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Abstract We establish the following result: if the graph of a lower semicontinuous real-extended-
valued function f : Rn → R ∪ {+∞} admits a Whitney stratification (so in particular if f is a
semialgebraic function), then the norm of the gradient of f at x ∈ dom f relative to the stratum
containing x bounds from below all norms of Clarke subgradients of f at x. As a consequence, we
obtain a Morse-Sard type theorem as well as a nonsmooth extension of the Kurdyka- Lojasiewicz
inequality for functions definable in an arbitrary o-minimal structure. It is worthwhile pointing
out that, even in a smooth setting, this last result generalizes the one given in [19] by removing
the boundedness assumption on the domain of the function.
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1 Introduction

Nonsmoothness in optimization seldom occurs in an arbitrary manner, but instead is often
well-structured. Such structure can often be exploited in sensitivity analysis and algorithm
convergence: examples include “amenability”, “subsmoothness”, “prox-regularity” (see [30],
for example), and more recently the idea of a “partly smooth” function, where a naturally
arising manifold M contains the minimizer and the function is smooth along this manifold. We
quote [23] for formal definitions, examples and more details. In the last two decades, several
researchers have tried to capture this intuitive idea in order to develop algorithms ensuring
better convergence results: see for instance the pioneer work [22], and also [25], [9] for recent
surveys.

In this work we shall be interested in a particular class of well-structured (nonsmooth) func-
tions, namely functions admitting a Whitney stratification (see Section 2 for definitions). Since
this class contains in particular the semialgebraic and the subanalytic functions (more generally,
functions that are definable in some o-minimal structure over R), the derived results can directly
be applied in several concrete optimization problems involving such structures. Our central idea
is to relate derivative ideas from two distinct mathematical sources: variational analysis and dif-
ferential geometry. Specifically, we derive a lower bound on the norms of Clarke subgradients at
a given point in terms of the “Riemannian” gradient with respect to the stratum containing that
point. This is a direct consequence of the “projection formula” given in Proposition 4 and has as
corollaries a Morse-Sard type theorem for Clarke critical points of lower semicontinuous Whitney
stratifiable functions (Corollary 5(ii)) as well as a nonsmooth version of the Kurdyka- Lojasiewicz
inequality –which is hereby extended to unbounded domains, see Theorem 11– for lower semicon-
tinuous definable functions (Theorem 14 and Corollary 15). Although the proofs are reasonably
routine, analogous results fail for the (broader) convex-stable subdifferential (introduced and
studied in [4]), unless f is assumed to be locally Lipschitz continuous, see Remark 8.
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Theorems of Morse-Sard type are central in many areas of analysis, typically describing the
size of the set of ill-posed problem instances in a given class. Classical results deal with smooth
functions ([31], [21]), but recent advances deal with a variety of nonsmooth settings: [3], [13].

A further long-term motivation of this work is to understand the convergence of minimiza-
tion algorithms. As one example, in order to treat nonconvex (and nonsmooth) minimization
problems, the authors of [4] introduced an algorithm called the “gradient sampling algorithm”.
The idea behind this algorithm was to sample gradients of nearby points of the current iterate
and to produce the next iterate by following the vector of minimum norm in the convex hull
generated by the sampled negative gradients. In the case that the function is locally Lipschitz,
the above method can be viewed as a kind of ε-Clarke subgradient algorithm for which both
theoretical and numerical results are quite satisfactory, see [4]. The convergence of the whole
sequence of iterates remains however an open question and this is also the case for many classical
subgradient methods for nonconvex minimization, see [18]. We hope that, just as in the smooth
case, the nonsmooth  Lojasiewicz inequality we develop (cf. formula (22) in Section 4) may help
in understanding the global convergence of subgradient methods.

As we outline above, we use a stratification approach to develop our results. Ioffe [14]
has recently announced an extension of the work described here, leading to a remarkable and
powerful Sard-type result for stratifiable multifunctions.

2 Preliminaries

In this section we recall several definitions and results concerning nonsmooth analysis (sub-
gradients, generalized critical points) and stratification theory. For nonsmooth analysis we refer
to the comprehensive texts [5], [6], [27] and [30].

In what follows the vector space Rn is endowed with its canonical scalar product 〈·, ·〉.

Nonsmooth analysis. Given an extended-real-valued function f : Rn → R ∪ {+∞} we
denote its domain by dom f := {x ∈ Rn : f(x) < +∞}, its graph by

Graph f := {(x, f(x)) ∈ Rn×R : x ∈ dom f}

and its epigraph by
epi f := {(x, β) ∈ Rn×R : f(x) ≤ β}.

In this work we shall deal with lower semicontinuous functions, that is, functions for which epi f
is a closed subset of Rn×R. In this setting, we say that x∗ ∈ Rn is a Fréchet subgradient of f at
x ∈ dom f provided that

lim inf
y→x,y 6=x

f(y)− f(x)− 〈x∗, y − x〉
‖y − x‖

≥ 0. (1)

The set of all Fréchet subgradients of f at x is called the Fréchet subdifferential of f at x and
is denoted by ∂̂f(x). If x /∈ dom f then we set ∂̂f(x) = ∅.

Let us give a geometrical interpretation of the above definition: it is well known that the
gradient of a C1 function f : Rn → R at x ∈ Rn can be defined geometrically as the vector
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∇f(x) ∈ Rn such that (∇f(x),−1) is normal to the tangent space T(x,f(x))Graph f of (the
C1 manifold) Graph f at (x, f(x)), that is,

(∇f(x),−1) ⊥ T(x,f(x))Graph f.

A similar interpretation can be stated for Fréchet subgradients. Let us first define the (Fréchet)
normal cone of a subset C of Rn at x ∈ C by

N̂C(x) =

v ∈ Rn : lim sup
y→x

y∈C\{x}

〈 v, y − x

||x− y||
〉 ≤ 0

 . (2)

Then it can be proved (see [30, Theorem 8.9], for example) that for a nonsmooth function f we
have:

x∗ ∈ ∂̂f(x) if and only if (x∗,−1) ∈ N̂epi f (x, f(x)). (3)

The Fréchet subdifferential extends the notion of a derivative in the sense that if f is differen-
tiable at x then ∂̂f(x) = {∇f(x)}. However, it is not completely satisfactory in optimization,
since ∂̂f(x) might be empty-valued at points of particular interest (think of the example of the
function f(x) = −||x||, at x = 0). Moreover, the Fréchet subdifferential is not a closed mapping,
so it is unstable computationally. For this reason we also consider (see [30, Chapter 8], for
example):

(i) the limiting subdifferential ∂f(x) of f at x ∈ dom f :

p ∈ ∂f(x) ⇐⇒ ∃(xn, x
∗
n)n∈N ⊂ Graph ∂̂f :



lim
n→∞

xn = x,

lim
n→∞

f(xn) = f(x),

lim
n→∞

x∗n = p,

(4)

where Graph ∂̂f := {(u, u∗) : u∗ ∈ ∂̂f(u)};

(ii) the asymptotic limiting subdifferential ∂∞f(x) of f at x ∈ dom f :

q ∈ ∂∞f(x) ⇐⇒ ∃(yn, y
∗
n)n∈N ⊂ Graph ∂̂f, ∃tn ↘ 0+ :



lim
n→∞

yn = x,

lim
n→∞

f(yn) = f(x),

lim
n→∞

tny
∗
n = q.

(5)

When x /∈ dom f we set ∂f(x) = ∂∞f(x) = ∅.
The Clarke subdifferential ∂◦f(x) of f at x ∈ dom f is the central notion of this work. It can

be defined in several (equivalent) ways, see [5]. The definition below (see [15, Proposition 3.3],
[16, Proposition 3.4] or [28, Theorem 8.11]) is the most convenient for our purposes. (For any
subset S of Rn we denote by coS the closed convex hull of S.)
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Definition 1 (Clarke subdifferential) The Clarke subdifferential ∂◦f(x) of f at x is the set

∂◦f(x) =


co {∂f(x) + ∂∞f(x)} , if x ∈ dom f

∅, if x /∈ dom f .
(6)

Remark 1 The construction (6) does not look very natural at first sight. However, it can be
shown that an analogous to (3) formula holds also for the Clarke subdifferential, if N̂epi f (x, f(x))
is replaced by the Clarke normal cone, which is the closed convex hull of the limiting normal
cone. The latter cone comes naturally from the Fréchet normal cone by closing its graph, see
[30, pp. 305, 336] for details.

From the above definitions it follows directly that for all x ∈ Rn, one has

∂̂f(x) ⊂ ∂f(x) ⊂ ∂◦f(x). (7)

The elements of the limiting (respectively, Clarke) subdifferential are called limiting (respect-
ively, Clarke) subgradients.

The notion of a Clarke critical point (respectively, critical value, asymptotic critical value)
is defined as follows.

Definition 2 (Clarke critical point) We say that x ∈ Rn is a Clarke critical point of the
function f if

∂◦f(x) 3 0.

Definition 3 ((asymptotic) Clarke critical value) (i) We say that α ∈ R is a Clarke criti-
cal value of f if the level set f−1({α}) contains a Clarke critical point.
(ii) We say that λ ∈ R ∪ {±∞} is an asymptotic Clarke critical value of f , if there exists a
sequence (xn, x

∗
n)n≥1 ⊂ Graph ∂◦f , such that

f(xn) → λ

(1 + ||xn||) ||x∗n|| → 0.

Let us make some observations concerning the above definitions:

Remark 2 (i) Both limiting and Clarke subgradients are generalizations of the usual gradient:
indeed, if f is C1 around x then we have:

∂f(x) = ∂◦f(x) = {∇f(x)}.

(ii) The asymptotic limiting subdifferential should not be thought as a set of subgradients.
Roughly speaking it is designed to detect “vertical tangents” to the graph of f . For instance,
for the (nonsmooth) function f(x) = x

1
3 (x ∈ R) we have ∂∞f(0) = R+. Note that since the

domain of the Fréchet subdifferential is dense in dom f , we always have ∂∞f(x) 3 0, for all
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x ∈ dom f (see also [30, Corollary 8.10]); therefore, this latter relation cannot be regarded as a
meaningful definition of critical points.

(iii) To illustrate the definition of the Clarke critical point (Definition 1) let us consider the
example of the function f : R → R defined by

f(x) =
{

x, if x ≤ 0
−
√
x if x > 0.

Then ∂̂f(0) = ∅ and ∂f(0) = {1}. However, since ∂∞f(0) = R− it follows from (6) that
∂◦f(0) = (−∞, 1], so x = 0 is a Clarke critical point.

(iv) It follows from Definition 3 that every Clarke critical value α ∈ R is also an asymptotic
Clarke critical value (indeed, given x0 ∈ f−1({α}) with 0 ∈ ∂◦f(x0), it is sufficient to take
xn := x0 and x∗n = 0). Note that in case that f has a bounded domain dom f , Definition 3 (ii)
can be simplified in the following way: the value λ ∈ R∪{±∞} is asymptotically critical if, and
only if, there exists a sequence (xn, x

∗
n)n≥1 ⊂ Graph ∂◦f , such that f(xn) → λ and x∗n → 0.

Stratification results. By the term stratification we mean a locally finite partition of a
given set into differentiable manifolds, which, roughly speaking, fit together in a regular manner.
Let us give a formal definition of a Cp-stratification of a set (for general facts about stratifications
we quote [26] or [17] and references therein).

Let X be a nonempty subset of Rn and p a positive integer. A Cp stratification X = (Xi)i∈I

of X is a locally finite partition of X into Cp submanifolds Xi of Rn such that for each i 6= j

Xi ∩Xj 6= ∅ =⇒ Xj ⊂ Xi \Xi.

The submanifolds Xi are called strata of X . Furthermore, given a finite collection {A1, . . . , Aq} of
subsets of X, a stratification X =(Xi)i∈I is said to be compatible with the collection {A1, . . . , Aq}
if each Ai is a locally finite union of strata Xj .

In this work we shall use a special type of stratification (called a Whitney stratification)
for which the strata are such that their tangent spaces also “fit regularly”. To give a precise
meaning to this statement, let us first define the distance (or gap) of two vector subspaces V
and W of Rn by the following standard formula:

D(V,W ) = max

{
sup

v∈V, ||v||=1
d(v,W ), sup

w∈W, ||w||=1
d(w, V )

}
.

Note that
sup

v∈V, ||v||=1
d(v,W ) = 0 ⇐⇒ V ⊂W.

Further we say that a sequence {Vk}k∈N of subspaces of Rn converges to the subspace V of Rn

(in short, V = lim
k→+∞

Vk) provided

lim
k→+∞

D(Vk, V ) = 0.
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Notice that in this case the subspaces Vk will eventually have the same dimension (say d),
thus the above convergence is essentially equivalent to the convergence in the grassmannian
manifold Gn

d .

A Cp-stratification X = (Xi)i∈I of X has the Whitney-(a) property, if for each x ∈ Xi ∩Xj

(with i 6= j) and for each sequence {xk}k≥1 ⊂ Xi we have:

lim
k→∞

xk = x

and
lim

k→∞
Txk

Xi = T

 =⇒ TxXj ⊂ T

where TxXj (respectively, Txk
Xi) denotes the tangent space of the manifold Xj at x (respectively,

of Xi at xk). In the sequel we shall use the term Whitney stratification to refer to a C1-
stratification with the Whitney-(a) property.

3 Projection formulae for subgradients

In this section we make precise the links between the Clarke subgradients of a lower semi-
continuous function whose graph admits a Whitney stratification and the gradients of f (with
respect to the strata). As a corollary we obtain a nonsmooth extension of the Morse-Sard
theorem for such functions (see Corollary 5).

Let f : Rn → R∪ {+∞} be a lower semicontinuous function. We shall deal with nonvertical
Whitney stratifications S = (Si)i∈I of the graph Graph f of f , that is, Whitney stratifications
satisfying for all i ∈ I and u ∈ Si the transversality condition:

en+1 /∈ TuSi (H)

where
en+1 = (0, . . . , 0, 1) ∈ Rn+1.

Remark 3 If f is locally Lipschitz continuous, then it is easy to check that any stratification
of Graph f is nonvertical. This might also happen for other functions (think of the non-locally
Lipschitz function f(x) =

√
|x|: every stratification of Graph f should contain the stratum

S0 = {(0, 0)}), however the example of the function f(x) = x1/3 shows that this is not the
case for any (continuous stratifiable) function f and any stratification of its graph (consider the
trivial stratification consisting of the single stratum S = Graph f and take u = (0, 0)).

Let us denote by Π : Rn+1 → Rn the canonical projection on Rn, that is,

Π(x1, . . . , xn, t) = (x1, . . . , xn).

For each i ∈ I we set
Xi = Π(Si) and fi = f |Xi . (8)

Due to the assumption (H) (nonverticality) one has that for all i ∈ I
(i) Xi is a C1 submanifold of Rn, and
(ii) fi : Xi → R is a C1 function.
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If, in addition, the function f is continuous, then it can be easily seen that
(iii) X = (Xi)i∈I is a Whitney stratification of dom f = Π(Graph f).

Notation. In the sequel, for any x ∈ dom f, we shall denote by Xx (respectively, Sx) the
stratum of X (respectively of S) containing x (respectively (x, f(x))). The manifolds Xi are
here endowed with the metric induced by the canonical Euclidean scalar product of Rn. Using the
inherited Riemannian structure of each stratum Xi of X , for any x ∈ Xi, we denote by ∇Rf(x)
the gradient of fi at x with respect to the stratum Xi, 〈·, ·〉.

Proposition 4 (Projection formula) Let f : Rn → R ∪ {+∞} be a lower semicontinuous
function and assume that Graph f admits a nonvertical Whitney stratification S = (Si)i∈I .
Then for all x ∈ dom f we have

Proj TxXx
∂f(x) ⊂ {∇Rf(x)} ; Proj TxXx

∂∞f(x) = {0} (9)

and
Proj TxXx

∂◦f(x) ⊂ {∇Rf(x)}, (10)

where Proj V : Rn → V denotes the orthogonal projection on the vector subspace V of Rn.

Proof We shall use the above notation (and in particular the notation of (8)).
Let us first describe the links between the Fréchet subdifferential ∂̂f(x) and the gradient of
f |Xx at a point x ∈ dom f . For any v ∈ TxXx and any continuously differentiable curve
c : (−ε, ε) → Xx (ε > 0) with c(0) = x and ċ(0) = v, the function

f ◦ c (:= fi ◦ c) : (−ε, ε) → R

is continuously differentiable. In view of [30, Theorem 10.6, page 427], we have{
〈x∗, v〉 : x∗ ∈ ∂̂f(x)

}
⊂

{
d

dt
f(c(t)) |t=0

}
.

Since d
dtf(c(t))|t=0 = 〈∇Rf(x), v〉 it follows that

Proj TxXx
∂̂f(x) ⊂ {∇Rf(x)}. (11)

In a second stage we prove successively that

Proj TxXx
∂f(x) ⊂ {∇Rf(x)} and Proj TxXx

∂∞f(x) ⊂ {0}. (12)

To this end, take p ∈ ∂f(x), and let {xk}k ⊂ dom ∂̂f , x∗k ∈ ∂̂f(xk) be such that (xk, f(xk)) →
(x, f(x)) and x∗k → p. Due to the local finiteness property of S, we may suppose that the
sequence {uk := (xk, f(xk))}k lies entirely in some stratum Si of dimension d.

If Si = Sx then by (11) we deduce that Proj TxXx
(x∗k) = ∇Rf(xk), thus using the continuity

of the projection and the fact that f |Xx is C1 (so∇Rf(xk) → ∇Rf(x)) we obtain Proj TxXx
(p) =

∇Rf(x).
If Si 6= Sx, then from the convergence (xk, f(xk)) → (x, f(x)) we deduce that Si ∩ Sx 6= ∅

(thus d = dimSi > dimSx). Using the compactness of the grassmannian manifold Gn
d , we may

assume that the sequence {Tuk
Si}k≥1 converges to some vector space T of dimension d. Then
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the Whitney-(a) property yields that T ⊃ T(x,f(x))Sx. Recalling (3), for each k ≥ 1 we have that
the vector (x∗k,−1) is Fréchet normal to the epigraph epi f of f at uk, hence it is also normal (in
the classical sense) to the tangent space Tuk

Si. By a standard continuity argument the vector

(p,−1) = lim
k→∞

(x∗k,−1)

must be normal to T and a fortiori to T(x,f(x))Sx. By projecting (p,−1) orthogonally on TxXx +
R en+1 ⊃ T(x,f(x))Sx, we notice that (Proj TxXx

(p),−1) is still normal to T(x,f(x))Sx. By the
definition of the subgradient we conclude that

Proj TxXx
(p) = ∇Rf(x), (13)

thus the first part of (12) follows.
Let now any q ∈ ∂∞f(x). By definition there exist {yk}k ⊂ dom ∂̂f , y∗k ∈ ∂̂f(yk) and

a positive sequence tk ↘ 0+ such that (yk, f(yk)) → (y, f(y)) and tky
∗
k → q. As above we

may assume that the sequence {yk}k belongs to some stratum Si and that the tangent spaces
Tuk

Si = T(xk,f(xk))Si converge to some T . Since tk(y∗k,−1) is normal to Tuk
Si we can similarly

deduce that (Proj TxXx
(q), 0) is normal to T(x,f(x))Sx. Since Proj Rn×{0}T(x,f(x))Sx = TxXx this

implies that ∂∞f(x) ⊂ (TxXx)⊥ and the second part of (12) is proved. It now follows from (12)
and Remark 2 (ii) that (9) holds.

In order to conclude let us recall (Definition 1) that ∂◦f(x) = co (∂f(x) + ∂∞f(x)). In view
of (12) any element of co (∂f(x) + ∂∞f(x)) admits ∇Rf(x) as a projection onto TxXx. By
taking the closure of the previous set we obtain (10). �

Remark 4 The inclusion in (10) may be strict (think of the function f(x) = −||x||1/2 at x = 0
where ∂◦f(0) = ∅). Of course, whenever ∂◦f(x) is nonempty (for example, if f is locally
Lipschitz), under the assumptions of Proposition 4 we have

Proj TxXx
∂◦f(x) = {∇Rf(x)}.

Corollary 5 Assume that f is lower semicontinuous and admits a nonvertical Cp-Whitney
stratification. Then:
(i) for all x ∈ dom ∂◦f we have

||∇Rf(x)|| ≤ ||x∗||, for all x∗ ∈ ∂◦f(x). (14)

(ii) (Morse-Sard theorem) If p ≥ n, then the set of Clarke critical values of f has Lebesgue
measure 0.

Proof Assertion (i) is a direct consequence of (10) of Proposition 4. To prove (ii), set C :=
[∂◦f ]−1({0}) = {x ∈ Rn : ∂◦f(x) 3 0}. Since the set of strata is at most countable, the
restrictions of f to each of those yield a countable family {fn}n∈N of Cp functions. In view
of (14), we have that C ⊂ ∪n∈N∇f−1

n (0). The result follows by applying to each Cp-function fn

the classical Morse-Sard theorem [31]. �

As we see in the next section, several important classes of lower semicontinuous functions satisfy
the assumptions (thus also the conclusions) of Proposition 4 and of Corollary 5.
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4 Kurdyka- Lojasiewicz inequalities for o-minimal functions

Let us recall briefly a few definitions concerning o-minimal structures (see for instance, Coste [7],
van der Dries-Miller [11], Ta Lê Loi [33], and references therein).

Definition 6 (o-minimal structure) An o-minimal structure on (R,+, .) is a sequence of
boolean algebras On of “definable” subsets of Rn, such that for each n ∈ N

(i) if A belongs to On, then A× R and R×A belong to On+1 ;
(ii) if Π : Rn+1 → Rn is the canonical projection onto Rn then for any A in On+1, the

set Π(A) belongs to On ;
(iii) On contains the family of algebraic subsets of Rn, that is, every set of the form

{x ∈ Rn : p(x) = 0},

where p : Rn → R is a polynomial function ;
(iv) the elements of O1 are exactly the finite unions of intervals and points.

Definition 7 (definable function) Given an o-minimal structure O (over (R,+, .)), a func-
tion f : Rn → R ∪ {+∞} is said to be definable in O if its graph belongs to On+1.

Remark 5 (examples) At a first sight, o-minimal structures might appear artificial in optim-
ization. The following properties (see [11] for the details) might convince the reader that this is
not the case.
(i) (Tarski-Seidenberg) The collection of semialgebraic sets is an o-minimal structure. Recall
that semialgebraic sets are Boolean combinations of sets of the form

{x ∈ Rn : p(x) = 0, q1(x) < 0, . . . , qm(x) < 0},

where p and qi’s are polynomial functions on Rn .
(ii) (Gabrielov) There exists an o-minimal structure that contains the sets of the form

{(x, t) ∈ [−1, 1]n × R : f(x) = t}

where f : Rn → R is real-analytic around [−1, 1]n.
(iii) (Wilkie) There exists an o-minimal structure that contains simultaneously the graph of
the exponential function R 3 x 7→ expx and all semialgebraic sets (respectively, all sets of the
structure defined in (ii)).
These results are crucial foundation blocks on which o-minimal geometry rests. Let us finally
recall the following important fact: the composition of mappings that are definable in some
o-minimal structure remains in the same structure [11, Section 2.1]. This is true for the sum,
the inf-convolution and several other classical operations of analysis involving a finite number of
definable objects. This remarkable stability, combined with new techniques of finite-dimensional
optimization offers a large field of investigation. Several works have already been developed in
this spirit, see for instance [12], [1], [3].

Given any o-minimal structure O and any lower semicontinuous definable function f : Rn →
R∪ {+∞} the assumptions of Proposition 4 are satisfied. More precisely, we have the following
result.
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Lemma 8 Let O be an o-minimal structure, B := {B1, . . . , Bq} be a collection of definable
subsets of Rn and f : Rn → R ∪ {+∞} a definable lower semicontinuous function. Then
for any p ≥ 0, there exists a nonvertical definable Cp-Whitney stratification {S1, . . . , S`} of
Graph f yielding (by projecting each stratum Si ⊂ Rn+1 onto Rn) a Cp-Whitney stratification
{X1, . . . , X`} of dom f compatible with B.

Proof By transforming, using diffeomorphisms preserving verticality, Rn to D := {x ∈ Rn :
||x|| < 1} and R to (−1, 1) we may assume without loss of generality that f is defined in
D := {x ∈ Rn : ||x|| < 1} with values in (−1, 1). Set X = Graph f and Ai = Bi × (−1, 1), for
i ∈ {1, . . . , q} and let π : X → D denote the restriction to Graph f of the canonical projection
of D × (−1, 1) to D. The lemma follows from the canonical stratification of the mapping π
according to [32, II.1.17]. �

Corollary 9 (Morse-Sard theorem for definable functions) Let f : Rn → R ∪ {+∞} be
a lower semicontinuous definable function and p ≥ 0. Then there exists a finite definable Cp-
Whitney stratification X = (Xi)i∈I of dom f such that for all x ∈ dom f

Proj TxXx
∂◦f(x) ⊂ {∇Rf(x) } . (15)

As a consequence
(i) For all x ∈ dom ∂◦f and x∗ ∈ ∂◦f(x), we have ||∇Rf(x)|| ≤ ||x∗|| ;
(ii) The set of Clarke critical values of f is finite ;
(iii) The set of asymptotic Clarke critical values of f is finite.

Proof Assertion (i) is a direct consequence of (15). This projection formula follows directly
by combining Lemma 8 with Proposition 4. To prove (iii), let fi be the restriction of f to the
stratum Xi. Then assertion (i), together with the fact that the number of strata is finite, implies
that the set of the asymptotic Clarke critical values of f is the union (over the finite set I) of
the asymptotic critical values of each (definable C1) function fi. Thus the result follows from
[8, Remarque 3.1.5]. Assertion (ii) follows directly from (iii) (cf. Remark 2 (iii)). �

Remark 6 The fact that the set of the asymptotic critical values of a definable differentiable
function f is finite has been established in [8, Théorème 3.1.4] (see also [19, Theorem 3.1] for the
case that the domain of f is bounded). In [21, Proposition 2] a more general result (concerning
functions taking values in Rk) has been established in the semialgebraic case.

We shall now give another application of Proposition 4, namely a nonsmooth version of the
classical Kurdyka- Lojasiewicz inequality ([19, Theorem 1]). Before we proceed, we shall improve
the latter in a way that allows us to deal directly with unbounded domains. To this end, we
shall need the following proposition.

Proposition 10 (Uniform boundedness in convergence) Let I = [a,+∞) for some a ∈
R, let V be a neighborhood of {0}×I in R+×I and φ : V → R+ a definable function, continuous
throughout {0} × I, satisfying φ(0, s) = 0 for all s ∈ I. Then there exist ε0 > 0 and continuous
definable functions χ : I → (0, ε0) and ψ : (0, ε0) → [0,+∞), such that ψ is C1 on (0, ε0),
ψ(0) = 0 and

ψ(t) ≥ φ(t, s), for all s ∈ I, t ∈ (0, χ(s)).

10



Proof We can clearly assume that a = 0. Since V is a definable neighborhood of {0}×I we may
assume there exists a continuous definable function g : I → (0,+∞) such that {(t, s) ∈ R+× I :
t ≤ g(s)} ⊂ V. Set

δ(s) := sup
{
δ > 0 : φ(t, s) ≤ min{ 1

s+ 1
, g(s)}, ∀t ∈ [0, δ)

}
(16)

and note that δ(s), being definable, has a finite number of points of discontinuity. Since φ is
continuous on {0} × I and φ(0, s) = 0, for all s ∈ I, we infer that lim inf

s→s̄
δ(s) > 0 for all s̄ ∈ I.

We deduce that there exists a continuous decreasing and definable function χ : I → (0,+∞)
satisfying χ(s) ≤ δ(s) for all s ∈ I. Set ε0 = supχ(I) > 0 and consider the definable function

ψ(t) = max
s∈χ−1(t,+∞)

φ(t, s), for all t ∈ [0, ε0).

By the monotonicity lemma [7, Theorem 2.1] we conclude that ψ is C1 on (0, β) for some
β ≤ ε0. Truncating χ if necessary (by defining χ̃(s) := min{β, χ(s)}) we see that there is
no loss of generality to assume β = ε0. Note that ψ(0) = 0. Let us show that ψ is also
continuous at t = 0. Let us assume, towards a contradiction, that there exists a sequence
tn ↘ 0+ satisfying ψ(tn) > c > 0. Then for every n ∈ N there exists sn ∈ χ−1(tn,+∞) such that
φ(tn, sn) > c > 0. If {sn} → +∞, then since δ(sn) ≥ χ(sn) we would deduce from (16) that
(sn + 1)−1 ≥ φ(tn, sn) > c, which is impossible for large values of n. Thus {sn}n is bounded
and has a convergent subsequence to some s ∈ I. Using the continuity of φ at (0, s) and the fact
that φ(0, s) = 0 the contradiction follows. One can easily check that the definable functions ψ
and χ satisfy the conclusion of the proposition. �

We now provide the following extension of the Kurdyka- Lojasiewicz ([19, Theorem 1]) for
unbounded sets in the smooth case.

Theorem 11 (Kurdyka- Lojasiewicz inequality) Let U be a nonempty definable submani-
fold of Rn (not necessarily bounded) and f : U → R+ be a definable differentiable function. Then
there exist a continuous definable function ψ : [0, ε0) → R+ satisfying ψ(0) = 0 and being C1

on (0, ε0), and a continuous definable function χ : R+ → (0, ε0) such that

||∇(ψ ◦ f)(x)|| ≥ 1, for all 0 < f(x) ≤ χ(||x||). (17)

Proof For each (t, s) ∈ (0,+∞)× R+ we set

F (t, s) := U ∩ f−1(t) ∩B(0, s) and mf (t, s) = inf {||∇f(x)|| : x ∈ F (t, s)}. (18)

Note that mf (t, s) ≡ +∞ whenever F (t, s) is empty. If for every s ≥ 0 we have F (0, s) = ∅,
then the definable function

s 7→ δ(s) := sup{δ > 0 : F (t, s) = ∅, ∀t ∈ [0, δ]}

is positive (cf. continuity of f), decreasing (since F (t, s1) ⊂ F (t, s2) for s1 ≤ s2) and continuous
on (s̄,+∞) for some s̄ > 0 (cf. monotonicity lemma [7, Theorem 2.1]). In this case (17) follows
trivially by considering the continuous function

χ(s) =
{
δ(s), if s ≥ s̄
δ(s̄), if s ≤ s̄

11



and any continuous definable function ψ.
Thus there is no loss of generality to assume that there exists s0 ≥ 0 and a decreasing

continuous definable function ρ : [s0,+∞) → (0,+∞) such that F (t, s) 6= ∅ for all t ∈ [0, ρ(s)],
and all s ≥ s0. It follows that for all s ≥ s0 and t ∈ [0, ρ(s)] we have mf (t, s) ∈ R+ and (since
arg min f = {0}) mf (0, s) = 0. Using an argument of Kurdyka ([19, Claim p. 777]) we deduce
that the function t 7→ mf (t, s) is not identically 0 near the origin and we set for all s ≥ s0

g(s) = sup { t0 ∈ (0, ρ(s)) : mf (t, s) > 0, ∀t ∈ (0, t0] } .

Then g is decreasing, positive and definable, thus continuous on [s1,+∞) for some s1 ≥ s0.
Set D = {(t, s) ∈ R+ × [s1,+∞) : t ≤ g(s)} and consider the following definable point-to-set
mapping M : D ⇒ U ⊂ Rn with

M(t, s) := {x ∈ F (t, s) : ||∇f(x)|| ≤ 2 mf (t, s)}.

Using the definable selection lemma (cf. [7, Theorem 3.1]), we obtain a definable mapping
γ : D → Rn such that γ(t, s) ∈M(t, s) for all (t, s) ∈ D. Note that for each s fixed, the function
(0, g(s)) 3 t 7→ γ(t, s) is absolutely continuous and ∂

∂tγi(·, s) changes sign only a finite number
of times on D for all i ∈ {1, . . . , n}. We set

φ(t, s) =
∫ t

0
max

i∈{1,...,n}
| ∂
∂t
γi(τ, s)| dτ,

for all (t, s) ∈ D. Applying the monotonicity lemma we obtain the integrability of the function

τ 7→ max
i=1,...,n

| ∂
∂t
γi(τ, s)|.

Using routine arguments it is easily seen that φ is actually definable on D. Moreover, φ(t, s) > 0
whenever t > 0 (else the curve γ(·, s) would be stationary, which is not possible since f(γ(t, s)) =
t). Note also that φ(0, s) = 0 and lim

t↘0+
φ(t, s) = 0. Considering a stratification of φ we deduce

that there exists a ≥ s1 and a definable neighborhood V of {0} × [a,+∞) in D where φ is
(jointly) continuous. Applying Proposition 10, we obtain ε0 > 0, a continuous definable function
χ : [a,+∞) → (0, ε0) and a continuous definable function ψ : [0, ε0) → R with ψ(0) = 0, such
that ψ is C1 on (0, ε0) and ψ(t) ≥ φ(t, s) for all t ∈ [0, χ(s)].

Fix s ≥ a. Since ψ(t) ≥ φ(t, s) for t ∈ [0, χ(s)] and ψ(0) = φ(0, s), it follows (see [2,
Lemma 1 (i)], for example) that for all t > 0 sufficiently small

ψ′(t) ≥ ∂

∂t
φ(t, s) > 0. (19)

For each s ∈ [a,+∞) let us define ε(s) to be the supremum of all ε ∈ (0, ε0) such that (19)
holds true in the interval (0, ε). It follows that s 7→ ε(s) is a positive definable function, thus
continuous on [b,+∞) for some b ≥ a. Let us define

χ̃(s) =
{

min{χ(s), ε(s)}, if s ≥ b
min{χ(b), ε(b)}, if s ∈ [0, b].
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We shall now show that (17) holds for ψ̃ = ( 1
2
√

n
)ψ and for χ̃ : R+ → (0, ε0). Indeed, let x ∈ U

be such that 0 < f(x) ≤ χ̃(||x||) (hence ∇f(x) 6= 0). Set t = f(x) and s = max{||x||, b}. Using
the definition of γ we obtain

||∇(ψ ◦ f)(x)|| = ψ′(t)||∇f(x)|| ≥ 1
2
ψ′(t)||∇f(γ(t, s))||. (20)

On the other hand, since f(γ(t, s)) = t, we have

d

dt
f(γ(t, s)) = 〈 ∂

∂t
γ(t, s),∇f(γ(t, s))〉 = 1,

for all (t, s) ∈ D, hence

√
n max

i=1,...,n
| ∂
∂t
γi(·, s)| ||∇f(γ(t, s)|| ≥ || ∂

∂t
γ(t, s)||.||∇f(γ(t, s)|| ≥ 1

and thus
||∇f(γ(t, s))|| ≥ [

√
n max

i=1,...,n
| ∂
∂t
γi(·, s)|]−1 = [

√
n
∂

∂t
φ(t, s)]−1. (21)

Since f(x) ≤ χ̃(||x||) ≤ ε(s), by combining (19), (20) and (21) we finally obtain that

||∇(ψ ◦ f)(x)|| ≥ 1
2
√
n
ψ′(t)[

∂

∂t
φ(t, s)]−1 ≥ 1

2
√
n
,

that is, (17) holds for ψ̃ = ( 1
2
√

n
)−1ψ. �

Remark 7 If in the statement of Theorem 11 the definable set U is not open, then ∇f is
understood as the Riemannian gradient of f on U .

We easily obtain the following corollaries.

Corollary 12 Let f : U → R+ be a definable differentiable function, where U is a definable
submanifold of Rn (not necessarily bounded). Then there exist a continuous definable function
ψ : [0, ε0) → R+ which is C1 on (0, ε0) with ψ(0) = 0, and a relatively open neighborhood V of
f−1(0) in U such that

||∇(ψ ◦ f)(x)|| ≥ 1,

for all x in V \ f−1(0).

Proof The result holds trivially if f−1(0) = ∅, so let us assume f−1(0) 6= ∅. Take ψ and χ as in
Theorem 11 and let x ∈ f−1(0). It suffices to show that the inequality holds on a ball around x.
Take r ∈ (0, ε0) be such that χ(||x||) > r. Since χ and f are continuous, there exists δ > 0 such
that y ∈ B(x, δ)∩U implies χ(||y||) > r > f(y). Applying Theorem 11, we conclude that for all
y ∈ B(x, δ) ∩ U inequality (17) holds. �
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Corollary 13 Let f : U → R+ be a definable differentiable function, where U is a definable
submanifold of Rn (not necessarily bounded). Let us denote by C1, . . . , Cm the connected com-
ponents of (∇f)−1({0}) and by c1, . . . , cm the corresponding critical values. Then there exist
a continuous definable function ψ : [0, ε0) → R+ which is C1 on (0, ε0) with ψ(0) = 0, and
relatively open neighborhoods Vi of Ci in U for each i ∈ {1, . . . ,m}, such that for all x ∈ Vi we
have

||∇[ψ ◦ (f − ci)](x)|| ≥ 1.

Proof Note that (∇f)−1({0}) ⊂ ∪m
i=1 f

−1(ci). For each i ∈ {1, . . . ,m} we apply Corollary 12
to the function fi := f − ci on U to obtain a relatively open neighborhood Vi of Ci and ψi :
[0, εi) → R+ such that for all x ∈ Vi \ f−1(ci)

||∇[ψi ◦ (f − ci)](x)|| ≥ 1.

Set ε0 = min{εi : i ∈ {1, . . . ,m}}. Since ψi are definable functions, shrinking ε0 if necessary,
we may assume (cf. monotonicity lemma) that ψ′i0(t) ≥ ψ′i(t), for all t ∈ (0, ε0) and all i ∈
{1, . . . ,m}. The conclusion follows by setting ψ := ψi0 on [0, ε0). �

We shall now use Corollary 9 to extend Theorem 11 to a nonsmooth setting.

Theorem 14 (Nonsmooth Kurdyka- Lojasiewicz inequality) Let f : Rn → R ∪ {+∞} be
a lower semicontinuous definable function. There exist ρ > 0 and a strictly increasing continuous
definable function ψ : [0, ρ) → (0,+∞) which is C1 on (0, ρ) with ψ(0) = 0 and a continuous
definable function χ : R+ → (0, ρ) such that

||x∗|| ≥ 1
ψ′(|f(x)|)

, (22)

whenever 0 < |f(x)| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).

Proof Set U1 = {x ∈ dom f : f(x) > 0} and U2 = {x ∈ dom f : f(x) < 0} and let X1, . . . , Xl

be a finite definable stratification of dom f compatible with the (definable) sets U1 and U2 such
that the definable sets Si = {(x, f(x)) : x ∈ Xi} are the strata of a nonvertical definable Cp-
Whitney stratification of Graph f (cf. Lemma 8). For each i ∈ {1, . . . , l} such that Xi ⊂ U1

we consider the positive C1 function fi := f |Xi on the definable manifold Xi (thus for x ∈ Xi

we have ∇fi(x) = ∇Rf(x) and fi(x) = f(x)) and we apply Theorem 11 to obtain εi > 0, a
continuous definable function χi : R+ → (0, εi) and a strictly increasing definable C1-function
ψi : (0, εi) → (0,+∞) such that for all x ∈ f−1(0, χi(||x||)) we have ||∇Rf(x)|| ≥ [ψ′i(f(x))]−1.
Similarly, for each j ∈ {1, . . . , l} such that Xj ⊂ U2 we consider the positive C1 function
fj := −f |Xi (note that for x ∈ Xj we have ∇fj(x) = −∇Rf(x) and fj(x) = −f(x)) to obtain
as before a definable function χj : R+ → (0, εj) and a strictly increasing definable C1-function
ψj : (0, εj) → (0,+∞) such that for all x ∈ f−1(0, χi(||x||)) we have ||∇Rf(x)|| ≥ [ψ′j(−f(x))]−1.
Thus for all i ∈ {1, . . . , l} there exist a definable function χi : R+ → (0, εi) and a strictly
increasing definable C1-function ψi : (0, εi) → R such that

||∇Rf(x)|| ≥ 1
ψ′i(|f(x)|)

, for all x ∈ f−1(0, χi(||x||)).
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Set χ = minχi, ρ = min εi and let i1, i2 ∈ {1, . . . , l}. By the monotonicity theorem for definable
functions of one variable (see [19, Lemma 2], for example), the definable function

(0, ρ) 3 r 7→ 1/ψ′i1(r)− 1/ψ′i2(r)

has a constant sign in a neighborhood of 0. Repeating the argument for all couples i1, i2 and
shrinking ρ if necessary, we obtain the existence of a strictly increasing, positive, definable
function ψ = ψi0 on (0, ρ) of class C1 that satisfies 1/ψ′ ≤ 1/ψ′i on (0, ρ) for all i ∈ {1, . . . , l}.
Evoking Corollary 9 (i), we obtain

||x∗|| ≥ ||∇Rf(x)|| ≥ 1
ψ′(|f(x))|

,

whenever x ∈ |f |−1(0, χ(||x||)) and x∗ ∈ ∂◦f(x). Since ψ is definable and bounded from below,
it can be extended continuously to [0, ρ). By adding eventually a constant, we can also assume
ψ(0) = 0. �

In a similar way to Corollary 13 we obtain the following result.

Corollary 15 Let f : Rn → R ∪ {+∞} be a lower semicontinuous definable function. Let us
denote by C1, . . . , Cm the connected components of (∇f)−1({0}) and by c1, . . . , cm the corres-
ponding critical values (cf. Corollary 9(ii)). Then there exist a continuous definable function
ψ : [0, ε0) → R+ which is C1 on (0, ε0) with ψ(0) = 0, and relatively open neighborhoods Vi of
Ci in dom f for each i ∈ {1, . . . ,m}, such that for all x ∈ Vi we have

||x∗|| ≥ 1
ψ′(|f(x)− ci|)

, (23)

whenever 0 < |f(x)− ci| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).

The assumption that the function f is definable is important for the validity of (22). It
implies in particular that the connected components of the set of the Clarke critical points of f
lie in the same level set of f (cf. Corollary 9 (ii)). Let us present some examples of C1-functions
for which (22) is not true.

Example 1 (i) Consider the function f : R → R with

f(x) =
{
x2 sin 1

x , if x 6= 0
0, if x = 0.

Then the set S = {x ∈ R : f ′(x) = 0} meets infinite many level sets around 0. Consequently,
(22) is not fulfilled since the critical value 0 is not isolated. Note also that f provides an example
of a non-definable function whose graph admits a Whitney stratification (in particular f satisfies
the conclusion of Proposition 4).
(ii) A nontrivial example is proposed in [29, page 14], where a C∞ “Mexican-hat” function has
been defined. An example of a similar nature has been given in [1], and will be described below:
Let f be defined in polar coordinate on R2 by

f(r, θ) =


exp(−(1− r2)−1 ) [1− ( 4r4 + (1− (r2)4)−1 4r4 sin(θ − (1− r2)−1) )], if r ≤ 1

0, if r > 1.
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The function f does not satisfy the Kurdyka- Lojasiewicz inequality for the critical value 0, i.e.
one can not find a strictly increasing C1 function ψ : (0, ρ) → (0,+∞), with ρ > 0, such that

||∇(ψ ◦ f)(x)|| ≥ 1

for small positive values of f(x). To see this, let us notice that the proof of ([19, Theorem 2])
shows that for any C1 function f (not necessarily definable) that satisfies the Kurdyka-
 Lojasiewicz inequality, the bounded trajectories of the gradient system

ẋ(t) +∇f(x(t)) = 0

have a bounded length. However, in the present example, taking as initial condition r0 ∈ (0, 1)
and θ0 such that θ0(1− r0)2 = 1, the gradient trajectory ẋ(t) = −∇f(x(t)) must comply with

θ(t) =
1

1− r(t)2
,

where r(t) ↗ 1− as t→ +∞ (see [1] for details). The total length of the above curve is obviously
infinite, which shows that the Kurdyka- Lojasiewicz inequality (for the critical value 0) does not
hold.

Let us finally give an easy consequence of Theorem 14 for the case of subanalytic functions.

Corollary 16 (Subgradient inequality) Assume that f : Rn → R ∪ {+∞} is a lower semi-
continuous globally subanalytic function and f(x0) = 0. There exist ρ > 0 and a continuous
definable function χ : R+ → (0,+∞) such that

|f(x)|θ ≤ ρ ||x∗||,

whenever 0 < |f(x)| ≤ χ(||x||) and x∗ ∈ ∂◦f(x).

Proof In the case that f is globally subanalytic, one can apply [19, Theorem (LI)] to deduce that
the continuous function ψ of Theorem 14 can be taken of the form ψ(s) = s1−θ with θ ∈ (0, 1).
�

Remark 8 Corollary 9(ii) (and a fortiori Corollary 16) extends [3, Theorem 7] to the lower
semicontinuous case. We also remark that the conclusions of Theorem 14 and of Corollary 16
remain valid for any notion of subdifferential that is included in the Clarke subdifferential,
thus, in particular, in view of (7), for the Fréchet and the limiting subdifferential. However,
let us point out that this is not the case for broader notions of subdifferentials, as for example
the convex-stable subdifferential introduced and studied in [4]. It is known that the convex-
stable subdifferential coincides with the Clarke subdifferential whenever the function f is locally
Lipschitz continuous, but it is strictly larger in general, creating more critical points. In par-
ticular, [3, Section 4] constructs an example of a subanalytic continuous function on R3 that is
strictly increasing in a segment lying in the set of its broadly critical points (that is, critical in
the sense of the convex-stable subdifferential). Consequently, Theorem 14 and Corollary 16 do
not hold for this subdifferential.
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