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1 Introduction

Extensions of the Newton method for solving nonsmooth equations F (x) = 0 have been widely
studied over the last two decades: early examples are [15, 23] (see also [24]). As pointed out in
[22], superlinear convergence depends on “semismoothness” of the function F , a notion extended
from earlier work on optimization originating with [20]. A good survey appears in [13].

Consider a locally Lipschitz function F : Rn → Rm, and denote the set of points in Rn where
F is differentiable by D. (By Rademacher’s theorem, the complement of D has measure zero.)
Following [22], we call F semismooth at a point x ∈ Rn if its directional derivative

(1.1) F ′(x; d) = lim
t↓0

F (x + td)− F (x)

t

exists for every vector d ∈ Rn, and as d → 0 with x + d ∈ D, we have

(1.2) F ′(x + d; d)− F ′(x; d) = o(d),

with as usual limd→0, d 6=0 ||d||−1 o(d) = 0.

Quadratic rather than superlinear convergence of the Newton method requires strong semi-
smoothness instead (see [12]), where the o(d) term is replaced by O(‖d‖2), that is, it is bounded
near 0 by a function c ||d||2, where c > 0. More generally, a mapping satisfying (1.2) with o(d) =
O(||d||1+γ) with γ > 0 is called γ-order semismooth or simply γ-semismooth, see [22, 26]. The class
of semismooth functions is very broad: see for example the discussion in [21].

If the function F satisfies a rather strong notion of “piecewise smoothness”, then it must be
semismooth. To be precise, let us consider functions F1, F2, . . . , Fk : Rn → Rm. Suppose, for
every point y ∈ Rn near x, each function Fj is continuously differentiable at y, the function F is
continuous at y, and F (y) = Fj(y) for some index j. In this case, F must be semismooth at x
(see [26] and also [17]).
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The usefulness of the above class of piecewise smooth functions in checking semismoothness
in concrete examples is restricted by the requirement that each function Fj must be continuously
differentiable throughout a neighborhood of the point of interest, rather than simply on open
regions where Fj agrees with F . In part due to this complication, we take here a fresh approach to
recognizing semismoothness. To illustrate this, consider for example the function

f(x, y) =





√
y2 − x2 , if y > 2 |x|
√

3 |x| , if y ≤ 2 |x|.
The above function is clearly continuous and everywhere smooth except on the sets {0} × (−∞, 0]
and {(t, 2 |t|) : t ∈ R} with gradient no larger in norm than

√
3. It is easily seen that f is (globally)

Lipschitz with constant
√

3 and everywhere directionally differentiable, and as we discuss below,
f is easily recognized to be semialgebraic. Hence f is semismooth, by the result we present here
(cf. Theorem3.6). However, verifying that f is piecewise smooth (at (0, 0) for example) in the
above sense is not immediate.

A rich class of concrete functions is provided by the notion of a semi-algebraic subset of Rn, that
is, a set defined by some Boolean combination of real polynomial equations and inequalities. The
function F is semi-algebraic if its graph {(x, y) : y ∈ F (x)} is semi-algebraic. The broad applica-
bility of semi-algebraic sets follows largely from the Tarski-Seidenberg principle, which guarantees
that the projection (x1, x2, . . . , xn) 7→ (x2, x3, . . . , xn) preserves the semi-algebraic property. Good
references are [4, 6]. The qualitative properties of semialgebraic mappings are shared by a much
bigger class called mappings definable in an o-minimal structure over R, or simply definable map-
pings. A slightly more general notion is that of a tame mapping, being a mapping whose graph
has a definable intersection with every “bounded box” (see Definition 2.2). O-minimal structures
over R correspond in some sense to an axiomatization of some of the prominent geometrical prop-
erties of semialgebraic geometry [11, 9] and particularly of the stability under projection. Due to
the variety of optimization problems that can be formulated within the framework of o-minimal
structures, our main results are stated for tame functions.

The main result of this note is to establish that locally Lipschitz tame (definable) functions
are semismooth (Theorem3.6). Tame sets stratify into locally finite unions of relatively open
smooth manifolds, and consequently, tame functions enjoy strong piecewise smoothness properties.
However, exploiting stratification to deduce semismoothness via piecewise smoothness seems not
transparent due to the complication we noted above. In part due to this complication, and as a
component in our ongoing study of semialgebraic/tame properties in optimization (see [1], [2], [3]),
we propose here a much more basic approach based on the curve selection lemma.

It is worthwhile-mentioning that semialgebraic or globally subanalytic mappings enjoy a stronger
property than semismoothness since they are actually γ-semismooth with γ > 0. The interest of
this extra information is somewhat comparable to what can be observed for functions that satisfy
the ÃLojasiewicz inequality [18, 16]. Indeed, for algorithms in which semismoothness plays a key
role (Newton methods, Bundle methods) the positive parameter γ somehow measures the rate of
convergence, as it is the case for the ÃLojasiewicz exponent in the study of subgradient methods [1].
We illustrate this idea by proving that the Newton method for semialgebraic, or more generally,
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for globally subanalytic mappings converges superlinearly. More precisely, we show that the error
at the k-step behaves like O(2−(1+γ)k

).

2 Preliminaries

Notation Throughout this work we shall consider the Euclidean vector space Rn endowed with
its canonical scalar product 〈·, ·〉, and we shall denote its associated norm by || · ||.
Let U ⊂ Rn be a nonempty open subset of Rn. A mapping F is said to be directionally differentiable
at x ∈ U along d if the following limit

F ′(x; d) := lim
t↓0

F (x + td)− F (x)

t

exists. This defines a mapping F ′(·; ·) with domain D ⊂ U × Rn which we call the directional
derivative of F . The function F is said to be Gâteaux differentiable at x if F ′(x; ·) is defined
everywhere on Rn and linear. The linear map F ′(x; ·) is then denoted by F ′

G(x). We say that F
is Fréchet differentiable at x ∈ U if it is Gâteaux differentiable at x with in addition F (x + d) −
F (x) − F ′(x; d) = o(||d||). The Fréchet derivative is denoted by F ′. In the sequel the domains of
F ′

G and F ′ are respectively denoted by DG and D. Finally, L(Rn,Rm) denotes the vector space of
linear mappings from Rn to Rm.

Let us recall a few definitions concerning o-minimal structures (see for instance van der Dries-
Miller [11] and references therein).

Definition 2.1. [o-minimal structure] [9, Definition 1.5] An o-minimal structure on (R, +, .)
is a sequence of Boolean algebras O = {On} of “definable” subsets of Rn, such that for each n ∈ N

(i) if A belongs to On, then A×R and R× A belong to On+1 ;

(ii) if Π : Rn+1 → Rn is the canonical projection onto Rn then for any A in On+1, the set Π(A)
belongs to On ;

(iii) On contains the family of algebraic subsets of Rn, that is, every set of the form

{x ∈ Rn : p(x) = 0},

where p : Rn → R is a polynomial function ;

(iv) the elements of O1 are exactly the finite unions of intervals and points.

A mapping F : S ⊂ Rn → Rm is said to be definable in O if its graph is definable in O as a subset
of Rn ×Rm.

Definition 2.2. A subset A of Rn is called tame if for all r > 0 there exists an o-minimal structure
O over R such that the intersection of A with [−r, r]n is definable in O. Similarly a mapping
F : U ⊂ Rn → Rm is called tame if its graph is a tame subset of Rn ×Rm.
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Remark 2.3. Restrictions of tame functions to definable bounded sets do not necessarily belong
to an o-minimal structure. Take for instance F (p) = 1/p with p ∈ domF := ∪n∈N∗ {1/n}. Using
items (ii) and (iv) of Definition 2.1 one sees that the restriction of F to [−1, 1] cannot belong to
any o-minimal structure. However if F is a tame mapping with the property that F (B) is bounded
for every bounded subset B ⊂ Rn (which is the case when F is for instance continuous), then for
all r > 0 the mapping F| [−r,r]n belongs to some o-minimal structure.

Example 2.4 (semialgebraic sets). The first example of o-minimal structures is given by the
class SA of semialgebraic objects. A set A ⊂ Rn is called semialgebraic if it can be written as

A =

p⋃
j=1

q⋂
i=1

{ x ∈ Rn : Pij(x) = 0, Qij(x) < 0},

where the Pij, Qij : Rn → R are polynomial functions on Rn. The fact that SA is an o-minimal
structure relies on the Tarski-Seidenberg principle (see [6]) which asserts that item (ii) is true in
this class.

Let us also observe that any o-minimal structure on R contains the class SA of semialgebraic
sets. In other words, SA is the smallest 1 o-minimal structure on R.

Sets and functions belonging to some o-minimal structure enjoy many qualitative properties
that are quite similar to those occurring in semialgebraic geometry. The reader is referred to [11, 9]
for a comprehensive account on the topic. In this paper we will essentially use the following results.

Let O be an o-minimal structure on (R, +, .).

Monotonicity lemma [11, Theorem4.1] Let f : I ⊂ R → R be a definable function and k ∈ N.
Then there exists a finite partition of I into p disjoint intervals I1, . . . , Ip such that f restricted to
each nontrivial interval Ij, j ∈ {1, . . . , p} is Ck and either strictly monotone or constant.

Curve selection lemma [11, Theorem4.6] Let A be a definable subset of Rn and let x be an
element of A (the closure of A). Then for all k ∈ N there exist ε > 0 and a Ck definable path
p : (−ε, 1) → Rn such that p(0) = x and p((0, 1]) ⊂ A.

A major part of the interest in dealing with definable objects consists of their remarkable
stability properties. These rely in fine on the projection stability assumption (iii) (Definition 2.1).
Using for instance [9, Theorem1.13] the reader can establish easily the following results:

Stability results Let O be an o-minimal structure over R.

(a) Given A ⊂ Rn, B ⊂ Rm and a definable mapping F : A → B in O, then for all C ⊂ A and
E ⊂ B definable in O, the sets F (C) and F−1(E) are definable in O.

(b) Let F : U → Rm be a definable mapping in O, where U is a nonempty open subset of Rn. Then
the mappings F ′(·; ·) : D → Rm, F ′

G : DG → L(Rn,Rm) and F ′ : D → L(Rn,Rm) are definable
in O.

1This is due to axiom (iii). Sometimes this axiom is omitted from the definition of an o-minimal structure,
allowing smaller classes than SA, for instance the structure SL of semilinear sets.
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(c) If F : U ⊂ Rn → Rm and G : V ⊂ F (U) → Rp are definable mappings then G ◦ F : U → Rp

is definable in O.

Example 2.5. (a) (Globally subanalytic sets) There exists an o-minimal structure, denoted
by Ran, that contains all sets of the form {(x, t) ∈ [−1, 1]n ×R : f(x) = t} where f : [−1, 1]n → R
(n ∈ N) is an analytic function that can be extended analytically on a neighborhood of the
square [−1, 1]n. The sets belonging to this structure are called globally subanalytic sets. Early
applications of this structure in optimization can be found in [10, 19].

(b) (log-exp structure) There exists an o-minimal structure containing Ran and the graph of
exp : R → R. This structure is denoted by Ran, exp.

Remark 2.6. In view of Example 2.5 (a) real-analytic mappings are obviously tame. They are
not however definable in some o-minimal structure in general. Consider for instance f(x) = sin x
(x ∈ R) whose zero set, i.e. {x ∈ R : sin x = 0}, is discrete and infinite. By using Definition
2.1 (iv) and the stability result (a) we see that there does not exist an o-minimal structure over R
in which f is definable.

Due to their “polynomial nature” semialgebraic and globally subanalytic functions of one vari-
able admit the so-called Puiseux development.

Puiseux development [11] Let f : (0, 1) → R be a globally subanalytic function. Then there exist
some integers p, q ∈ Z, with q > 0, a sequence {ai}i=p,p+1,... with ap 6= 0 and a real number ε > 0
such that

f(x) =
+∞∑
i=p

ai x
i/q for all x ∈ (0, ε).

Checking the semialgebraicity of a set in practice is often easy. On the other hand, one needs
to be careful when analytic functions come into play, as it is the case with Ran. A formal approach
to global subanalyticity can be found in [11].

3 Differentiability and semismoothness results

Let O be an o-minimal structure on (R, +, .).

3.1 Fréchet and Gâteaux derivative of tame mappings

The monotonicity lemma implies several elementary but very useful results concerning functions of
one variable.

Lemma 3.1. Let φ, ψ : [0, ε) → R be definable functions continuous at 0 with φ(0) = ψ(0) = 0.

(i) (local differentiation of inequalities) If ψ ≥ φ ≥ 0 on [0, ε) there exists ε1 ∈ (0, ε) such that
ψ and φ are differentiable on (0, ε1) with ψ′(t) ≥ φ′(t) for all t in (0, ε1).
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(ii) (de l’Hôpital inverse rule) Let l ∈ R and assume that ψ′(t) > 0 for all t ∈ (0, ε) sufficiently
small. Then

lim
t→0+

φ(t)

ψ(t)
= l =⇒ lim

t→0+

φ′(t)
ψ′(t)

= l.

Proof. (i) By the monotonicity lemma the function t 7→ ψ(t)− φ(t) is C1 and monotone on (0, ε1)
for ε1 sufficiently small. Thus, (ψ − φ)′(t) has a constant sign (or is equal to zero) for all t > 0
small enough. By integrating and using the assumption ψ ≥ φ we obtain that for all t > 0 small
enough, either ψ′(t) = φ′(t) (thus ψ = φ), or ψ′(t)− φ′(t) ≥ 0.

(ii) We have (φ(t) − lψ(t))/ψ(t) → 0 as t ↓ 0, where φ − lψ vanishes at zero. Replacing, if
necessary, φ − lψ by φ̃, we see that there is no loss of generality in assuming that l = 0. Since
φ has a constant sign, replacing if necessary φ by its opposite, we may also suppose that φ ≥ 0.
Using the monotonicity lemma we obtain that φ′(t) ≥ 0 for all t ∈ (0, ε). Since by assumption
lim

t→0+
φ(t)/ψ(t) = l = 0, for any δ > 0 and all t small enough we have δψ(t) − φ(t) ≥ 0. Applying

(i) we obtain δψ′(s)− φ′(s) ≥ 0 for all s > 0 sufficiently small. Thus

0 ≤ lim
t→0+

φ′(t)
ψ′(t)

≤ δ,

where the existence of the limit is due to the monotonicity lemma. The result follows by letting δ
go to zero. 2

Applying Lemma 3.1 (ii) with ψ(t) = t one obtains the following

Corollary 3.2 (right continuity of the derivative). Let φ : [0, ε) → R be a definable function,
continuous at 0 with φ(0) = 0, and let us assume that the limit

φ′(0+) = lim
t→0+

φ(t)

t

is finite (owing to the monotonicity lemma the limit always exists). Then

lim
t→0+

φ′(t) = φ′(0+).

Some regularity properties that are true for functions on the real-line fail to hold when consid-
ering functions of several variables. For instance by using Corollary 3.2 we see that the Fréchet
differentiability at 0 of a definable path γ : (−1, 1) → Rn implies that γ is C1 around t = 0, which is
no longer true in higher dimensions, see Fischer [14]. Similarly, a definable mapping F : Rn → Rm

which is Fréchet differentiable at 0, is not necessarily Fréchet differentiable in a neighborhood of 0 :
take for instance f(x, y) = x2 + |x| y2, where (x, y) ∈ R2. In an o-minimal framework, Fréchet
differentiability enjoys the following interesting characterization that we now proceed to describe.
From now on, let U denote a nonempty open definable neighborhood of 0 in Rn.
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Lemma 3.3 (Fréchet differentiability of definable mappings). Let η : U → Rm be a definable
mapping. The following assertions are equivalent.

(i) For all C1 definable curves p : (−1, 1) → U such that p(0) = 0 and ||p(t)|| > 0 for t > 0, we
have

(3.3) lim
t→0+

η(p(t))

||p(t)|| = 0.

(ii) η is Fréchet differentiable at 0 and η′(0) = 0.

Proof. It suffices obviously to establish that (i) implies (ii). We argue by contradiction so that
there exist a sequence dk 6= 0 converging to 0 and ε > 0 such that ||η(dk)|| ≥ ε||dk|| for all integers k.
Let us consider the definable set

A := {d ∈ Rn \ {0} : ||η(d)|| ≥ ε ||d||},

and let us note that the point 0 belongs to the closure of A. Applying the curve selection lemma
we deduce that there exist γ > 0 and a definable C1 path p : (−γ, 1) → Rm such that p((0, 1)) ⊂ A
and p(0) = 0, which contradicts the assumption (i). 2

Let us note that every definable locally Lipschitz mapping F admits directional derivatives. This
follows simply from the monotonicity lemma applied to each bounded curve of the form

(0, +∞) 3 t 7→ F (x + td)− F (x)

t
,

where x ∈ U, d ∈ Rn. Locally Lipschitz, directionally differentiable functions are called Bouligand
differentiable [13, Section 3.1], and have the following well-known property [25]. We include the
brief proof for future reference.

Proposition 3.4 (conical approximation). If F : U → Rm is a Bouligand differentiable
mapping (so in particular if F is a definable locally Lipschitz mapping), then for all x ∈ U ,

||F (x + d)− F (x)− F ′(x; d)|| = ox(||d||).

Proof. With no loss of generality we assume that x = 0. Let us introduce the mapping η(d) =
F (d)−F (0)−F ′(0, d), d ∈ U . Using the Lipschitz property of F we have for all d, e in a neighborhood
of 0 in Rn,

(3.4) ||F ′(0; d)− F ′(0; e)|| = || lim
t→0+

F (td)− F (te)

t
|| ≤ L||d− e||

where L > 0 is a Lipschitz constant of F around 0. Since F is locally Lipschitz, we deduce from (3.4)
that η is also locally Lipschitz continuous. On the other hand the definition of η implies that for
all d ∈ U , η(td)/t → 0 = η′(0; d) as t ↓ 0. Hence η is Gâteaux differentiable with η′G(0) = 0.
Since η is a locally Lipschitz function in finite dimensions, it is also Fréchet differentiable. Thus
the conclusion follows. 2
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Remark 3.5. The special case of semialgebraic (respectively, subanalytic) locally Lipschitz con-
tinuous mappings is of particular interest. In this case, the function t 7−→ ox(t) of Proposition 3.4
is also semialgebraic (respectively, subanalytic) and admits a Puiseux development of the form

ox(t) =
+∞∑
i=p

ai t
i/q, for all t ∈ (0, ε),

for some ε > 0 and integers p > q > 0 with ap 6= 0 (recall that lim
t→0+

t−1 ox(t) = 0). We deduce that

F (x + d)− F (x)− F ′(x; d) = Ox(||d||1+γ),

where γ = p
q
− 1 > 0. In other words there exist a positive constant c and ε > 0 such that

||F (x + d)− F (x)− F ′(x; d)|| ≤ c ||d||1+γ

for all d, ||d|| ≤ ε. Similar results could be derived for any Lipschitz continuous mapping definable
in a “polynomially bounded” o-minimal structure over R [11, p. 510 and Property 4.12].

One could wonder if definable Gâteaux differentiable mappings are automatically Fréchet differen-
tiable. The classical example of the (definable) function f : R2 → R with

f(x, y) =





x y3

x2 + y4 , if (x, y) 6= (0, 0)

0 , if (x, y) 6= (0, 0)

reveals that this is false in general.

3.2 Semismoothness results

Theorem 3.6. Any locally Lipschitz tame (resp. definable) mapping F : U → Rm (U ⊂ Rm) is
semismooth.

Proof. Our aim is to show that for all points x in U the mapping

d 7→ η(d) := F ′(x + d; d)− F ′(x; d)

is Fréchet differentiable at 0 with η′(0) = 0. With no loss of generality we assume that x = 0. Since
the problem is of local nature with F being continuous we can also assume that F is definable (see
Remark 2.3). In view of Lemma3.3 it suffices therefore to prove that

lim
t→0+

F ′(p(t); p(t))− F ′(0; p(t))

||p(t)|| = 0

for any C1 definable curve p : (−1, 1) → Rm such that p(0) = 0 and p(t) ∈ U \{0} for all t ∈ (0, 1).
Let p : (−1, 1) → U be a definable C1 path such that p(0) = 0, p(t) 6= 0 if t > 0. Since the curve

(0, 1) 3 t 7→ p(t)

||p(t)||
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is definable, the monotonicity lemma ensures its convergence (as t goes to 0) to some vector u in
the unit sphere of Rm. Hence there exists a continuous definable curve θ : (0, 1) → Rm such that

p(t) = ||p(t)||(u + θ(t)),

with θ(t) → 0 as t ↓ 0. Let us set r(t) = ||p(t)|| for all t ∈ [0, 1). The monotonicity lemma applied
to each coordinate of p(t) and the fact that p(t) 6= 0 yield that for t > 0 small we have r′(t) 6= 0.

For t > 0 sufficiently small the Lipschitz property of F yields

||F (p(t))− F (r(t)u)||
r(t)

≤ L ||θ(t)||,

which tends to 0 as t ↘ 0+. We thus obtain

F ′(0; u) = lim
t↓0

F (r(t)u)− F (0)

r(t)
= lim

t↓0
F (p(t))− F (0)

r(t)
.

Setting q(t) = F (p(t)) we deduce

F ′(0; u) = lim
t↓0

q(t)− q(0)

r(t)
,

and applying Lemma 3.1(ii) for the definable function r(t) and for each coordinate of the definable
function t 7→ q(t)− q(0) we infer that

(3.5) F ′(0; u) = lim
t↓0

q′(t)
r′(t)

.

Using the chain rule and the monotonicity lemma we have for t > 0 small

q′(t+) = q′(t) = F ′(p(t); p′(t)),

which combined with (3.5) yields

(3.6) lim
t→0+

F ′(p(t) ;
p′(t)
r′(t)

) = F ′(0; u).

Thus the curve

(3.7) t 7−→ ϕ(t) := ||F ′(p(t);
p′(t)
r′(t)

)− F ′(p(t); u)||

is well defined for t > 0 sufficiently small. Using (3.4) (see the proof of Proposition 3.4) we have

ϕ(t) = ||F ′(p(t); u +
[r(t)θ(t)]′

r′(t)
)− F ′(p(t), u) || ≤ L || [r(t)θ(t)]

′

r′(t)
||.
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Note that for each i = 1, . . . , m we have r(t)θi(t)/r(t) = θi(t) → 0 as t ↓ 0. In view of Lemma 3.1(ii)
we deduce that r′(t)−1[r(t)θi(t)]

′ → 0 as t ↓ 0, i = 1, . . . , m, thus

(3.8) lim
t→0+

ϕ(t) = 0.

Combining (3.6) with (3.7) and (3.8) we deduce

(3.9) lim
t→0+

F ′(p(t); u) = F ′(0; u).

On the other hand, since F is Lipschitz around 0 we obtain for t > 0 sufficiently small (see (3.4))

(3.10) ||F ′(p(t); p(t))− F ′(p(t); r(t)u)|| ≤ Lr(t) ||θ(t)||,

and

(3.11) ||F ′(0; p(t))− F ′(0; r(t)u)|| ≤ Lr(t) ||θ(t)||.

Combining (3.10), (3.11) and using the triangle inequality we obtain

||F ′(p(t); p(t))− F ′(0, p(t))|| ≤ ||F ′(p(t); p(t))− F ′(p(t); r(t)u)||
+ ||F ′(p(t); r(t)u)− F ′(0; r(t)u)|| + ||F ′(0; r(t)u)− F ′(0; p(t))||

≤ r(t) (2L||θ(t)||+ ||F ′(p(t); u)− F ′(0; u)||) .

This completes the proof. 2

It is worth pointing out that semismooth functions need not be tame. For example, the function
f(x) = x3 sin(1/x) (with f(0) = 0) is continuously differentiable, so certainly semismooth, but can-
not be definable, since its zero set is not locally finite, contradicting property (iv) of Definition 2.1.

Remark 3.7. Assume that F is (globally) subanalytic and Lipschitz continuous. In an analogous
way as for the conic approximation result, the Puiseux lemma provides additional information.
For x fixed, we have indeed

F ′(x + d; d)− F ′(x; d) = Ox(||d||1+γ)(3.12)

where γ is a positive rational number. Using the terminology of [22, 26] one can assert that semi-
algebraic or subanalytic Lipschitz continuous mappings are γ-order semismooth or γ-semismooth
with γ > 0.

4 An illustration: convergence rate of the Newton method

As pointed out in the introduction, the Newton method can be run successfully for solving nonlinear
equations involving semismooth data. In general, under rather mild assumption the convergence
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of the method is superlinear [13]. Let us recall (see [7, page 14], for example) that a given algo-
rithm {xk}k≥1 is said to converge linearly (respectively, superlinearly) to x∗ if the quotient

qk :=
||xk+1 − x∗||
||xk − x∗||

satisfies lim sup
k→∞

qk < 1 (respectively, lim
k→∞

qk = 0).

As an illustration of our main results, we prove under mild assumptions that the Newton
method applied to a subanalytic locally Lipschitz mapping generates a sequence xk that converges
superlinearly to x∗ and satisfies

lim sup
k→∞

||xk+1 − x∗||
||xk − x∗||1+γ

< +∞,

where γ > 0 (see Theorem 4.3).

Definition 4.1. Let F : Rn → Rm be a locally Lipschitz continuous function.

(i) The limiting Jacobian of F at x ∈ Rn is defined as

∂F (x) = {A ∈ L(Rn,Rm) : ∃uk ∈ D,F ′(uk) → A, k → +∞}.

(ii) The Clarke Jacobian of F at x ∈ Rn is defined as (see [8, p. 70])

∂◦F (x) = co ∂F (x),

where for all S ⊂ Rm, coS stands for the closed convex envelope of S.
(As usual, D denotes the points of differentiability of F .)

Remark 4.2. Due to the Lipschitz property of F , the Clarke Jacobian of F is a nonempty compact
convex set [13, Proposition 7.1.4], so in particular we have ∂◦F (x) = co ∂F (x), for all x ∈ U .

In the remainder, we say that x is a regular point of F if each A ∈ ∂◦F (x) has a maximal rank,
that is, equal to min {n, m}. Note that the upper semicontinuity of the multivalued mapping ∂◦F
implies that the set of regular points of F is an open subset of Rn.

When n = m, an exact Newton algorithm for solving the nonsmooth nonlinear equation F (x) = 0
can be devised as follows:

Nonsmooth Newton algorithm

Step 1 Choose a regular point x0 ∈ Rn.

Step 2 If F (xk) = 0 then stop.

Step 3 Take ∆(xk) in ∂◦F (xk), compute xk+1 via

F (xk) + ∆(xk)(xk+1 − xk) = 0,
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k ← k + 1 and go to Step 2.

An important issue of the above algorithm is obviously the computation of xk+1 in Step 3. This is in
general a delicate matter tightly linked to the convergence of the algorithm (see [13] and references
therein). We will not tackle this problem here.

The following result is a stronger version of [13, Theorem 7.5.3] in the case of subanalytic
mappings.

Theorem 4.3. Let F : Rn → Rn be a locally Lipschitz (globally) subanalytic function and a regular
point x∗ ∈ Rn such that F (x∗) = 0. Then there exists δ > 0 such that for all x0 ∈ B(x∗, δ) the
nonsmooth Newton algorithm is well defined and generates a sequence {xk}k∈N which converges
to x∗. Moreover there exists a rational number γ > 0 such that

(4.13) ||xk+1 − x∗|| = O(exp[−(1 + γ)k]),

which implies in particular that

||xk+1 − x∗|| ≤ c

2(1+γ)k

for some positive constant c.

The proof relies on the following lemma:

Lemma 4.4. Let F : Rn → Rn be a locally Lipschitz subanalytic function and x ∈ Rn. Then there
exists a positive rational number γ such that

(4.14) ||F (y)− F (x)−∆(y)(y − x)|| = Ox(||y − x||1+γ),

where ∆(y) is any element of ∂◦F (y).

Proof. Using Proposition 3.4 and Remark 3.5 we have

(4.15) F (y)− F (x)− F ′(x; y − x) = Ox(||y − x||1+γ1)

where γ1 is a positive rational number. To obtain (4.14), it suffices therefore to establish that

||F ′(x; d)−∆(x + d)d|| = Ox(||d||1+γ2), with γ2 > 0 in Q.

The constant γ2 = γ posited in Remark 3.7 does the job: indeed, let us fix d ∈ Rn. By definition
of the Clarke Jacobian for a Lipschitz function and the Carathéodory theorem we obtain a finite

sequence λ1, . . . , λn2+1 ≥ 0 with
∑n2+1

1 λi = 1 and n2 + 1 sequences {di,k}k∈N with di,k → d
as k → +∞ such that x + di,k ∈ D and

(4.16) ∆(x + d) =
n2+1∑
i=1

λi lim
k→+∞

F ′(x + di,k).

12



In view of Remark 3.7, we get

||
n2+1∑
i=1

λiF
′(x; di,k)−

n2+1∑
i=1

λiF
′(x + di,k, d)||

≤
n2+1∑
i=1

λi||F ′(x; di,k)− F ′(x + di,k; di,k) + F ′(x + di,k; d− di,k)||

≤
n2+1∑
i=1

λi

(||F ′(x; di,k)− F ′(x + di,k; di,k)||+ ||F ′(x + di,k; d− di,k)||)

≤ Ox(||d||1+γ2) + L

n2+1∑
i=1

||d− di,k||

where L > 0 is the Lipschitz constant of f around x + d. Taking the limit k → ∞ we obtain the
asserted result. 2

The proof of Theorem 4.3 is now standard. The above result shows, in the terminology of [13,
Definition 7.5.13], that the multifunction ∂◦F is a “(1 + γ)-order linear Newton approximation” of
the function F at the point x. Superlinear convergence now follows in an analogous fashion to [13,
Theorem 7.5.15]: see the discussion in [13, p. 696].
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