Sa ⊂ f−1(0).
We may also assume that f is globally subanalytic and that the set Sa is compact. Indeed, if
this is not the case, then we replace the function f by the globally subanalytic function g defined
(for some R > 0) by g(x) = f(x)+δB̄(a,R)(x), where δB̄(a,R) denotes the indicator function of the
closed ball B̄(a,R). Then g has a closed domain relative to which it is continuous, a is a critical
point for g and (crit g)a ∩ B(a,R) = Sa ∩ B(a,R). Establishing (8) for f is thus equivalent of
doing so for the globally subanalytic function g.

It is also sufficient to establish separately that the function x 7→ [mf (x)]−1 |f(x)|θ is bounded
when x varies inside the subanalytic set f−1((0, +∞]) and subsequently to do the same when
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x varies in f−1((−∞, 0]). Since this latter assertion will follow by reproducing essentially the
same arguments, we may assume with no loss of generality that f ≥ 0.

Let us choose ∆ > 0 so that the compact set U = {x ∈ Rn : dSa(x) ≤ ∆} ∩ dom f separates
Sa from the other connected components of S. Note that U is a globally subanalytic set (see
Subsection 2.1). We claim that for all x̄ in the boundary of Sa we have

lim
x→x̄

x∈U�Sa

f(x)
mf (x)

= 0. (9)

If the above limit were not zero, there would exist a sequence {(xp, x
∗
p)} in Gr ∂f and r > 0

with xp → x̄ as p → +∞ and such that f(xp) > r||x∗p|| > 0 for all p. By the definition of the
limiting subdifferential there exists a sequence (yp, y

∗
p) ∈ Gr ∂̂f such that f(yp) > r||y∗p|| > 0

where yp converges to x̄. This proves that for some r > 0 the point x̄ belongs to the closure of
the set

F = {x ∈ U�Sa : ∃x∗ ∈ ∂̂f(x), f(x) > r ||x∗|| > 0}.
Owing to Proposition 2.13 (i) the latter set is globally subanalytic, so by the “curve selection
lemma” (Subsection 2.1) there exists an analytic curve z : (−1, 1) → Rn with z(0) = x̄ and
z((0, 1)) ⊂ F . Hence for all small t > 0 there exists a nonzero subgradient z∗(t) ∈ ∂̂f(z(t))
satisfying

f(z(t)) > r ‖z∗(t)‖ > 0. (10)

Thanks to the continuity of f |domf at x̄ = z(0) the subanalytic function

[0, 1) 3 t 7→ h(t) = (f ◦ z)(t)

is continuous at t = 0 and (6) implies that h(0) = f(x̄) = 0. Applying the “monotonicity lemma”
(Subsection 2.1) to the globally subanalytic function h and the chain rule calculus for the Fréchet
subdifferential ([20, Theorem 10.6]), we get for t small enough that |h′(t)| ≤ M ‖z∗(t)‖, where
M = max {‖ż(t)‖ : t ∈ (−1/2, 1/2)}. Then by applying (10), it follows that

h(t)
|h′(t) | > r M−1 > 0 , for all small t > 0. (11)

Considering the Puiseux development of h around t = 0 (see Subsection 2.1) we conclude that
for some positive rational q and some c > 0 we have h(t) = ctq + o(tq) for all small t > 0.
By differentiating the Puiseux development of h at t = 0 and replacing in (11) we obtain a
contradiction.

Let us now establish (8). To this end, let us consider the globally subanalytic function

ϕ(t) = inf {mf (x) : x ∈ U ∩ f−1(t)}, if t ∈ R+.

Clearly ϕ(0) = 0, while from the definition of U , it ensues that 0 < ϕ(t) ≤ +∞ for all small
t > 0. If for every δ > 0 the function ϕ assumes at least one infinite value in the interval (0, δ),
then the subanalyticity of dom ϕ guarantees that 0 is an isolated point in dom ϕ. In this case (8)
holds trivially. We may thus assume that ϕ is finite around 0. Evoking again the “monotonicity
lemma” (Subsection 2.1) we deduce that

l = lim
t→0+

ϕ ∈ [0, +∞].
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In case that l 6= 0, (8) follows easily (with θ = 0), so we may assume l = 0 and ϕ is continuous.
In this case, we consider the Puiseux expansion of ϕ which has the form

ϕ(t) =
+∞∑

n=0

ant
n
k , for all small t > 0,

where k is a positive integer. Let n0 ∈ N∗ be the first integer such that an0 6= 0 and let us set
η = n0

k . Then
ϕ(t) = ctη + o(tη), (12)

where c := an0 > 0. Unless (8) holds trivially, we may assume by (6), that there exists a
sequence {xν}ν ⊂ U�Sa such that xν → a, mf (xν) → 0 and f(xν) ≥ 0. Let us consider the
globally subanalytic set

A = {x ∈ U�Sa : mf (x) = ϕ(f(x)), f(x) ≥ 0} 6= ∅.

We claim that
clA ∩ Sa 6= ∅. (13)

Indeed, if (13) were not true, then by a standard compactness argument, there would exist an
open neigborhood V around Sa such that Sa ⊂ V ∩dom f ⊂ U and A∩V = ∅. Setting tν = f(xν)
(for the sequence {xν}ν mentioned above) and considering yν ∈ U such that mf (yν) = ϕ(tν)
(by Remark 2.12 mf is lower semicontinuous) and f(yν) = tν , we would obtain {yν}ν ⊂ U�V .
By compactness, we could then assume that yν → y ∈ U�V , which would yield (by continuity
of ϕ) that mf (y) = 0, that is, y ∈ Sa and a contradiction follows.

Thus (13) holds and there exists an analytic curve z : (−1, 1) → Rn with z(0) := b ∈ Sa

and z((0, 1)) ⊂ A. As s ↘ 0+ we get (by continuity of f and ϕ) that f(z(s)) → 0 and
mf (z(s)) = ϕ(f(z(s))) → 0. We deduce from (12) that

mf (z(s)) = c(f(z(s)))η + o((f(z(s))η),

so (9) implies that η < 1. Take θ ∈ (η, 1), and apply (12) to obtain the existence of t0 > 0 such
that ϕ(t) ≥ ctθ for all t ∈ [0, t0). By using the continuity of f |dom f at a, it follows that there
exists µ > 0 such that |f(x)| < t0 for all x ∈ dom f ∩B(a, µ). Finally, to obtain (8), we simply
observe that

mf (x) ≥ ϕ(f(x)) ≥ cf(x)θ, for all x ∈ B(a, µ).

The proof is complete. ¦

Remark 3.2 Let us note that (8) still holds around any point a ∈ dom f�crit f . Indeed, if
a /∈ crit f then mf (x) is bounded below away from 0 in a neighborhood of a, so (8) follows from
the continuity of f . In this case, the assumption of subanalyticity is obviously not needed.

11



3.2 The ÃLojasiewicz inequality for subanalytic lower semicontinuous convex
functions

In this subsection we are interested in lower semicontinuous convex subanalytic functions f :
Rn → R ∪ {+∞} which are somewhere finite, that is, convex functions for which dom f 6= ∅. In
this case, in view of (5), the set of critical points crit f is closed and convex, and coincides with
the set of minimizers of f .

Before proceeding let us recall classical facts from convex analysis (e.g. [20]). Let us denote
by g the epigraphical sum of f and 1

2‖ · ‖2 (see Proposition 2.9). The function g : Rn → R is
finite-valued and C1 and enjoys the following properties

(a) g ≤ f.

(b) The set of critical points of g is exactly the set of critical points of f .

(c) The infimum values of f and g coincide, i.e. infRn f = infRn g.

The properties of g are related to the so-called Moreau regularizing process; for more details
and further results one is referred to [20].

We are ready to state the main result of Subsection 3.2.

Theorem 3.3 Let f : Rn → R ∪ {+∞} be a lower semicontinuous convex subanalytic function
with crit f 6= ∅. For any bounded set K there exists an exponent θ ∈ [0, 1) such that the function

|f −min f |θ
mf

(14)

is bounded on K.

Proof. By Proposition 2.9, the function g defined above is subanalytic and continuous. Applying
(b) and the results of the preceding section, we see that S := crit f is subanalytic. Let us show
how g may be used to derive a growth condition for f . For any x ∈ K, the following equivalence

dS(x) = 0 ⇐⇒ |g(x)−min g| = 0,

combined with the ÃLojasiewicz factorization lemma (Subsection 2.1) for the continuous subana-
lytic functions |g−min g| and dS (restricted to the bounded set K) yields the existence of r > 1
and c > 0 such that

c [dS(x)]r ≤ |g(x)−min g|, for all x ∈ K.

On the other hand, the properties (a), (b), (c) of g imply that

|f(x)−min f | ≥ |g(x)−min g|, for all x ∈ Rn,

so that,
[dS(x)] ≤ c−1/r |f(x)−min f |1/r. (15)

Moreover, since f is convex we get for all a in S and all (x, x∗) ∈ Gr ∂f

f(a) ≥ f(x) + 〈x∗, a− x〉.
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Thus for all (x, x∗) ∈ Gr ∂f it follows that |f(x) − f(a)| ≤ ‖x∗‖ ‖x − a‖, and by taking the
infimum over all a ∈ S we obtain

|f(x)−min f | ≤ ‖x∗‖ dS(x). (16)

We therefore deduce from (15) that for all x ∈ K and all (x, x∗) ∈ Gr ∂f

|f(x)−min f | ≤ c−1/r ‖x∗‖ · |f(x)−min f |1/r.

By setting θ = 1−r−1, the latter inequality implies |f(x)−min f |θ ≤ c−1/r mf (x), for all x ∈ K
and (14) follows. ¦

Remark 3.4 The lower semicontinuous convex function f considered in Remark 2.15 provides
an example where Theorem 3.3 applies while Theorem 3.1 does not.

Remark 3.5 A careful examination of the proof of Theorem 3.3 shows that the important
assumption is not subanalyticity of the function, but rather the growth condition near criti-
cal values that subanalyticity implies. Indeed, let K be a compact set and f be any lower
semicontinuous convex function f that satisfies

|f(x)−min f | ≥ c dS(x)r for all x ∈ K, (17)

where c > 0, r ≥ 1 and with S = crit f 6= ∅. The argument of Theorem 3.3 may be then slightly
modified in order to derive a ÃLojasiewicz inequality around any critical point a belonging to the
interior of K.

Remark 3.6 From relation (16), which is true for all lower semicontinuous convex functions, a
weaker version of (14) can be deduced. Indeed, if f is convex (but not necessarily subanalytic),
then the function |f −min f |

mf

is bounded around any critical point of f .

Remark 3.7 By using elementary arguments it can be shown that f satisfies the ÃLojasiewicz
inequality around any point a ∈ dom f (cf. Remark 3.2).

4 Applications to dynamical systems

Throughout this section, unless otherwise stated, we make the following assumptions:

(H1) f is either lower semicontinuous convex or lower-C2 with dom f = Rn.

(H2) f is somewhere finite (dom f 6= ∅) and bounded from below.

We recall (see [20, Definition 10.29], for example) that a function f is called lower-C2, if for
every x0 ∈ dom f there exist a neighborhood U of x0, a compact topological space S, and a
jointly continuous function F : U × S → R satisfying f(x) = max

s∈S
F (x, s), for all x ∈ U , and

such that the (partial) derivatives ∇xF (·, ·) and ∇2
xF (·, ·) exist and are jointly continuous.
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A lower-C2 function f is locally Lipschitz and locally representable as a difference of a convex
continuous and a convex quadratic function ([20, Theorem 10.33]). In particular, it satisfies

∂f = ∂̂f. (18)

Note that (18) is also true for a lower semicontinuous convex function (see relation (5) ).

As mentioned in the introduction an important motivation to establish the ÃLojasiewicz in-
equality for classes of nonsmooth functions are the expected asymptotic properties of the cor-
responding subgradient dynamical systems. This latter term refers to differential inclusions of
the form

ẋ(t) + ∂f(x(t)) 3 0

where ∂f : Rn ⇒ Rn is the limiting subdifferential of f . A trajectory of the above dynamical
system is any absolutely continuous curve x : [0, T ) → Rn that satisfies





ẋ(t) + ∂f(x(t))3 0, a.e. on (0, T ),

∂f(x(t)) 6= ∅, for all t ∈ [0, T ),
(G)

where the notation “a.e.” stands for “almost everywhere” in the sense of the Lebesgue measure of
R. Let us also recall that an absolutely continuous function (or curve) x(t) is almost everywhere
differentiable and can be entirely determined, up to a constant, by integration of its classical
derivative. A trajectory x(t) is called maximal, if there is no possible extension of its domain
compatible with (G).

The following existence-uniqueness result is known to hold (see [6, Theorem 3.2, p. 57] or [2,
Chapter 3.4] for the convex case, and [6, Proposition 3.12, p. 106] for the convex case with Lips-
chitz perturbation ; see also [9] for related work).

Existence of trajectories. Under the assumptions (H1) and (H2), for every x0 ∈ Rn such
that ∂f(x0) 6= ∅, there exists a unique trajectory x : [0, T ) → Rn of (G) satisfying

(T ) x(0) = x0.

In addition, the function h := f ◦ x is absolutely continuous.

Let us now recall some classical consequences of (18) and of the above existence result. For
the sake of completeness, some elementary proofs are provided.

Corollary 4.1 Let x : [0, T ) → Rn be a trajectory of (G) satisfying (T ).
(i) For almost all t ∈ (0, T )

d

dt
(f ◦ x)(t) = 〈ẋ(t), x∗〉, for all x∗ ∈ ∂f(x(t)).

(ii) For almost all t ∈ (0, T ), the function x∗ 7→ 〈ẋ(t), x∗〉 is constant on ∂f(x(t)).
(iii) The trajectory x can be extended to a maximal trajectory x̂ ∈ W 1,2(R+ ; Rn).
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Proof. Set h = f ◦ x and note that the absolutely continuous functions h and x are simulta-
neously differentiable on (0, T )�N where N is a set of measure zero. Let t ∈ (0, T )�N . Since
x(t) ∈ dom ∂f and ∂f(x(t)) = ∂̂f(x(t)) one may adapt the ideas of [6, Lemme 3.3, p. 73] (chain
rule) to obtain

∂h(t) = {h′(t)} = { d

dt
(f ◦ x)(t)} = { 〈ẋ(t), x∗〉, x∗ ∈ ∂f(x(t))} .

Thus (i) and (ii) follow.
To establish (iii) let us first prove that x ∈ W 1,2 ((0, T ) ; Rn). Thanks to (G), we deduce

from (i) that
d

dt
(f ◦ x)(t) = −‖ẋ(t)‖2, for all (0, T ).

Hence f is a Lyapunov function of the dynamical system (G) and

T∫

0

‖ẋ(t)‖2dt = f(x0)− f(x(T )) < +∞,

that is, ẋ ∈ L2((0, T ) ; Rn). Note that ẋ(t) remains bounded as t converges to T . (For a lower
semicontinuous convex function f this is a classical result (see [2, p. 147], for example) ; if f is
lower-C2, this follows from (G) and the fact that ∂f is locally bounded around T .) Since the
graph of ∂f is closed (Remark 2.12) we get x(T ) ∈ dom ∂f . Thus, thanks to the existence result
(T ), the initial trajectory is in fact extendible to a semi-open interval [0, T + δ), for some δ > 0,
containing [0, T ]. A standard argument shows that the maximal extension of x(t) is defined in
(0, +∞). ¦

An interesting hidden property of (G) is the following.

Corollary 4.2 Let x be a maximal trajectory of (G) satisfying (T ). Then for almost all t ∈ R+

‖ẋ(t)‖ = mf (x(t)) and
d

dt
(f ◦ x)(t) = − [mf (x(t))]2 .

Proof. From (G), we obtain the existence of a curve t 7→ g(t) ∈ ∂f(x(t)) such that

ẋ(t) = −g(t), a.e. on R+.

Combining with Corollary 4.1 (ii), we get that for almost all t in R+

‖g(t)‖2 = 〈g(t), x∗〉, for all x∗ ∈ ∂f(x(t)),

which yields via a standard argument that ‖g(t)‖ = mf (x(t)). Evoking now Corollary 4.1 (i)
finishes the proof. ¤

Remark 4.3 Corollary 4.2 says that the trajectories of (G) (the existence of which is guaranteed
under the assumptions (H1) and (H2)) are necessarily “slow solutions” (see [2, page 139]) of the
differential inclusion (G). In particular, if the trajectory x(t) meets a critical point of f , that is,
if there exists t0 > 0 such that mf (x(t0)) = 0, then Corollary 4.2 guarantees that the trajectory
stops there, that is, x(t) = x(t0), for all t ≥ t0. In this case, the trajectory has a finite length
equal to

∫ t0
0 ‖ẋ(s)‖ds.
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Another consequence of Corollary 4.2 is that (G) defines a descent method in the sense that f
decreases along any trajectory. Although compactness implies that bounded trajectories have at
least one cluster point as t → +∞, those might not converge towards one of them - and a fortiori,
have a infinite length. The next result shows that this cannot happen if f is assumed subanalytic
(or more generally, if f satisfies the ÃLojasiewicz inequality). Indeed, via a “ÃLojasiewicz-type”
argument (e.g. [14]) we establish successively that the tail of the trajectory is trapped inside a
convenient ball of its cluster point, that this tail has necessarily a finite length, and finally that
the trajectory converges to this cluster point. In the remainder, additionally to (H1) and (H2),
it is also assumed that:

(H3) f is a subanalytic function.

Let us give some examples of subanalytic functions related with optimization pro blems.

Example 4.4 - (Supremum operations) Let g : Rn × Rp → R be an analytic function and let
K be a compact subanalytic subset of Rp. Then

f(x) = sup
y∈K

g(x, y)

is a lower-C2 subanalytic function (see [4], for example). If in addition x 7→ g(x, y) is convex for
all y then f is convex.

- (Constraints sets) Let gi : Rn → R, i ∈ {1, . . . , m} be a family of analytic functions. The
feasible set

C := {x ∈ Rn : gi(x) ≤ 0, ∀i ∈ {1, . . . ,m} }
together with its indicator function are subanalytic objects.

- (Barrier and penalty functions) Those can be used to minimize convex functions via para-
metric versions of (G). Typical examples on R are the functions h1 : x > 0 7→ x−p (p ≥ 1),
h2 : x ≥ 0 7→ −xν , (ν ∈ (0, 1)), h3(x) = x2 if x ≤ 0 and h3(x) = 0 otherwise.

We are now ready to state the following result.

Theorem 4.5 Assume that a function f satisfies (H1)-(H3). Then any bounded maximal tra-
jectory of (G) has a finite length and converges to some critical point of f .

Proof. Let {x(t)}t≥0 be a bounded maximal trajectory of (G). By Corollary 4.1, the trajectory
is defined over all R+. Using (H2) and Corollary 4.2 (iii) we conclude that there exists β ∈ R
such that limt→+∞ f(x(t)) = β. Replacing f by f−β and using the basic rules of subdifferential
calculus, we may assume that β = 0.

In view of Remark 4.3, we may also assume that f(x(t)) 6= 0, for all t > 0. Consequently,
the function t 7→ (f ◦ x)(t) is positive and strictly decreasing to 0 as t → +∞. Moreover, by
compactness, there exists some cluster point a ∈ Rn for the trajectory x(t). So there exists an
increasing sequence (tn)n≥1 with tn → +∞, such that

lim
tn→+∞ x(tn) = a. (19)
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By continuity of (f ◦ x) we deduce that f(a) = 0. Using (T ), (19) and the fact that ∂f has a
closed graph (see Remark 2.12), we deduce that a ∈ dom ∂f . We do not know yet whether a is
critical or not, but nevertheless, the ÃLojasiewicz inequality holds around a. Indeed, if a ∈ crit f
then use Theorem 3.1 or Theorem 3.3 and if a /∈ crit f , then just recall Remarks 3.2 and 3.7. It
follows that there exist c > 0, θ ∈ [0, 1) and ε > 0 (defining an open neighborhood B(a, ε) of a)
such that

|f(x)|θ ≤ cmf (x), for all x ∈ B(a, ε). (20)

Let us consider the (positive, absolutely continuous) function h̃ = (f ◦ x)1−θ. Since x(t) → a
and since the function h̃ is strictly decreasing and converges to 0 (as t → +∞), there exists
t0 > 0 such that for all t ≥ t0

|h̃(t)− h̃(t0)|
c−1(1− θ)

≤ ε

3
, (21)

with
‖x(t0)− a‖ ≤ ε

3
. (22)

Let us set
Tout := inf { t ≥ t0, x(t) /∈ B(a, ε) }. (23)

By continuity of the trajectory we have t0 < Tout ≤ +∞.

Claim Tout = +∞ (that is, the tail of the trajectory remains trapped in B(a, ε)).

[Proof of the claim. For almost all t ∈ [t0, Tout) we have

d

dt
h̃(t) = (1− θ) f(x(t))−θ d

dt
(f ◦ x)(t)

≤ −(1− θ) f(x(t))−θ [mf (x(t))]2

≤ −(1− θ) c−1 mf (x(t))

where we have successively used Corollary 4.2 and (20). By integration, we obtain for all
t ∈ [t0, Tout) ∫ t

t0

mf (x(s))ds ≤ −
[

h̃(t)− h̃(t0)
c−1(1− θ)

]
, (24)

which according to (21), and Corollary 4.2 yields
∫ t

t0

‖ẋ(s)‖ds ≤ ε

3
, for all t ∈ [t0, Tout]. (25)

To see that Tout = +∞, we just argue by contradiction. If Tout < +∞, then using (22) and (25)
we obtain

‖x(Tout)− a‖ ≤ |
(

x(t0) +
∫ Tout

t0

‖ẋ(s)‖ds

)
− a | ≤ 2ε

3
.

The latter obviously contradicts (23). Thus Tout = +∞ and the claim is proved.]

Resorting to (25) again we conclude that
∫ +∞
t0

‖ẋ(s)‖ds ≤ ε
3 , so x(t) has a finite length and

hence converges. Thus limt→+∞ x(t) = a and mf (x(t)) admits 0 as a limit point. By using
the closedness of Gr ∂f , we conclude that a is a critical point of f . ¦
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Remark 4.6 (generalized gradient conjecture) The “gradient conjecture” of R. Thom ([22])
can be obviously reformulated in this nonsmooth setting. For any bounded trajectory x(·) of
(G), let us set x∞ := limt→+∞ x(t). Is it true that

t 7→ x(t)− x∞
||x(t)− x∞||

has a limit as t goes to infinity? For real-analytic functions this conjecture has been proved by
Kurdyka, Mostowski and Parunsinski [14].

Before we proceed to an estimate of the rate of convergence, let us introduce some terminology.

• We define

σ(t) =
∫ +∞

t
‖ẋ(s)‖ds, for all t ∈ R+ (26)

to be the tail length function for the trajectory x(t).

• A ÃLojasiewicz exponent of the function f at a point a ∈ Rn of its domain is any number
θ ∈ [0, 1) for which the ÃLojasiewicz inequality holds around a.

Let us finally point out some facts coming up from the proof of Theorem 4.5. Replacing
in (24) h̃(t) by [f(x(t)]1−θ and mf (x(s)) by ‖ẋ(s)‖ (see Corollary 4.2) and letting t → +∞ we
deduce ∫ +∞

t0

‖ẋ(s)‖ds ≤ c

(1− θ)
f(x(t0))1−θ.

The above inequality remains true for every t ≥ t0 (in view of the Claim). Thus assuming θ > 0
and evoking again (20) and Corollary 4.2 we obtain (for k = c1/θ)

∫ +∞

t
‖ẋ(s)‖ds ≤ k

(1− θ)
‖ẋ(t)‖ 1−θ

θ , for all t ≥ t0. (27)

We are ready to state the following result.

Theorem 4.7 Under the assumptions (H1)-(H3), let x(t) be a bounded maximal trajectory of
(G). Then x(t) converges to some critical point a ∈ Rn of f . Let θ ∈ [0, 1) be a ÃLojasiewicz
exponent at this point. Then there exists k > 0, k′ > 0 and t0 ≥ 0 such that for all t ≥ t0, the
following estimates hold:

- If θ ∈ (1
2 , 1) then ‖x(t)− a‖ ≤ k(t + 1)−( 1−θ

2θ−1
).

- If θ = 1
2 then ‖x(t)− a‖ ≤ k exp(−k′t).

- If θ ∈ [0, 1
2) then x(t) converges in finite time.

Proof. We can always assume that θ > 0. (If θ = 0, we replace it by some θ′ ∈ (0, 1/2) and we
proceed as below.)
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Let U be a neighborhood of a in which the ÃLojasiewicz inequality holds. Since x(t) converges
to a there exists t0 ≥ 0 such that x(t) ∈ U for every t ≥ t0. In particular (27) holds. Let us now
consider the tail length function σ(t) defined in (26). Note that

‖x(t)− a‖ ≤ σ(t). (28)

Since σ̇(t) = −‖ẋ(s)‖ for all t ≥ t0, inequality (27) yields

σ(t) ≤ k

(1− θ)
[−σ̇(t)]

1−θ
θ . (29)

Thus σ(t) is an absolutely continuous function and satisfies the following differential inequality:

σ̇(t) ≤ −L [σ(t)]
θ

1−θ , for all t ≥ t0, (30)

where L is a positive constant. To obtain the announced estimates it suffices to solve the
following differential equation – considering separately, the cases θ ∈ (1/2, 1), θ = 1/2 and
θ ∈ (0, 1/2) 




ẏ(t) = −L [y(t)]
θ

1−θ , for all t ≥ t0

y(t0) = σ(t0).
(31)

The announced estimates follow then from (28) and the fact that σ(t) ≤ y(t) for all t ≥ t0.
(Indeed, if σ(t̄) = y(t̄) for some t̄ ≥ t0, then a comparison of (30) and (31) shows that σ̇(t̄) ≤
ẏ(t̄).) The proof is complete. ¦

Remark 4.8 The results of this section can be generalized to a wider setting as follows.
Let f : Rn → R ∪ {+∞} be a lower semicontinuous function complying with the following
requirements :

(i) dom f 6= ∅ and ∂̂f = ∂f

(ii) f is either convex or f |domf is continuous.

(iii) f has the ÃLojasiewicz property, that is property (8) holds around any critical point.

If we assume in addition that for all initial condition x0 ∈ dom ∂f , the differential inclusion
(G) has a (unique) global solution x such that f ◦x is absolutely continuous, then both Theorems
4.5 and 4.7 can be extended in this wider setting.

Prominent examples of functions meeting the above mentioned conditions are continuous
subanalytic φ-convex functions ([9]), or lower semicontinuous convex functions satisfying some
growth condition of the type (17).
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Recherche Scientifique, Paris 1963.

[17] ÃLojasiewicz, S., Sur les trajectoires de gradient d’une fonction analytique, Seminari di
Geometria 1982-1983. Universita di Bologna, Dipartemento di Matematica, pp 115-117,
1984.
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