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1 Introduction

Let U be an open subset of Rn and k ∈ N∗. A function f : U → R is called lower-Ck (in
short, LCk), if for every x0 ∈ U there exist δ > 0, a compact topological space S, and a
jointly continuous function F : B(x0, δ)× S → R satisfying

f(x) = max
s∈S

F (x, s), for all x ∈ B(x0, δ),

and such that all derivatives of F up to order k with respect to x exist and are jointly
continuous. It is easily seen that every such function is locally Lipschitz. In particular,
LCk functions provide a robust extension of both convexity and smoothness. For their
role in optimization we refer to the survey [8] and to [18]; see also [17] for extensions in
Hilbert spaces.

The class of LC1 functions is first introduced by Spingarn in [22]. In that work,
Spingarn shows that these functions are (Mifflin) semi-smooth and Clarke regular, and
that are characterized by a generalized monotonicity property of their subgradients, called
submonotonicity. Recently, in [5, Corollary 3], it has been pointed out that the class of
LC1 functions coincides with the class of locally Lipschitz approximately convex functions.
We recall that a function f : U → R is called approximately convex on U if for every x0 ∈ U
and ε > 0, there exists δ > 0 such that for all x, y ∈ B(x0, δ) and all t ∈ [0, 1]

f(tx + (1− t)y) 6 tf(x) + (1− t)f(y) + εt(1− t)‖x− y‖. (1)

The above notion (introduced in [14], [15]) corresponds to a first order relaxation of
convexity and is strongly related to the notion of α-paraconvexity studied in [11], [20].
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Amore general class – corresponding to the case that the ε of the above definition is
always bounded below away from 0 – is recently considered in [16] for functions on the
real line: these functions (which are not Clarke regular in general) are characterized by
their local decomposability into a sum of a convex and a Lipschitz function. We refer also
to [9] and [7] for related notions.

Shortly after Spingarn’s work, the (smaller) class of LC2 functions has been intro-
duced and studied by Rockafellar [18]. In that work the following important results are
established:

– for every k > 2, the class of LCk functions coincides with the class of LC2 functions ;

– LC2 are exactly the locally Lipschitz weakly convex functions.

We recall that a function f : U → R is called weakly convex on U if for every x0 ∈ U ,
there exist σ > 0 and δ > 0 such that for all x, y ∈ B(x0, δ) and t ∈ (0, 1)

f(tx + (1− t)y) 6 tf(x) + (1− t)f(y) + σt(1− t)||x− y||2. (2)

Let us note that LC2 functions are characterized by the fact that they are locally de-
composable into a sum of a convex continuous function and a concave quadratic function
(see [23], [18], [10] e.g.). The existence of a similar decomposition for the class of LC1

functions remains open (see also Remark 12).

Remark 1 (terminology issues) We wish to draw the attention of the reader on some
terminology issues: speaking about locally Lipschitz functions, the classes of weakly con-
vex functions [23], of prox-regular (or proximal retract) functions [2] and of prime-lower
nice functions [21] all coincide with the class of LC2 functions. See also [1], [4], [21] and
references therein for related topics.

In this paper, we consider the class of lower-C1,α functions (in short, LC1,α), where
0 < α 6 1. Roughly speaking, these are LC1 functions of the form f(x) = maxs∈S F (x, s)
for which ∇xF (., s) is α-Hölder (see exact definition in Section 2). We shall show that ev-
ery such function is characterized by the α-hypomonotonicity (Definition 5) of its (Clarke)
subdifferential and enjoys an alternative geometrical description as a (1 + α)-order per-
turbation of convexity (see Theorem 8). In particular, as the notation suggests, for α = 1
we recover the class of LC2 functions (see Remark 9).

2 Prerequisites and definitions

Let f : U → R be a locally Lipschitz function defined in an open subset U of Rn. For
every x0 ∈ U , the (Clarke) generalized derivative of f at x0 is defined as follows:

f o(x0; d) := lim sup
(y,t)→(x0,0+)

f(y + td)− f(y)

t
, for all d ∈ Rn.
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It follows (see [3, Proposition 2.1.1], for example) that d 7→ f o(x0; d) is a continuous
sublinear functional, so that the Clarke subdifferential ∂f(x0) of f , that is, the set

∂f(x0) = {x∗ ∈ Rn : f o(x0; d) > 〈x∗, d〉, ∀d ∈ Rn} (3)

is nonempty. In particular, the multivalued operator ∂f : Rn ⇒ Rn given by (3) if
x ∈ U and being empty for x ∈ Rn \ U is called subdifferential of f . If f is a C1

function then ∂f(x) = {∇f(x)}, for all x ∈ U . Natural operations in optimization (as for
instance taking the maximum of an index family of differentiable functions) often lead to
nonsmooth functions, in which case ∂f is used to substitute the derivative. We refer to
the classical textbooks [3], [4] and [19] for details and applications to optimization.

In this work we study a particular class of maximum-type locally Lipschitz functions.
Let us give the following definition.

Definition 2 (lower-C1,α function) Let U be an open set of Rn, and 0 < α 6 1. A
locally Lipschitz function f : U → R is called lower-C1,α at x0 ∈ U , if there exist a
non-empty compact set S, positive constants δ, σ > 0 and a continuous function F :
B(x0, δ)× S → R which is differentiable with respect to the x-variable, such that

f(x) = max
s∈S

F (x, s), for all x ∈ B(x0, δ),

where ∇xF (x, s) is (jointly) continuous and

||∇xF (y, s)−∇xF (x, s)|| 6 σ||y − x||α, (4)

for all x, y ∈ B(x0, δ) and all s ∈ I(x) ∪ I(y), where

I(x) = {s∗ ∈ S : f(x) = F (x, s∗)}. (5)

We say that f is lower-C1,α on U (and we denote f ∈ LC1,α) if the above definition is
fulfilled at every x ∈ U . Removing condition (4) from Definition 2 or setting α = 0, we
obtain the definition of the lower-C1 function given in the introduction. Hence, the above
definition is a strengthening of the lower-C1 property. In Subsection 3.3 we provide an
example of a LC1 function that is not LC1,α for any α > 0 (see Proposition 13).

Similarly to Definition 2, the following notion strengthens the notion of approximate
convexity defined in (1).

Definition 3 (α-weakly convex function) Let U be a nonempty open subset of Rn

and 0 < α 6 1. A locally Lipschitz function f : U → R is called α-weakly convex at
x0 ∈ U , if there exist σ > 0 and δ > 0 such that for all x, y ∈ B(x0, δ) and t ∈ (0, 1)

f(tx + (1− t)y) 6 tf(x) + (1− t)f(y) + σt(1− t)||x− y||1+α. (6)

The function f is called α-weakly convex, if it is α-weakly convex at every x ∈ U .
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Remark 4 Taking α = 1 in the above definition corresponds to the notion of weak
convexity, see (2). On the other hand, the value α = 0 has no practical interest. It yields
a notion which is strictly weaker that approximate convexity (since “for every ε > 0” has
been replaced by “there exists σ > 0”) and which does not ensure the Clarke regularity
of the function.

Finally we need the notion of α-hypomonotone operator, which lies strictly between
submonotonicity and hypomonotonicity.

Definition 5 (α-hypomonotone operator) Let U be a nonempty open subset of Rn

and 0 < α 6 1. A multivalued mapping T : U ⇒ Rn is called α-hypomonotone at x0 ∈ U ,
if there exist σ > 0 and δ > 0 such that for all x, y ∈ B(x0, δ), x∗ ∈ ∂f(x) and y∗ ∈ ∂f(y)
we have

〈y∗ − x∗, y − x〉 > −σ||y − x||1+α. (7)

The operator T is called α-hypomonotone, if it is α-hypomonotone at every x ∈ U .

Remark 6 An analogous remark applies here. Setting α = 1 we recover the notion of
hypomonotonicity, while the value α = 0 has no interest for our purposes.

3 Main results

In Subsection 3.1 we establish subdifferential and mixed characterizations of the class
of lower-C1,α functions, while in Subsection 3.2 we show the coincidence of that class
with the class of locally Lipschitz α-weakly convex functions and give an epigraphical
characterization. These results are in the spirit of [22], [5], [15] (for approximately convex
functions) and of [18], [4], [2] (for weakly convex functions). We also quote [4] and [1] for
a study of epigraphical properties of such functions.

In Subsection 3.3 we give a complete classification of the aforementioned classes and
examples distinguishing them. We also present subclasses with a particular interest in
optimization.

3.1 Subdifferential characterizations

The following result is an expected characterization of α-weak convexity.

Theorem 7 (characterizations) Let U be an open set of Rn and f : U → R a locally
Lipschitz function. The following statements are equivalent:

(i) f is α-weakly convex on U ;

(ii) ∂f is α-hypomonotone on U ;

(iii) for all x0 ∈ U , there exist σ, δ > 0 such that for all x ∈ B(x0, δ) and u ∈ Rn with
x + u ∈ B(x0, δ),

f(x + u) > f(x) + 〈x∗, u〉 − σ||u||1+α. (8)
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Proof. (i) ⇒ (iii). Fix x0 ∈ U , σ > 0, δ > 0 given by Definition 3. Let us consider any
x ∈ B(x0, δ) and u ∈ Rn such that x + u ∈ B(x0, δ). Then for z ∈ B(x0, δ) sufficiently
closed to x and such that z + u ∈ B(x0, δ), one has

f(z + t u) 6 t f(z + u) + (1− t)f(z) + σt(1− t) ||u||1+α

or equivalently

f(z + t u)− f(z)

t
6 f(z + u)− f(z) + σ(1− t) ||u||1+α

Taking the “limsup” when z → x and t → 0+ in both sides, one gets

f o(x; u) 6 f(x + u)− f(x) + σ||u||1+α

which in view of (3) yields the result.

(iii) ⇒ (ii). Fix x0 ∈ U , σ > 0, δ > 0 and take any x, y ∈ B(x0, δ), x∗ ∈ ∂f(x) and
y∗ ∈ ∂f(y). Then one has

f(y) > f(x)+〈x∗, y − x〉−σ||x− y||1+α and f(x) > f(y)+〈y∗, x− y〉−σ||x− y||1+α

which by addition yields

〈x∗ − y∗, x− y〉 > −2σ||x− y||1+α.

This shows the α-hypomonotonicity of ∂f .

(ii) ⇒ (i). Suppose ∂f is α-hypomonotone and let σ > 0, δ > 0 as in Definition 5. Fix
x1, x2 ∈ B(x0, δ) and for any t ∈ (0, 1) set xt = tx1 + (1− t)x2 so that

xt − x1 = (1− t)(x2 − x1) and xt − x2 = t(x1 − x2). (9)

By the Lebourg mean value theorem (see [12] or [3, Theorem 2.3.7]), for every i ∈ {1, 2}
there exists zi ∈ [xi, xt[ and z∗i ∈ ∂f(zi) such that

f(xt) = f(xi) + 〈z∗i , xt−xi〉. (10)

Multiplying (10) respectively by t for i = 1 and by (1 − t) for i = 2 and adding the
resulting inequalities we conclude in view of (9) that

f(xt) = tf(x1) + (1− t)f(x2)− t(1− t)〈z∗1 − z∗2 , x1 − x2〉. (11)

Since
x1 − x2

||x1 − x2|| =
z1 − z2

||z1 − z2|| ,

the definition of α-hypomonotonicity implies

〈z∗1 − z∗2 , x1 − x2〉 > −σ||z1 − z2||α||x1 − x2|| > −σ ||x1 − x2||1+α,
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so (11) yields
f(xt) 6 tf(x) + (1− t)f(y) + σ t(1− t) ||x− y||1+α,

which ends the proof. ¤

Let us note that the property that f is locally Lipschitz is only used for the implica-
tion (ii) ⇒ (i), in which the Lebourg mean value theorem for locally Lipschitz functions
was needed. All other implications can be adapted to the case that f is lower semi-
continuous and ∂f is its Clarke-Rockafellar subdifferential (we refer to [3] or [4] for the
corresponding definition).

3.2 Coincidence of α-weakly convex and LC1,α functions

Let us now show the coincidence of the classes of locally Lipschitz α-weakly convex func-
tions (Definition 3) and of LC1,α functions (Definition 2). This result comes to complete
statements of similar nature, previously established in [5, Corollary 3] (for approximately
convex functions) and in [18], [23] (for weakly convex functions).

Theorem 8 (coincidence result) Let U be a nonempty open subset of Rn and let 0 <
α 6 1. Then a locally Lipschitz function f : U → R is lower-C1,α if and only if f is
α-weakly convex.

Proof. (⇒). Let us assume that f is lower-C1,α and let us fix any x0 ∈ U . Then let us
consider δ, σ > 0, a nonempty compact set S and a continuous function F (x, s) according
to the Definition 2 so that

f(x) = max
s∈S

F (x, s), for all x ∈ B(x0, δ),

and
||∇F (y, s)−∇F (x, s)|| 6 σ||y − x||α,

for all x, y ∈ B(x0, δ) and s ∈ I(x) ∪ I(y). Let x ∈ B(x0, δ) and u ∈ Rn be such that
x + u ∈ B(x0, δ) and set y = x + u. Since S and I(x) are compact, it follows (see [19,
Theorem 10.31]) that

∂f(x) = co {∇F (x, s), s ∈ I(x)},
where co (A) denotes the convex hull of a set A. For any x∗ ∈ ∂f(x), by the Caratheodory
theorem, there exist λ1, . . . , λn+1 in R+ with

∑
i λi = 1 and s1, . . . , sn+1 in I(x) such that

x∗ =
n+1∑
i=1

λi∇F (x, si).

Applying for every i ∈ {1, . . . , n+1} the classical mean-value theorem to the differentiable
function x 7−→ F (x, si) we obtain zi ∈ [x, y[ such that

F (y, si)− F (x, si) = 〈∇F (zi, si), y − x〉.
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Since si ∈ I(x), we have successively

f(y) > F (y, si)

= F (x, si)− 〈∇F (zi, si), y − x〉
= f(x) + 〈∇F (x, si), y − x〉+ 〈∇F (zi, si)−∇F (x, si), y − x〉.

Multiplying by λi > 0 and adding the resulting inequalities for i ∈ {1, . . . , n + 1} we
obtain (recalling y = x + u) that

f(x + u) > f(x) + 〈x∗, u〉+
n+1∑
i=1

λi 〈∇F (zi, si)−∇F (x, si), u 〉 . (12)

Since si ∈ I(x) for i ∈ {1, . . . , n + 1}, relation (4) yields

〈∇F (zi, si)−∇F (x, si), u〉 6 σ||u|| ||zi − x||α.

Since zi ∈ [x, y[ this yields

〈∇F (zi, si)−∇F (x, si), u〉 6 σ||u|| ||y − x||α = σ||u||1+α.

Replacing into (12) we get

f(x + u) > f(x) + 〈x∗, u〉 − σ||u||1+α,

so the assertion follows from Theorem7 (iii)⇒(i).

(⇐). Conversely, let us assume f is α-weakly convex and let us consider x0 ∈ U . Then
for some σ, δ > 0 and all y, z ∈ B(x0, δ), z∗ ∈ ∂f(z) we have

f(y) > f(z) + 〈z∗, y − z〉 − σ||y − z||1+α. (13)

Taking eventually σ̃ > σ, we may assume that the above inequality is strict for all y 6=
z ∈ B(x0, δ) and all z∗ ∈ ∂f(z). Set

S =

{
(z, z∗) ∈ Rn× Rn, ||z − x0|| 6 δ

2
, z∗ ∈ ∂f(z)

}

Since ∂f is locally bounded and has a closed graph (see [3, Proposition 2.1.5], for example)
it follows that S is compact. Moreover, S is nonempty since it contains the set {x0} ×
∂f(x0). Let us now define

F : B(x0, δ/2)× S −→ R(
x, (z, z∗)

) 7−→ F
(
x, (z, z∗)

)
:= f(z) + 〈z∗, x− z〉 − σ||x− z||1+α .

Then for every x ∈ B(x0, δ/2) and every s = (z, z∗) ∈ S we have in view of (13) (and the
choice of σ > 0) that

f(x) > F (x, (z, z∗))
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with strict inequality whenever x 6= z. Thus for every x ∈ B(x0, δ/2)

f(x) = max
(z,z∗)∈S

F (x, (z, z∗)),

and
I(x) = {x} × ∂f(x).

Note also that

∇xF (x, (z, z∗)) =

{
z∗ − σ(1 + α) ||x− z||α−1 (x− z) if x 6= z

z∗ if x = z

Let now any x, y ∈ B(x0, δ) and s = (z, z∗) ∈ I(x) ∪ I(y). It follows that z ∈ {x, y}. Let
us suppose (with no loss of generality) that z = y. Then

||∇xF (y, s)−∇xF (x, s)|| = σ(1 + α) ||y − x||α.

Thus (4) of Definition 2 holds. To complete the proof, it suffices to check the continuity
of ∇xF (x, (z, z∗)) on B(x0, δ)× S. This is clear at every point (x, (z, z∗)) with x 6= z, so
let us suppose that x = z, that is, (x, (z, z∗)) = (x, (x, z∗)) and let (xn, (zn, z

∗
n))n>1 be a

sequence of B(x0, δ) × S converging to (x, (x, z∗)). For all n ∈ N such that xn 6= zn we
have

||∇xF (x, (x, z∗))−∇xF (xn, (zn, z
∗
n))||

=
wwz∗ − zn

∗ + σ(1 + α)||xn − zn||α−1(xn − zn)
ww

6 ||z∗−z∗n||+ σ(1 + α)||xn − zn||α.

On the other hand, for all n ∈ N such that xn = zn we have

||∇xF (x, (x∗, z∗))−∇xF (xn, (xn, z
∗
n))|| = ‖z∗ − zn

∗‖ .

Thus, it follows easily that

||∇xF (x, (x, z∗))−∇xF (xn, (zn, z∗n))|| −→ 0

as (xn, (zn, z
∗
n)) −→ (x, (x, z∗)). This shows that ∇xF is jointly continuous, so f ∈ LC1,α.

¤

Remark 9 (LC1,1 ≡ LC2) Taking α = 1 in the above proof we obtain that the class of
the lower-C1,1 functions and of the locally Lipschitz weakly convex functions coincide. In
view of the classical result of Rockafellar [18] (recalled in the introduction), we conclude
that the classes LC1,1 and LC2 coincide.
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Let us now provide a characterization of the epigraphs of LC1,α functions, in terms of
the truncated normal cone operator. We first recall the definition of the latter: if C is a
nonempty subset of a Euclidean space Rm (m ∈ N∗), then the (Clarke) normal cone of C
at u ∈ C is defined by

NC(u) = {u∗ ∈ Rm : 〈u∗, v〉 6 0, ∀v ∈ TC(u)}, (14)

where the Clarke tangent cone TC(u) is defined as follows:

v ∈ TC(u) ⇐⇒
{ ∀ε > 0, ∃ δ > 0 such that
∀u′ ∈ B(u, δ) ∩ C, ∀t ∈]0, δ[, (u′ + tB(v, ε)) ∩ C 6= ∅. (15)

We put NC(u) = ∅, whenever u /∈ C. For any r > 0 we denote by N r
C(u) the truncated

Clarke normal cone, that is,

N r
C(u) = NC(u) ∩B[0, r],

where B[0, r] denotes the closed ball in Rm of center 0 and radius r. We further denote
by

epi f := {(x, β) ∈ Rn+1 : β > f(x)}
the epigraph of the function f defined on Rn. By [3, p. 56], for all uo = (x0, f(x0)) ∈ epi f
we have

Nepi f (u0) = R+(∂f(x0),−1).

Let us finally note that, if f is κ-Lipschitz on a ball B of Rn, then for all x1,x2 in B,
we have

||x2 − x1|| 6 ||u2 − u1|| 6
√

1 + κ2 ||x2 − x1||, (16)

where ui := (xi, f(xi)), i ∈ {1, 2} and where we use the same notation to denote the
Euclidean norm of the spaces Rn and Rn+1.

The following result is analogous to the ones established in [4, Section 5] (for LC2

functions) and in [1, Theorem 4.1.4] (for LC1 functions).

Corollary 10 (epigraphical characterization) Let f : U → R be a locally Lipschitz
function defined on an open subset U of Rn. The following two assertions are equivalent:

(i) the function f is lower-C1,α ;

(ii) the operator N1
epi f : Rn+1 ⇒ Rn+1 is α-hypomonotone.

Proof. (i) ⇒ (ii) Let u0 ∈ epi f . We can suppose without no loss of generality that u0 =
(x0, f(x0)) for x0 ∈ U (otherwise Nepi f (u) is reduced to {0} for all u in a neighborhood
of u0, so that (7) is clearly satisfied).

Let now κ, δ1 > 0 such that f is κ-Lipschitz on B(x0, δ1). By Theorem 8, the function
f is weakly convex, so Theorem 7 (i)⇒(iii) yields that there exist δ2 > 0 and σ > 0 such
that for all x1, x2 ∈ B(x0, δ2), x∗1 ∈ ∂f(x1) and x∗2 ∈ ∂f(x2)

f(x2)− f(x1) > 〈x∗1, x2 − x1〉 − σ||x1 − x2||1+α. (17)
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Set δ = min{δ1, δ2} and take u1, u2 ∈ B(u0, δ) ∩ epi f (we use the same notation
B(u0, δ) to denote the ball of center u0 and radius δ > 0 in the space Rn+1). In particular,
u1 has the form (x1, β1) with β1 > f(x1). There are two cases:

• If β1 > f(x1), then N1
epi f (u1) = {0}.

• If β1 = f(x1), then

N1
epi f (u1) = R+(∂f(x1),−1) ∩B[0, 1].

So for every u∗1 ∈ N1
epi f (u1), there exists x∗1 ∈ ∂f(x1) such that u∗1 = µ1(x

∗
1,−1).

Note also that we can bound µ1 uniformly. Since f is κ-Lipschitz on B(x0, δ), one
has ||x∗1|| 6 κ (see [3, Proposition 2.1.2], for example). As ||u∗1|| 6 1, one obtains

µ1 6 (1 + κ2)−
1
2 .

Since β2 > f(x2), (17) implies

〈(x∗1,−1), (x2 − x1, β2 − β1)〉 6 σ||x1 − x2||1+α.

Here again we use the same notation for the scalar products in Rn and in Rn+1. In
particular, 〈(x, α), (y, β)〉 := 〈x, y〉+ αβ, for all x, y ∈ Rn and all α, β ∈ R.

In both cases, for every u∗1 ∈ N1
epi f (u1) we have

〈u∗1, u2 − u1〉 6 (1 + κ2)−
1
2 σ||x1 − x2||1+α,

which in view of (16) yields

〈u∗1, u2 − u1〉 6 (1 + κ2)−
1
2 σ||u1 − u2||1+α.

Interchanging the roles of u1 and u2, for every u∗2 ∈ N1
epi f (u2) we have

〈u∗2, u2 − u1〉 > −(1 + κ2)−
1
2 σ||u1 − u2||1+α.

Substracting the last two equations, we get

〈u∗2 − u∗1, u2 − u1〉 > −2(1 + κ2)−
1
2 σ||u1 − u2||1+α,

which means that N1
epi f is α-hypomonotone.

(ii) ⇒ (i) Fix x0 ∈ U and set u0 = (x0, f(x0)). Let δ1 and σ such that for all u1, u2 ∈
B(x0, δ1), u∗1 ∈ N1

epi f (u1) and u∗2 ∈ N1
epi f (u2)

〈u∗2 − u∗1, u2 − u1〉 > −σ||u1 − u2||1+α. (18)

Let δ2 and κ be such that f is κ-Lipschitz on B(x0, δ1) and set

δ =
min{δ1, δ2}√

1 + κ2
.
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Let x1, x2 ∈ B(x0, δ), x∗1 ∈ ∂f(x1) and x∗2 ∈ ∂f(x2). For i∈ {1, 2}, set ui = (xi, f(xi))

and u∗i := (1 + κ2)−
1
2 (x∗i ,−1). Observe that ui ∈ B(u0, δ1) and u∗i ∈ N1

epi f (ui). Thus (18)
can be rephrased as

〈(x∗2 − x∗1, 0), (x2 − x1, f(x2)− f(x1))〉 > −σ(1 + κ2)
1
2 ||u1 − u2||1+α.

Using (16) we get

〈x∗2 − x∗1, x2 − x1〉 > −σ(1 + κ2)||x1 − x2||1+α.

Thus ∂f is α-hypomonotone. By Theorem 7 (ii)⇒(i) and Theorem 8, we conclude that
f is LC1,α. ¤

3.3 Classification

Let us fix a nonempty open subset U of Rn and let us consider the following two particular
classes of functions.

– (locally decomposable functions) We say that a locally Lipschitz function f :
U → R is locally decomposable on U as a sum of a convex function and a C1,α function
if for all x0 ∈ U there exists δ > 0, a convex continuous function k : B(x0, δ) → R and a
C1,α-function h : B(x0, δ) → R (that is, h is differentiable with α-Hölder derivative) such
that

f(x) = k(x) + h(x), for all x ∈ B(x0, δ).

– (locally composite functions) We say that a locally Lipschitz function f : U → R
is locally composite on U , if for every x0 ∈ U there exists δ > 0, a lower semicontinuous
convex function g : Rm → R ∪ {∞} and a C1,α-function G : B(x0, δ) → Rm such that

f(x) = g(G(x)), for all x ∈ B(x0, δ),

and the following qualification constraint condition is satisfied: there exists a point x̄ in
B(x0, δ) such that

Ndomg(G(x̄)) ∩ ker∇G(x̄)∗ = {0}
This constraint qualification implies (see [19, p. 445], for example) that

∂f(x) = ∇G(x)∗∂g(G(x)), for all x ∈ B(x0, δ).

Proposition 11 Let f : U → R be a locally Lipschitz function and 0 < α < 1. Consider
the following conditions:

(i) f is locally decomposable on U as a sum of a convex continuous and a C1,α function ;

(ii) f is locally composite on U with a convex continuous and a C1,α function ;

(iii) f is a LC1,α function.

Then (i)=⇒(ii)=⇒(iii).
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Proof. (i)=⇒(ii). Having a local decomposition f = k + h, set g(x, r) = k(x) + r
for (x, r) ∈ Rn × R and G(x) = (x, h(x)) for x ∈ R. It is straightforward to see that
f(x) = g(G(x)), that G is C1,a and that g is convex and continuous. The qualification
constraint is trivially satisfied at x0 for example.

(ii)=⇒(iii). Let x0 ∈ U , δ > 0 and g, h : B(x0, δ) → R, g being convex continuous and
G ∈ C1,α(B(x0, δ)) such that f(x) = g(G(x)) for all x ∈ B(x0, δ). For all x near x0, one
has

∂f(x) = ∇G(x)∗∂g(G(x))

Since ∇G is α-Hölderian, let σ > 0 such that for all x, y ∈ B(x0, δ)

||∇G(y)−∇G(x)|| 6 σ||y − x||α. (19)

Let x, y ∈ B(x0, δ). For any x∗ ∈ ∂f(x), there exists ζ ∈ ∂g(G(x)) such that x∗ =
∇G(x)∗ζ. Since g is convex, it follows that

f(y)− f(x) = g(G(y))− g(G(x)) > 〈ζ, G(y)−G(x)〉. (20)

Applying the mean value theorem to the function G on the segment [x, y] we obtain
z ∈ [x, y[ such that

G(y)−G(x) = ∇G(z)(y − x). (21)

By (19), it holds

||∇G(z)−∇G(x)|| 6 σ||z − x||α 6 σ||y − x||α. (22)

Thus by (20), (21) and (22), we can write

f(y)− f(x) > 〈ζ,∇G(z)(y − x)〉
= 〈ζ,∇G(x)(y − x)〉+ 〈ζ, (∇G(z)−∇G(x))(y − x)〉
> 〈ζ,∇G(x)(y − x)〉 − σ||ζ|| ||y − x||1+α

Moreover, there exists a constant κ > 0 which bounds uniformly the norm of every
subgradient of the convex continuous function g near x0. Thus it holds

f(y)− f(x) > 〈x∗, y − x〉 − σκ ||y − x||1+α,

and we can conclude by Theorem 7(iii)⇒(i) and Theorem 8. ¤

Remark 12 (conjecture) A classical result of Rockafellar [18] (see also [23], [8]) asserts
that every LC2 function is decomposable as a sum of a convex continuous and a concave
quadratic function. Moreover, in view of Remark 9, the classes LC1,1 and LC2 coincide.
Thus, in case α = 1, the three assertions of Proposition 11 are then equivalent. It is not
known if an analogous equivalence holds for the classes of LC1 and LC1,α functions.
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Let us now give an example of a LC1 function f , which does not belong to any of the
classes LC1,α for α > 0. More precisely, we have the following proposition.

Proposition 13 ⋃
0<α<1

LC1,α  LC1

Proof. The inclusion follows directly from Definition 2. To see that the inclusion is strict,
let us consider the function f : R→ R defined as follows:

f(x) = −
∫ x

0

g(t) dt ,

where

g(t) =

{
0 t 6 0
1

| ln t| t > 0 .

It is easily seen that g is continuous on R, so that f is of class C1. In particular,
f ∈ LC1. Note also that f(0) = 0 and f ′(0) = 0.

Let us prove that for any α > 0 the function f does not belong to the class LC1,α.
Indeed, suppose towards a contradiction that there exists α > 0 such that f ∈ LC1,α.
Then by Theorem 8 and Theorem 7 (i)⇒(iii) there exist σ, δ > 0 such that for all x ∈ (0, 1),

f(x) > −σ |x |1+α .

Set now φ(x) = f(x) + σ|x |1+α. Then the function φ is C1, non-negative and φ(0) = 0.
It follows easily that there exists a sequence (xn)n>1 of positive real numbers converging
to 0 such that φ′(xn) > 0. (Indeed, if for some δ > 0 we have φ′(x) < 0 for all x ∈ (0, δ),
then φ should necessarily take negative values.) We compute φ′(x) = (1 + α)σxα − g(x)
for x > 0. Then we have for all n > 0

(1 + α)σ > 1

xn
α | ln xn| .

Since α > 0 the right-hand side tends to +∞ when n grows. We thus obtain a contradic-
tion. It follows that

f ∈ C1 \
⋃
α>0

LC1,α,

which proves the assertion. ¤

Let us complete our classification with the following proposition.

Proposition 14

LC2  
⋂

0<α<1

LC1,α
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Proof. Since every LC2 function is a fortiori LC1,α for all 0 < α < 1, the inclusion holds.
To see that the inclusion is strict, let us consider the function

f(x) =

∫ x

0

g(t) dt , for all x ∈ R,

where

g(t) =

{
0 t 6 0

t ln t t > 0.

Then g is continuous on R and clearly not Lipschitz around t = 0. Let us show that,
for any 0 < α < 1, g is α-Hölderian in a neighborhood of 0. To this end, take x, y
sufficiently small to ensure that are inside a neighborhood of 0 in which g is decreasing.
We can suppose without loss of generality that y < x. We may suppose x > 0 (else the
condition of α-Hölderianity is trivially fulfilled), and we distinguish three cases.

Case 1. y 6 0. Then we can write

|g(x)− g(y)|
|x− y|α =

x| ln x|
|x− y|α 6 x| ln x|

xα
= x1−α| ln x|. (23)

Case 2. 0 < y < x/2. In this case 0 > g(y) > g(x) so that

|g(x)− g(y)|
|x− y|α 6 |g(x)|

|x/2|α 6 2α| ln x|x1−α. (24)

Case 3. x/2 < y < x. Applying the mean-value theorem for the function g to the segment
[x, y] (where g is C∞) we obtain z ∈ [x, y] such that

|g(x)− g(y)|
|x− y|α 6 ( | ln z|+ 1 ) |x− y|1−α 6 ( | ln x

2
|+ 1 ) x1−α. (25)

In all cases (23)-(25), the quantity |x−y|−α |g(x)− g(y)| is bounded when x and y are
sufficiently close to 0. Thus, there exist δ > 0 and M > 0 such that for all x, y ∈ ]− δ, δ[
with x 6= y we have

|g(x)− g(y)|
|x− y|α 6 M.

This means that g is α-Hölderian on ]− δ, δ[.

It follows that f is C1 on R and locally C1,α around 0, for any 0 < α < 1. We us
prove that f is not LC2 around 0. To this end, let us assume, towards a contradiction,
that there exists δ > 0 such that ∂f is hypomonotone on B(x0, δ). Since f is C1, we have
∂f(x) = {g(x)} for all x ∈ R , and in particular ∂f(0) = {0}. Then for all σ > 0 and
x ∈ B(x0, δ),

x g(x) > −σ|x|2.
This implies

ln x > −σ for all 0 < x < δ,

14



which is a clear contradiction. ¤

Let us resume the results in the following diagram.

LC∞ = LCk

(2<k<+∞)
= LC2 = LC1,1  LC1,α

(0<α<1)
 LC1

⋃
0<α<1

LC1,α  LC1

LC2  
⋂

0<α<1

LC1,α

—————————————————-
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