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1 Introduction

The classical Morse-Sard theorem states that the set of critical values of a Ck smooth function
defined on a Euclidean space Rd has Lebesgue measure zero, provided k ≥ d (see [11], [16]).
The result is sharp as far as the order of smoothness of the function is concerned [17], [12]
and is naturally extended to Ck-functions defined on a Ck-manifold of dimension d (see [8,
Theorem 1.3] e.g.). Quantitative Sard-type theorems are obtained in [5].

Generalized Morse-Sard results are known in variational analysis, under a generalized notion
of criticality, usually defined in terms of the Clarke subdifferential [4] (the definition is recalled in
Section 2). Positive results are known in some particular cases: we quote for instance [14] for the
distance function to the Riemanian submanifold and [13] for viscosity solutions of Hamiltonians
of certain type. The Morse-Sard theorem obviously fails for general Lipschitz functions —it
already fails for C1 functions in Rd with d ≥ 2— but the failure is of a different type: in the
classical case, the failure of Morse-Sard theorem is due to the (bad) structure of the set of
critical points (smooth functions are constant on rectifiable arcs made up of critical points, as
a consequence of the chain rule). On the contrary, in [1] it is shown that for a generic (for the
uniform topology) set of 1-Lipschitz functions, the Clarke subdifferential at any point equals
the ball B(0, 1), that is, all points of a generic 1-Lipschitz function are critical (chain rule fails
generically for the Clarke subdifferential).

In recent years, tame variational analysis is an alternative way to circumvent smoothness
and to deal with generalized critical values. This leads to considering particular subclasses of
Lipschitz functions enjoying a prior structural assumption: Lipschitz (nonsmooth) functions
whose graphs are definable in some o-minimal structure (see [6] for the relevant definition).
Indeed, under this tame assumption, Morse-Sard result follows as a consequence of the existence
of a sufficiently smooth Whitney (normally regular) stratification, and the so-called projection
formula for the Clarke subdifferential to the tangent space of the corresponding stratum ([2,
Proposition 4]). This leads to two fundamental results in tame variational analysis:
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– Clarke critical values for tame Lipschitz functions are locally finite [2] ;

– Tame closed graph set-valued maps, or more generally, set-valued maps admitting a suf-
ficiently smooth normally regular stratification, satisfy Sard theorem for the set of their
critical values (values where metric regularity fails) [9].

Let us point out that o-minimality (tameness) of a function does not automatically guarantee
a Morse-Sard type result for any variational notion of criticality. For instance, let us call a point
x̄ ∈ Rd broadly critical for the function f , if for every ε > 0, the closed convex hull of all
derivatives ∇f(x) at points x ∈ B(x̄, ε) contains 0 (definability of the function guarantees
differentiability in an open dense set). In [3], an example of a continuous (globally) subanalytic
function f : R3 → R which is strictly increasing in a segment of broadly critical points is
presented, showing that the Morse-Sard theorem fails for this notion of criticality.

In contrast to the aforementioned tame-geometrical results, in this work we do not make
any prior structural assumption on the nature of the functions. Instead, we consider the class
of continuous functions f : Rd → R of the form

f(x) ∈ {F (x, t) : t ∈ T}, for all x ∈ Rd (1)

where

(H1) T is a nonempty compact countable set ;

(H2) for each t ∈ T, the function x 7→ F (x, t) is Ck-smooth, with k ≥ d ;

(H3) the functions F and ∇xF (defined on Rd × T ) are continuous.

We denote by T (x) the set of active indices of F at x, that is,

T (x) = {t ∈ T : f(x) = F (x, t)}. (2)

The main result of the manuscript is the following:

• Under (H1)-(H3), every continuous function of the form (1) is locally Lipschitz and satisfies
a generalized Morse-Sard theorem.

As a consequence, the max function f(x) = max {F (x, t) : t ∈ T} has a null set of generalized
critical values. This result appears to be new even in the case where T is finite. The result is
sharp, in the sense that it fails for d ≥ 3 if the compact set T is uncountable (Remark 7).

The proof of our main result is based on geometrical arguments leading nonsmoothness to
a kind of tractable smooth assumption in naturally arising manifolds, in which the classical
Morse-Sard theorem applies.

The paper is organized as follows: in the next section we fix our notation, we recall the
definition of the Clarke subdifferential and the Cantor-Bendixson rank of a set. The main result
is proved in Section 3.
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2 Preliminaries, Notation

For any integer m ≥ 0, we set Nm = {1, . . . , m} and we denote by

∆m =
{

α ∈ Rm+1 : αi ≥ 0 :
∑m+1

i=1
αi = 1

}

the m-dimensional simplex ∆m. Given any nonempty subset C of Rd, we denote by co (C) the
convex hull of C. Then x ∈ co (C) if and only if there exists m ≥ 0, α ∈ ∆m and {x1, . . . , xm+1} ⊂
C such that x =

∑m+1
i=1 αixi. By the Caratheodory theorem, we can always assume m ≤ d + 1.

We finally denote by |J| the cardinality of any finite set J.
A function f : Rd → R is called locally Lipschitz continuous, if for every point x̄ there exist

a neighbordhood U of x̄ and a constant M > 0 such that

|f(x)− f(y)| ≤ M ||x− y||, for all x, y ∈ U . (3)

We recall that locally Lipschitz functions are differentiable almost everywhere (Rademacher
theorem). Denoting by Df the set of points where the derivative exists, the Clarke subdifferential
of f at any point x̄ is defined as follows:

∂f(x̄) = co
{

lim
xn→x̄

∇f(xn) : {xn}n ⊂ Df

}
. (4)

It follows that ∂f(x̄) is a nonempty convex compact subset of Rd containing ∇f(x̄) whenever
the latter exists, and being equal to {∇f(x̄)} if and only if f is strictly differentiable at x̄ (see
[4] for details). A point x̄ ∈ Rd is called Clarke critical point if 0 ∈ ∂f(x̄). A value r̄ ∈ f(Rd) is
called Clarke critical value if r̄ = f(x̄) for some Clarke critical point x̄.

Given two metric spaces X and Y , a set-valued mapping A : X ⇒ Y is said to be upper
semicontinuous, if for every open set U containing A(x0), there exists an open set V containing
x0 such that A(x) ⊂ U for all x ∈ V. We say that A is locally bounded (respectively, locally
compact), if every x0 ∈ X has a neighborhood V whose image A(V) :=

⋃
x∈V A(x) is bounded

(respectively, relatively compact). If f is locally Lipschitz, the Clarke subdifferential ∂f : Rd ⇒
Rd is locally compact and upper semicontinuous (see [4]) with nonempty convex compact calues.
We further say that A has a closed graph, if Graph (A) := {(x, y) : y ∈ A(x)} is a closed subset
of X × Y. The following statement is well-known.

• Let A : X ⇒ Y be locally compact with nonempty closed values. Then A is upper
semicontinuous if, and only if, it has a closed graph.

Given a nonempty closed set T we denote by T ′ the (Cantor) derivative of T , that is, the
set of all accumulation points of T (see [10] e.g.). Obviously T ′ is a closed subset of T (if T = T ′

the set T is called perfect). In general, using transfinite induction, we define a decreasing chain
of closed subsets T β as follows: T 0 := T, T β+1 = (T β)′ for a successive ordinal β + 1, and
T ξ =

⋂
β<ξ T β for a limiting ordinal ξ. In the sequel we shall use the following fact:

• If T is a compact countable space, then there exists a countable ordinal λ such that T λ = ∅.

The above statement is a consequence of the fact that every countable compact space is
metrizable, thus by Baire theorem it has at least one isolated point.
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3 Main result

In this section we establish our main result, namely, the set of Clarke critical values of any
continuous selection (1) is null, provided (H1)-(H3) hold. To this end, we shall need several
intermediate results, some of them of independent interest. Let us state the following result,
whose proof is standard and will be omitted.

Lemma 1 (Upper semicontinuity of the map of active indices). The set-valued mapping

x ⇒ T (x) = {t ∈ T : f(x) = F (x, t)}

(defined in (2)) is upper semicontinuous with nonempty compact values.

Our next aim is to show that continuous selections of the form (1) inherit from the family
F (·, t) the property of being (locally) Lipschitz continuous, as a consequence of assumption (H1).
For this result assumptions (H2)-(H3) are relaxed. On the other hand, obvious counterexamples
can be found if T is uncountable or if it is not compact.

Proposition 2 (Lipschitz continuity of f). Let T 6= ∅ be compact countable and F : Rd×T → R
be continuous. Let f : Rd → R be a selection of F , that is,

f(x) ∈ {F (x, t) : t ∈ T}, for all x ∈ Rd.

(i) If f has closed graph, then it is continuous.
(ii) If in addition, x 7→ F (x, t) is locally Lipschitz, uniformly on t ∈ T , then f is locally Lipschitz.

Proof. (i) Let {xn} → x̄ and let tn ∈ T (xn) so that f(xn) = F (xn, tn). Since F is continuous
and T is compact, the sequence {f(xn)}n is bounded. Further, any accumulation point of the
sequence {f(xn)}n has to be equal to f(x̄), since f has closed graph. This proves that {f(xn)}n≥1

converges to f(x̄) and the assertion follows.

(ii) Let x0 ∈ Rd. According to our assumption, there exists M > 0 and a convex neighborhood
U of x0 such that for all x, y ∈ U and t ∈ T

|F (x, t)− F (y, t)| ≤ M ||x− y||.

We shall show that f is Lipschitz continuous on U with constant M, that is, for any x̄, ȳ ∈ U we
have

|f(ȳ)− f(x̄)| ≤ M ||ȳ − x̄||. (5)

To prove (5), fix x̄, ȳ ∈ U with x̄ 6= ȳ and define the function ρ : [x̄, ȳ] → [x̄, ȳ] as follows:

ρ(x) = sup { z ∈ [x, ȳ] : |f(z)− f(x)| ≤ M ||z − x||} . (6)

Since f is continuous, the above supremum is in fact a maximum. We further define

F = {x ∈ [x̄, ȳ] : ρ(x) = x}. (7)

Notice that ρ(x) ≥ x and that
ρ(ρ(x)) = ρ(x). (8)
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Thus, if we prove that F ={ȳ}, then (5) follows. The last part of the proof is devoted to show
that F reduces to the singleton {ȳ}. We shall need the following assertion.

Claim 1. If (x̂, x̂ + δ) ⊂ [x̄, ȳ]�F for some δ > 0 and x̂ ∈ [x̄, ȳ), then x̂ /∈ F .
Proof of Claim 1. Let us first show that for every x ∈ (x̂, x̂ + δ) we have ρ(x) ≥ x̂ + δ. Indeed,
if this were not the case, then for some x1 ∈ (x̂, x̂ + δ) we would have x̂ < x1 < ρ(x1) < x̂ + δ,
which in view of (8) yields ρ(x1) ∈ (x̂, x̂+ δ)∩F , a contradiction. Now let us consider a strictly
decreasing sequence {εn} ↘ 0. By continuity of f, for every n ≥ 1 there exists δn > 0 such that
for all x ∈ (x̂, x̂+δn) we have |f(x̂)−f(x)| < εn. We can clearly assume that the sequence {δn}n

is decreasing and δ1 < δ. Then for xn ∈ (x̂, x̂+δn), we have ρ(xn) ≥ x̂+δ and |f(x̂)−f(xn)| < εn.
It follows

|f(x̂)− f(ρ(xn))| ≤ εn + |f(xn)− f(ρ(xn))| ≤ εn + M ||xn − ρ(xn)|| < εn + M ||x̂− ρ(xn)||. (9)

Since ρ(xn) ∈ [x̂ + δ, ȳ], passing to a subsequence if necessary, we may assume ρ(xn) → z∗ ∈
[x̂ + δ, ȳ] as n →∞. We deduce from (9) that

|f(x̂)− f(z∗)| ≤ M ||x̂− z∗||,

yielding ρ(x̂) ≥ z∗ ≥ x̂ + δ, that is, x̂ /∈ F . ¦
Before we proceed to the rest of the proof, let us introduce the following notation:
For any ordinal β, we define

Xβ := {x ∈ [x̄, ȳ] : T (x) ∩ T β 6= ∅},

where T (x) is defined in (2) and T β denotes the Cantor-Bendinxon derivative of order β of the
compact set T . We shall now prove the following assertion.

Claim 2. For every ordinal β it holds:

x̂ ∈ F�{ȳ} =⇒ x̂ ∈ Xβ. (10)

Proof of Claim 2. Let x̂ ∈ F�{ȳ}. We deduce by Claim 1 that there exists {xn}n ⊂ F ∩ (x̂, ȳ)
with xn → x̂. Pick tn ∈ T (xn), so that f(xn) = F (xn, tn). We may assume, passing possibly
to a subsequence, that {tn}n converges to some t̂ ∈ T . Then taking the limit as n → +∞ we
deduce f(x̂) = F (x̂, t̂), thus t̂ ∈ T (x̂). Note further that t̂ cannot be equal to tn for some n, since
in such case we would have

|f(x̂)− f(xn)| = |F (x̂, t̂)− F (xn, t̂)| ≤ M ||x̂− xn||,

yielding ρ(x̂) ≥ xn > x̂ and contradicting the fact that x̂ ∈ F . It follows that t̂ ∈ T (x̂) ∩ T ′ and
x̂ ∈ X ′. Thus the assertion holds for β = 1.

We shall use transfinite induction. Let us first assume that F�{ȳ} ⊂ Xβ for some ordinal
β and let us assume, towards a contradiction, that there exists x̂ ∈ F�{ȳ} with x̂ /∈ Xβ+1. It
follows easily by the latter and the compactness of T β that for some δ > 0 we have (x̂, x̂ + δ) ∩
Xβ = ∅. In view of our inductive assumption, (x̂, x̂ + δ) ∩ F = ∅, hence by Claim 1, x̂ /∈ F a
contradiction.

It remains to consider the case of a limiting ordinal ξ. To this end, let us assume that (10)
holds for all ordinals β < ξ and that x̂ ∈ F�{ȳ}. It follows that x̂ ∈ Xβ for every β < ξ,
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hence the set Tβ := T (x̂) ∩ T β is nonempty and compact. Moreover, for β1 < β2 we have
Tβ1 ⊃ Tβ2 . It follows readily that the family {Tβ}β<ξ has the finite intersection property, thus⋂

β<ξ Tβ = T (x̂) ∩ T ξ 6= ∅. Therefore, x̂ ∈ Xξ. This completes the transfinite induction and the
claim is proved. ¦

Since T is a countable compact set, there exists a (countable) ordinal λ such that T λ = ∅.
It follows that Xλ = ∅ and F = {ȳ}. The proof is complete. ¤

As a consequence of the previous proposition, the Clarke subdifferential enters naturally
into consideration for the study of continuous functions of the form (1). Our next objective is
to associate the subdifferential ∂f(x) of the selection f with the active derivatives ∇xF (x, t),
t ∈ T (x), of the corresponding family. This is the aim of the forthcoming Proposition 4. We
shall need the following one-dimensional result.

Lemma 3 (one-dimensional case). Let h : R→ R be a continuous function satisfying

h(x) ∈ {gt(x) : t ∈ T}, for all x ∈ R,

where the functions (x, t) 7−→ gt(x), and (x, t) 7−→ g′t(x) are continuous and T is a countable
compact set. Then (h is locally Lipschitz and) for every point of differentiability x ∈ Dh it holds

h′(x) ∈ co
{
g′t(x) : t ∈ T (x)

}
. (11)

Proof. Let us assume, towards a contradiction, that (11) fails for some x̄ ∈ Dh. We may assume
x̄ = 0, h(0) = 0, h′(0) = 0 and g′t(0) ≥ 2 for all t ∈ T (0) (there is no loss of generality in doing
this). Since the mapping (x, t) 7−→ g′t(x) is continuous around (0, t̄), for all t̄ ∈ T (0) and since
T (0) is compact, we infer that for some δ0 > 0 and some open neighborhood T0 of T (0) we have

g′t(x) ≥ 1, for all x ∈ [0, δ0] and all t ∈ T0. (12)

Since h(0) = h′(0) = 0, shrinking δ0 > 0 if needed, we guarantee that

|h(x)| ≤ 1
2
x, for all x ∈ [0, δ0]. (13)

Let us define the function ρ̂ : [0, δ0] → [0, δ0] as follows:

ρ̂(x) = sup { z ∈ [x, δ0] : h(z)− h(x) ≥ z − x} . (14)

By continuity of h we deduce that the supremum in (14) is in fact a maximum. Notice also that
ρ̂(x) ≥ x and ρ̂(ρ̂(x)) = ρ̂(x). Defining

F̂ := {x ∈ [0, δ0] : ρ̂(x) = x},
using (12) and proceeding in a similar way as in the proof of Proposition 2 (Claims 1 and 2) we
can show that F ={δ0}. This yields ρ̂(0) > 0, thus combining with (14) and (13) we get

1
2
ρ̂(0) ≥ h(ρ̂(0)) = h(ρ̂(0))− h(0) ≥ ρ̂(0), (15)

a clear contradiction. ¤

We are now ready to relate the Clarke subdifferential of the selection f with the active
derivatives of the family F (·, t), t ∈ T .
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Proposition 4 (Clarke subdifferential versus active derivatives). Let f : Rd → R be any con-
tinuous function satisfying

f(x) ∈ {F (x, t) : t ∈ T}, for all x ∈ Rd,

where F, ∇xF are continuous and T is a countable compact set. Then f is locally Lipschitz and

∂f(x) ⊂ co {∇xF (x, t) : t ∈ T (x)} , for all x ∈ Rd. (16)

Before we proceed, let us introduce the set-valued map Af : Rd ⇒ Rd defined by

Af (x) = co {∇xF (x, t) : t ∈ T (x)} . (17)

The above proposition actually claims that the Clarke subdifferential ∂f(x) is contained in
Af (x). This set-valued map will be also in use in our main result.

Proof of Proposition 4. The set-valued mapping x ⇒ C(x) := {∇xF (x, t) : t ∈ T (x)} has a
closed graph, nonempty compact values and is locally compact, thus it is upper semicontinuous.
It follows readily from the definition that the set-valued mapping Af (x) := coC(x) is upper
semicontinuous with nonempty convex compact values, therefore, it has a closed graph. In view
of the definition of Clarke subdifferential, see (4), inclusion (16) will follow from the relation

∇f(x) ∈ Af (x), for all x ∈ Df . (18)

Let us prove that (18) holds. We proceed by contradiction: assume that for some x̄ ∈ Df

the functional ` := ∇f(x̄) does not belong to Af (x̄). We may assume for simplicity that ` = 0,
since we can always replace f(x) by f(x) − 〈`, x〉 and F (x, t) by F (x, t) − 〈`, x〉. Then by the
Hahn-Banach theorem, there exists a direction e ∈ Rd, such that for all t ∈ T (x̄) we have
〈∇xF (x̄, t), e〉 > 1 > 0 = 〈∇f(x̄), e〉. Let us consider the restrictions of f and F (·, t), for every
t ∈ T, on the line x̄ + Re, that we call h and gt(·) respectively. In other words, for every s ∈ R
we set

h(s) := f(x̄ + se) and gt(s) := F (x̄ + se, t).

It follows that h′(0) = 〈∇f(x̄), e〉 = 0 and g′t(0) = 〈∇xF (x̄, t), e〉 > 1, t ∈ T (x̄). Applying
Lemma 3 we get a contradiction. The proof is complete. ¤

We are now ready to prove our main result for continuous selections of the form (1). The
notion of criticality is based on the set-valued mapping Af , so it applies a fortiori for the Clarke
critical values.

Theorem 5 (Generalized Morse-Sard theorem). Let f : Rd → R be a continuous function of
the form

f(x) ∈ {F (x, t) : t ∈ T}, for all x ∈ Rd

where x 7→ F (x, t) is a family of Ck-smooth functions, with k ≥ d, and T a countable compact
set. We assume that F and ∇xF are continuous on Rd × T . Then the set of Clarke critical
values of f has measure zero.
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Proof. Recalling by (17) the definition of the set-valued mapping Af , we define the set of
broadly critical points of f as follows:

S = {x ∈ Rd : 0 ∈ Af (x)}.
In view of Proposition 4, we have x ∈ S whenever 0 ∈ ∂f(x). Therefore the set of broadly
critical values f(S) contains the set of Clarke critical values. We shall establish the following
(generalized) Morse-Sard theorem: the set f(S) of broadly critical values of f is null.

To this end, let x ∈ S. Applying the Caratheodory theorem we deduce that there exist a
finite subset J of T (x), with |J| ≤ d + 1, and α ∈ ∆|J| such that

∑
t∈J

αt∇xF (x, t) = 0. (19)

We say that (19) defines a minimal representation of 0 for the critical point x ∈ S, if it involves
a minimum number of active gradients ∇xF (x, t), t ∈ T (x). We further denote by S(`), for
1 ≤ ` ≤ d + 1, the set of broadly critical points of f , admitting a minimal representation of 0
made of exactly ` active gradients. Clearly,

S =
⋃d+1

`=1
S(`). (20)

In order to establish that f(S) has measure zero, it suffices to prove that for every ` ∈ Nd+1 the
set f(S(`)) is contained in a null-set.

• Let us first consider the case ` = 1. Then

S(1) = {x ∈ Rd : ∃t ∈ T (x), ∇xF (x, t) = 0}.
Denoting by St the set of critical points of the Ck function x 7→ F (x, t), we have S(1) ⊂
∪t∈T St and

f(S(1)) ⊂
⋃

t∈T
F (St, t).

Applying the classical Morse-Sard theorem to each function x 7→ F (x, t), we deduce that
f(S(1)) is contained in a countable union of null-sets, thus it is also a null-set.

• Fix 1 < ` ≤ d + 1. For every finite subset J of T of cardinality |J| = ` we set

S(`, J) :=
{

x ∈ S(`) : J ⊂ T (x), ∃α ∈ ∆|J| :
∑

t∈J
αt∇xF (x, t) = 0

}
. (21)

Let us prove that for every x ∈ S(`, J), the vector space

Wx := span {∇xF (x, t) : t ∈ J}
has dimension ` − 1. Indeed, since 0 ∈ co{∇xF (x, t) : t ∈ J} ⊂ Wx, the Caratheodory
theorem asserts that for some J∗ ⊂ J of cardinality |J∗| = dimWx + 1 we have 0 ∈
co{∇xF (x, t) : t ∈ J∗}. Since the representation (19) in (21) is minimal, we deduce J∗ = J
and ` = dimWx + 1, that is, dimWx = `− 1.

Assume J := {t1, t2, . . . , t`}, set Φi(x) = F (x, ti) − F (x, t`) for i ∈ N`−1 and consider the
function {

Φ : Rd → R`−1

Φ = (Φ1, . . . ,Φ`−1).
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We further define EJ = Φ−1(0) and

MJ = {x ∈ EJ : rg DΦ(x) = `− 1},
where rg DΦ(x) stands for the dimension of the image of Rd under DΦ(x). It follows by
the implicit function theorem thatMJ is a Ck-differentiable manifold of co-dimension `−1
(for ` = d + 1 it reduces to a locally finite union of points).

Notice that if x ∈ S(`, J), then x ∈ EJ and the gradients {∇Φi(x) : i ∈ N`−1} are linearly
independent. It follows that

S(`, J) ⊂MJ.

Let ϕJ denote the restriction of any of the functions x 7→ F (x, ti) to MJ (they are all equal
there). Then ϕJ is Ck differentiable on MJ and its Riemann gradient at x ∈MJ satisfies

dϕJ(x) = projTMJ
(x) [∇xF (x, ti)] , for all i ∈ N`,

where projTMJ
(x) denotes the projection operator onto the tangent space TMJ

(x) at x of the
manifoldMJ. The above formula together with (19) show that any critical point x ∈ S(`, J)
satisfies dϕJ(x) = 0, that is, S(`, J) is contained in the set SJ = {x ∈MJ : dϕJ(x) = 0} of
critical points of the function ϕJ : MJ → R. Notice further that ϕJ(x) = f(x) = F (x, t1)
for all x ∈ S(`, J), yielding

f(S(`, J)) ⊂ ϕJ(SJ). (22)

Applying the Morse-Sard theorem to the Ck function ϕJ over the Ck differentiable manifold
MJ ([8, Theorem 1.3] e.g.) we conclude that f(S(`, J)) has measure zero. Let us finally
notice that

S(`) ⊂
⋃

J⊂T, |J|=`

S(`, J). (23)

It follows that f(S(`)) is contained in the countable union of the null-sets f(S(`, J)), thus
it has measure zero.

It now follows from (20) that f(S) has measure zero, which completes the proof. ¤

The following corollary is an immediate consequence of Theorem 5.

Corollary 6 (Morse-Sard theorem for functions of max type). Consider the locally Lipschitz
function

f(x) = max
t∈T

F (x, t), x ∈ Rd (24)

where T is a countable compact set and for every t ∈ T the function x 7→ F (·, t) is Ck-
differentiable with k ≥ d. If F and ∇xF are continuous, the set of Clarke critical values of
f has measure zero.

We recall that a function f is called lower-Ck if it can be represented as a maximum of a
family of Ck-functions x 7→ F (x, t), indexed on a compact set T, and such that F,∇xF, . . . ,∇kF
are continuous on Rd × T (see [15], [7] e.g.). Lower-Ck functions are Lipschitz continuous and
Clarke regular (see [4], [15] for relevant definitions and proofs). Corollary 6 reveals in particular
that the Morse-Sard theorem holds true for lower-Ck functions, provided the compact set T is
countable. The following remark shows that this assumption cannot be relaxed, revealing that
both Corollary 6 and Theorem 5 are sharp.
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Remark 7 (Sharpness of the main result). (i). It is well-known ([15]) that every lower-C2 func-
tion, thus a fortiori, every C2 function, can be parameterized to become lower-C∞. Therefore,
the Morse-Sard theorem fails for functions of the form (24) —and consequently for Lipschitz
continuous functions of the form (1)— if T is not countable and d ≥ 3.

(ii) Compactness of T is not essential for the proof of our main result, it had been previously
required to relate ∂f to Af (c.f. Proposition 4). In particular, the proof of Theorem 5 shows that
the set of broadly critical values of any function satisfying (1) is null, provided T is countable
and (H2)-(H3) hold.

Another consequence of Theorem 5 is the following result.

Corollary 8 (Max/min operations over a collection of smooth functions). Let F0 = {fi}i∈I be
a (possibly uncountable) collection of Ck functions on Rd with k ≥ d. Set F1 be the collection of
all max- or min-type functions of the form max{fi : i ∈ J} or min{fi : i ∈ J} where J is a finite
subset of I. We construct inductively Fm+1 as the collection of all finite maxima or minima
of functions in Fm. Then every function f ∈ ⋃

mFm is locally Lipschitz and has a null set of
Clarke critical values.

Proof. It is easily seen that if f ∈ Fm for some m ∈ N, then there exists a finite set J ⊂ I such
that f is locally Lipschitz and satisfies (1). The result follows from Theorem 5. ¤
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